
HiTEX

User Manual

Für Beatriz

Version 1.1 (Draft)

MARTIN RUCKERT Munich University of Applied Sciences

The author has taken care in the preparation of this document, but makes

no expressed or implied warranty of any kind and assumes no responsibility

for errors or omissions. No liability is assumed for incidental or consequential

damages in connection with or arising out of the use of the information or

programs contained herein.

Internet page http://hint.userweb.mwn.de/hint/hitex.html may

contain current information, downloadable software, and news.

Copyright c© 2022 by Martin Ruckert

All rights reserved.

This publication is protected by copyright, and permission must be obtained

prior to any prohibited reproduction, storage in a retrieval system, or trans-

mission in any form or by any means, electronic, mechanical, photocopying,

recording, or likewise. To obtain permission to use material from this work,

please submit a written request to Martin Ruckert, Hochschule München,

Fakultät für Informatik und Mathematik, Lothstrasse 64, 80335 München,

Germany.

ruckert_@cs.hm.edu

Last commit: Tue Jan 21 19:09:13 2025

Contents iii

Contents

Contents iii

1 Introduction 1

2 HiTEX primitives 3
2.1 Syntax Description . 3
2.2 Version and Revision . 3
2.3 Images . 4
2.4 Colors . 4
2.4.1 Foreground Color . 5
2.4.2 Defining and Using Colors . 5
2.4.3 Default Colors . 7
2.4.4 Nesting Colors . 7
2.4.5 Colors for Pages . 8
2.4.6 Colors for Links . 8
2.4.7 LATEX Support . 9
2.4.8 Differences between LATEX and HiLATEX 9
2.5 Links, Labels, and Outlines . 11
2.6 Page Templates and Streams . 13

3 Other Primitives 17
3.1 ε-TEX . 17
3.2 LATEX and PRoTE . 17
3.3 kpathsearch and \input . 17

4 Replacing TEX’s Page Builder 19
4.1 TEX’s page building mechanism . 19
4.2 HINT Page Templates . 20

Index 25

1

1 Introduction

When I started the HINT project in 2017, I tried to keep the project as small
as possible to increase the chances that I would be able to complete it. So one
design decision was to keep things simple—or to quote an aphorism attributed to
Albert Einstein: “Make things as simple as possible, but not simpler”. The other
imperative was: keep things out of the viewer if possible because I do not know
how much processing power or battery power is available.

As a consequence, I focused on Donald Knuth’ original TEX, disregarding all later
developments like ε-TEX or LATEX, and I decided that the TEX interpreter would
not need to run in the viewer. Of course TEX’s line breaking routine will run in
the viewer and modifications of TEX’s page breaking routine. But the decision to
keep the TEX interpreter out of the HINT viewer implies that HINT files do not
contain token lists and that there are neither output routines nor marks. To replace
them, the HINT file format includes page templates. I have described the technical
means to specify page templates below and try to explain the rationale behind it,
but HINT’s page templates are at the time of this writing a largely untested area.

By now, the state of the HINT project is far beyond of what I had expected
then, and the processing power of even low-cost mobile devices is far better than
expected especially when programming the graphics card directly using OpenEGL.

The following sections will describe all the primitive control sequences that are
special for HiTEX. I tried to be as close to similar primitives that have proven to
be useful in other engines, notably pdfTEX, to make it easy for package writers to
support the HiTEX engine.

While currently HiTEX is the only TEX engine that supports output in the HINT
file format, this might not be so forever. To avoid unnecessary complications for
package writers, it is strongly suggested that all such TEX engines implement the
same primitives according to the same specification. The following is the first draft
of this specification. All the primitives use HINT as a prefix to avoid name conflicts.
The prefix HINT, as opposed to e.g. HiTeX, was chosen to stress the idea that these
primitives are specific for the output format—not for the TEX engine.

It is common practice in other TEX engines to support the \special primitive to
insert raw code snippets in the output. Using this primitive, it is possible to insert
PostScript code into a PS file, or PDF code in a PDF output file. It is currently
not planed to support this mechanism for HINT output files for two reasons: First,
the development of HiTEX is closely related to the development of the HINT file
format and therefore features that are part of the HINT file format will enjoy
support in HiTEX by corresponding primitives. Everything that is not available

2 1 Introduction

through primitives in HiTEX should be considered “internal” and might change in
the future. Second, HiTEX is not considered a replacement for but a supplement
to other engines. If your aim is the production of a printed book, your will target
one of the engines that produce PDF output. But if, on occasion, you want to read
what you wrote on a computer screen, you might just use HiTEX to process your
source file. At this point you do not want to write \special commands for the
new target; you want HiTEX as a plug-in replacement for your main target engine,
even if it is not completely faithful to your final printed book.

3

2 HiTEX primitives

Because this is the first specification that will reach a wider user base, it is rea-
sonable to expect changes to occur in the future. Therefore it is recommended
that these primitives should not be used directly in a TEX document; instead they
should be encapsulated in suitable macros so that the consequences of any change
to the primitives will be local to these macros.

2.1 Syntax Description

In the following, we describe the syntax of primitive control sequences which were
added to TEX.

• We use a typewriter font for text that occurs verbatim in the TEX document.

• We use 〈 italics 〉 enclosed in pointed brackets to denote symbols.

• We use rules to define the meaning of symbols. A rule starts with the symbol to
be explained, followed by a colon “:”, and then the text that this symbol stands
for. A rule ends with a period “.”.

• Optional parts of the rule’s text are enclosed in [square brackets].

• Alternatives are separated by a vertical bar “|”.

• Some symbols refer to text that is defined as part of standard TEX. These are
explained here by an example:

〈 integer 〉: an integer as in \penalty〈 integer 〉.
〈number 〉: a general number as in \kern〈number 〉pt.
〈normal dimension 〉: a dimension as in \hrule width 〈normal dimension 〉.
〈dimension 〉: a dimension as in \vskip 0pt plus 〈dimension 〉.
〈name 〉: a name as in \input 〈name 〉.
〈vertical list 〉: a token list with matching braces as in \vbox{〈vertical list 〉}.
〈horizontal list 〉: a token list with matching braces as in \hbox{〈horizontal

list 〉}.
〈general text 〉: a token list with matching braces as in \write{〈general

text 〉}.

4 2 HiTEX primitives

2.2 Version and Revision

The control sequences \HINTversion and \HINTminorversion are used to deter-
mine the major and minor version numbers of the HINT output format that is
generated by HiTEX. It can be used as part of the output as in \the\HINTversion.
The most important use, however, is testing whether the current TEX engine will
in fact produce HINT output. As an example the file ifhint.tex contains the
following code:

\newif\ifhint

\expandafter

\ifx\csname HINTversion\endcsname\relax

\hintfalse\else\hinttrue\fi

2.3 Images

The primitive \HINTimage includes an image in a document. The syntax is as
follows:

\HINTimage [=] 〈name 〉 [〈width 〉] [〈height 〉]

The optional equal sign can be added to make the code look nicer. The 〈name 〉
specifies the image file. The width specification determines the width of the image.
If omitted, HiTEX tries to determine the image’s width from the image file. The
same holds for the height specification.

〈width 〉: width 〈normal dimension 〉.
〈height 〉: height 〈normal dimension 〉.

Note that a 〈normal dimension 〉 that is computed from \hsize or \vsize retains
this dependency when processed by HiTEX. This allows an image to adapt to the
size of the viewing area. Scaling in the HINT viewer will, however, never change
the aspect ratio of an image. So it may become smaller or larger, but it will never
be distorted. For this reason, HiTEX will inspect the image file to determine the
aspect ratio of the stored image. The width and height values as given in the TEX
file serve as the maximum values for the actual width and height. When rendering,
the image will become as large as possible within the given bounds. If TEX does
not specify neither width nor height, the image file must specify the absolute width
and height of the image. It is considered an error if valid settings for the image’s
width and height can not be obtained.

2.4 Colors

Since the HINT file format is designed for on-screen viewing, the only color model
supported is the RGBA model, where a color is specified by four values: the red, the
green, the blue, and the alpha value. The first three determine the light intensity
of the red, green, and blue component of a pixel; the alpha value determines the
relative share of a color when displaying one color on top of another color. Because
in practice most display devices use one byte for each of the four values that define
a color, the HINTfile format stores the four color components using integer values

2.4 Colors 5

in the range 0 to 255. Independent of the input format, HiTEX will convert all
colors to this format when storing them in the output file.

2.4.1 Foreground Color

The most common color specification is the specification of a foreground color. (We
will consider background colors below.) A foreground color can be specified using
the following syntax:

〈 foreground 〉: FG{ 〈 integer 〉 〈 integer 〉 〈 integer 〉 [〈 integer 〉] }.

Note that for convenience, the alpha value is optional; if no alpha value is given,
the value 255 will be used and the color is completely opaque.

Here are some examples: FG{255 0 0}, FG{255 0 0 255}, both specify the same
plain opaque red; FG{0 0 255} is plain blue; FG{255 255 0 127} is a transparent
yellow. Because each value fits in a single byte, the values are often given in
hexadecimal notation. In TEX, hexadecimal values are written with a " prefix.
The same colors as before are then written FG{"FF 0 0}, FG{"FF 0 0 "FF}, FG{0
0 "FF} and FG{"FF "FF 0 "7F}. Values greater than 255 or less than 0 are not
allowed.

A common alternative to the color representation just described is the device
independent notation where each value is a real number in the interval from 0 to 1.
To keep both representations apart, the device independent representation (with
the smaller numbers) uses the lowercase keyword fg instead of FG. Here is the
syntax:

〈 foreground 〉: fg{ 〈number 〉 〈number 〉 〈number 〉 [〈number 〉] }.

Using the new syntax, the colors above are written fg{1 0 0}, fg{1 0 0 1}, fg{0
0 1} and fg{1 1 0 0.5}. Values greater than 1 and less than 0 are not allowed.
Note that fg{1 1 1} is pure white while FG{1 1 1} is the darkest possible gray,
which on most devices is indistinguishable from pure black.

When specifying colors for computer screen, using red, green, and blue com-
ponents is natural. For printing on paper, the specification using cyan, magenta,
yellow, and black is the default. Since collections of named colors using the latter
format are common, HiTEX allows the use of this format by prefixing the numbers
with the keyword cmyk. Specifying the keyword rgb is also possible and has the
same effect as giving no keyword. Using the new syntax the transparent yellow can
be written fg{cmyk 0 0 1 0 0.5}, FG{cmyk 0 0 "FF 0 "7F}, fg{rgb 1 1 0 0.5}, or
FG{rgb "FF "FF 0 "7F}.

The additional syntax rules are:

〈 foreground 〉: fg{ rgb 〈number 〉 〈number 〉 〈number 〉 [〈number 〉] }.
〈 foreground 〉: fg{ cmyk 〈number 〉 〈number 〉 〈number 〉 〈number 〉 [〈number 〉]

}.
〈 foreground 〉: FG{ rgb 〈 integer 〉 〈 integer 〉 〈 integer 〉 [〈 integer 〉] }.
〈 foreground 〉: FG{ cmyk 〈 integer 〉 〈 integer 〉 〈 integer 〉 〈 integer 〉 [〈 integer 〉] }.

6 2 HiTEX primitives

2.4.2 Defining and Using Colors

As we will see, colors come in whole sets of colors. To define such a set of colors,
HiTEX provides the primitive \HINTcolor. It syntax is

\HINTcolor { 〈color specification 〉 }

Before we give the complete definition of a 〈color specification 〉, we start with
some examples. In its simplest form this primitive just specifies a single color. For
example \HINTcolor{fg{0 0 0}} specifies the foreground color black which is then
used for rules and glyphs. In addition to the foreground color, you can specify a
background color. For example, black text on white background is specified by
\HINTcolor{fg{0 0 0} bg{1 1 1}} or \HINTcolor{fg{0 0 0} BG{"FF "FF "FF}}.

The viewer for HINT files may provide a “dark” mode, and as a document author,
you can specify the colors also for dark mode. If you like white letters on dark blue
background you can write \HINTcolor{fg{0 0 0} bg{1 1 1} dark fg{1 1 1} bg{0

0 0.3}}.
There are two more colors that an author might care about: When searching

for a text, all occurrences of the search phrase are highlighted by using a different
color. And while the user iterates over the occurrences on the page, one occurrence
has the “focus” and is rendered again in a different color. You can specify the
highlight color right after the normal text color and the focus color right after the
highlight color. The same can be done for the colors in “dark” mode.

Here are the remaining rules that complete the 〈color specification 〉:

〈color specification 〉: 〈color set 〉 [dark 〈color set 〉].
〈color set 〉: 〈color 〉 [〈color 〉 [〈color 〉]].
〈color 〉: 〈 foreground 〉 [〈background 〉].
〈background 〉: FG{ [rgb] 〈 integer 〉 〈 integer 〉 〈 integer 〉 [〈 integer 〉] }.
〈background 〉: fg{ [rgb] 〈number 〉 〈number 〉 〈number 〉 [〈number 〉] }.
〈background 〉: FG{ cmyk 〈 integer 〉 〈 integer 〉 〈 integer 〉 〈 integer 〉 [〈 integer 〉] }.
〈background 〉: fg{ cmyk 〈number 〉 〈number 〉 〈number 〉 〈number 〉 [〈number 〉]

}.

If some of the optional parts in the 〈color specification 〉 are missing, the corre-
sponding colors from the set of default colors, as described below, are used.

Note that the background colors for highlighted text and focus text can be given,
but current viewers ignore these background specifications. Further note that the
current specification of the HINT file format limits the total number of different
color specifications in a document to 255.

The colors given in \HINTcolor will have an immediate effect on all following
rules and glyphs and the background of the enclosing box. The effect will persist
until the next change of colors or until the end of the box—whatever occurs first.

The line breaking algorithm of HiTEX tracks changes in color within a paragraph
and reinsert an appropriate color change at the start of every \hbox that contains
a new line. In this way local color changes inside a paragraph can span multiple
lines but do not affect the inter line glue or material that is inserted with \vadjust.
Similarly, spliting off the initial part of a vertical box with \vsplit will insert a

2.4 Colors 7

color node in the remaining part if necessary to keep the color consistent accross
the split.

Special care is needed if background colors are used. Unless the background
color is completely transparent with an alpha value equal to zero, the background
color will fill a vertical box from left to right and a horizontal box from top to
bottom. Since height, depth, and width of boxes often depend on the text that is
inside, which in turn might depend on the outcome of line breaking, it is strongly
recommended to use background colors with caution, and use \struts to enforce
a fixed height and depth of horizontal boxes.

2.4.3 Default Colors

The HINT file format specifies default values for all colors. HiTEX provides the
primitive \HINTdefaultcolor to overwrite these default colors. This primitive
must not be used after defining any custom colors using \HINTcolor. Its syntax is

\HINTdefaultcolor { 〈color specification 〉 }

The HINT format specifies the following default colors: Normal text is black FG{0

0 0}, highlight text is a slightly dark red FG{"EE 0 0}, and focus text is slighty
dark green FG{0 "EE 0}. The background is transparent white BG{"FF "FF "FF

0}. In dark mode the background is transparent black BG{0 0 0 0}, normal text
is white FG{"FF "FF "FF}, and a slightly lighter red FG{"FF "11 "11}, and green
FG{"11 "FF "11}, are used for highlighted and focus text.

2.4.4 Nesting Colors

A color change is limited to the enclosing box. Hence the nesting of boxes leads
to a nesting of color definitions. So for example a transparent background color
in the inner box will not completely replace the background color of the enclosing
box but will only modify this color like seeing it through colored glas.

A color change ends not only at the end of the enclosing box, it will also end
at the next use of the \HINTcolor or \HINTendcolor primitive: The \HINTcolor

primitive will replace the current colors by a new set of colors; the \HINTend-

color primitive will resume the color specification that was valid just before the
matching use of \HINTcolor. HiTEX maintains a color stack tracking local color
changes within a box or paragraph, and uses it to insert appropriate color changes
so that the \HINTendcolor primitive will simply cancel the color change by the
matching \HINTcolor primitive. If there is no matching \HINTcolor primitive,
the \HINTendcolor primitive is silently ignored. Note that within a single box,
there is at any point only a single background color: The color stack will switch
from one background color to an other background color but will not overlay an
“inner” background color over an “outer” background color. This is only the case
when multiple boxes are nested as described above.

Here is an example: Suppose we want the TEX logo to be rendered in light red,
and notes in dark green. You can write

\def\redTeX{\HINTcolor{fg{1 0.3 0.3}}\TeX\HINTendcolor}

\def\beginnote{\HINTcolor{fg{0 0.5 0}}}% dark green

8 2 HiTEX primitives

\def\endnote{\HINTendcolor}

This is an example showing the \redTeX\ logo in red color.

\beginnote Note how the \redTeX\ logo is still red inside this

note.\endnote

After the first occurrence of the red TEX logo, the color will be switched back
to normal black, while after the second occurrence the color will be switched back
to dark green. The color switching will work as intended even if the paragraph is
spread over several lines by the line breaking routine.

2.4.5 Colors for Pages

When a page get rendered in the HINT file viewer, the renderer starts with the
default colors and the page is initially cleared using the default background color.
If a different page color is desired, color changes can be added to the page templates.

In a vertical box, the color stack of HiTEX has a similar effect as in a horizontal
box. Similar to the precautions in the line breaking routine, HiTEX will insert
color changes when splitting a vertical box with \vsplit. Complications arise
from color changes in the top level vertical list which is split into pages in the
HINT viewer at runtime. Because the page builder in the viewer has no global
information and should not need global information, HiTEX will insert copies of
the local color information after every possible breakpoint in the top level vertical
list. This will ensure that page breaks will not affect the colors of the displayed
material. Note, however, that TEX considers glue (and kerns) as discardable and
will remove these items from the top of a new page. Because glues and kerns are
colored using the current background color, these items might be visible on a page
but disappear when they follow immediately after a page break. So if you want
the effect of a colored glue or kern that is not affected by a page break, you should
include it inside a box or use a colored rule instead.

2.4.6 Colors for Links

The most common change in color is caused by the use of links. To support this
changing of colors, the primitives \HINTstartlink and \HINTendlink (see sec-
tion 2.5) cause an automatic change of the color specification. A document author
can set the default colors used for links with the primitive \HINTdefaultlink-

color and change the current link color with the primitive \HINTlinkcolor. The
syntax is:

\HINTdefaultlinkcolor { 〈color specification 〉 }
\HINTlinkcolor { 〈color specification 〉 }

For convenience, the HINT file format specifies default colors for links as well:
links use dark blue FG{0 0 "EE} and in dark mode light blue FG{"11 "11 "FF}. The
primitive \HINTdefaultlinkcolor is used to partly or completely redefine these
defaults.

Later uses of \HINTlinkcolor will set new current link colors. Colors that are
missing in the new link color specification are taken from the corresponding default
colors for links.

2.4 Colors 9

Whenever the \HINTstartlink primitive is used, its effect on the colors is equiv-
alent to the \HINTcolor primitive using the current link color. This implies that
the color change caused by \HINTstartlink is local to the enclosing box.

Whenever the \HINTendlink primitive is used, it will restore the color stack of
HiTEX to its state before the matching \HINTstartlink. It is the responsibility
of the TEX source code (or package) to keep the sequence of \HINTstartlink,
\HINTendlink, \HINTcolor, and \HINTendcolor properly nested. A sequence
like “\HINTstartlink . . . \HINTcolor . . . \HINTendlink . . . \HINTendcolor” is
possible, but it will cause \HINTendlink to restore the colors to those in effect
before the \HINTstartlink. The following \HINTendcolor will then either restore
a color of a matching \HINTcolor preceeding the link in the same box or it will
restore the color in the outer box, or it will be ignored. In effect, the color changes
inside a link stay local to the link.

2.4.7 LATEX Support

Starting with TEX Live 2025, there is a limited support for the xcolor package.
After \usepackage{xcolor} you can use the predefined standard colors; for

example \color{red}. If you add one (or several) of the named color options
x11names, svgnames, or dvipsnames to the package, you can also use commands
like \color{Tomato4} (x11), \color{BlanchedAlmond} (svg), or \color{Plum}

(dvips).
To define your own colors you can use for example
\definecolor{mypink1}{rgb}{0.858, 0.188, 0.478},
\definecolor{mypink2}{RGB}{219, "30, 122},
\definecolor{mypink3}{cmyk}{0, 0.7808, 0.4429, 0.1412}, or
\definecolor{mygray}{gray}{0.2}.
The mixing of colors is supported as well. For example a mixture of 40% green

and 60% yellow look is produced by \color{green!40!yellow}.
The colors for links and other references can be given as options to the hyperref

package. For example as in
\usepackage[linkcolor=green,urlcolor=red]{hyperref}

2.4.8 Differences between LATEX and HiLATEX

Colors and Groups

In LATEX, colors are local to the group. So by writing “text 1 {\color{blue}

text 2 } text 3” after text 1 the color of text 2 will change to blue and after
} marking the end of the group, the color of text 3 will revert to the color of
text 1. HiLATEX emulates this behaviour by inserting \HINTendcolor at the end
of the group.

When it comes to paragraphs, the scoping rules of colors in HiLATEX are however
slightly different from the LATEX scoping rules. In TEX and LATEX, boxes and
references all have there own group, but this is not true for paragraphs. So TEX or
LATEX will allow you to start a new group in one paragraph and end the group in
the next paragraph, while it is not possible to start a group in one box and end the
group in another box. As a consequence, you can switch to blue text color in the

10 2 HiTEX primitives

middle of a paragraph and end the blue color in the middle of the next paragraph.
In HiTEX, on the other hand, when it comes to colors, paragraphs behave pretty
much like boxes: The effect of a color change inside a paragraph will not extend
past the end of the paragraph. The closing of the group in the next paragraph will
then have no effect.

Colors in vertical Lists

The HINT file format allows color specifications in horizontal boxes and—unlike
the PDF file format—in vertical boxes as well. Together with the mode switching
of TEX, which goes into horizontal mode when it sees the beginning of a paragraph
and back into vertical mode at the end of the paragraph, this can cause unexpected
color effects.

There is for example a big difference between

\color{blue}

The first paragraph ...

The second paragraph ...

and

\indent

\color{blue}

The first paragraph ...

The second paragraph ...

In the first case, the color change is part of the vertical list and the letter “T”
starts the paragraph. As a consequence, the color change is still in effect when the
second paragraph starts. In the second case, the \indent command puts TEX into
horizontal mode and the color change becomes part of the first paragraph. As a
consequence, the color change will end with the first paragraph, as explained in
the previous section.

Even more surprising is this:

{\color{blue} Blue} The first paragraph ...

The second paragraph ...

TEX finds the begining of the group { and the color change in vertical mode and
it puts the color change into the vertical list. Then it finds the letter “B” and starts
the paragraph. When TEX encounters the end of the group, there is no local color
change inside the paragraph and the text continues to be blue. Even the second
paragraph and all following paragraphs will continue in blue until the end of the
vertical list.

The confusion that such behaviour might create has its root in TEX’s mode
switching which is not synchronized with TEX’s grouping. While grouping is typi-
cally visible in the source text, the mode switching remains largely invisible.

2.4 Colors 11

Future Changes

While it may be questionable whether all the color changes shown above makes
sense, it is definitely undesirable if HiLATEX and LATEX behave differently. As a
consequence, HiLATEX might very well change in this respect in a later version,
so that HiTEX will no longer treat the begining and ending of paragraphs as the
beginning and ending of a group. It is an open question how HiTEX should handle
the end of a group in the middle of a paragraph ending a color change that started
in the enclosing vertical list. Currently a \HINTendcolor at that position would
be silently ignored because it can only undo local changes inside the paragraph.
Should HiTEX instead change the color of the enclosing vertical box immediately?
What does it mean to do this change immediately? At the baseline? Before the
next interline glue? What are the implications for the rendering engine? How
complicated can it be to look ahead for color changes that occur depply nested
inside a vertical list? Would it not be better to demand the use of \vadjust for
such an effect? Should HiTEX postpone the color change in the enclosing vertical
box until the end of the paragraph?

Default Colors

Because complete color specifications are pretty long. It is important to provide
usefull defaults. Currently missing elements of a color specification are taken from
a single default color specification. It might be convenient to be able to provide
a way to define color specifications using the current color as a basis for missing
elements.

Color Numbers

The HINT file format references a color set by a number in the range 0 to 254. So
HiTEX assigns each color specification a number, using the same number for two
identical color specifications. One extension to the above specification of HiTEX’s
color primitives could be to make these numbers accessible to document authors or
package programmers. For example \the\HINTcolor could expand to the number
n of the current color set and \HINTcolorn would be equivalent to a use of \HINT-
color with a full color specification that is equivalent to the color specification
belonging to n. This would be quite efficient; it would not be necessary to scan
the color specification and search the existing color specifications for the matching
specification with number n.

The LATEX named colors are stored as macros, which has the advantage that
loading a whole package of color names does not use any of HiTEX’s color numbers.
Only colors that actually get used (probably only a few) will get a color number.
This works well in practice. So currently, there are no plans to implement this
extension.

12 2 HiTEX primitives

2.5 Links, Labels, and Outlines
A link in a HINT document refers to another location in the same document.
It can be used to navigate to that location. A link is defined using the primitives
\HINTstartlink and \HINTendlink. Neither of them can be used in vertical mode.
The text between the start and the end of the link constitutes the visible part of the
link. Depending on the user interface, clicking or tapping or otherwise activating
the link (e.g. pronouncing) will navigate to the destination of the link. The user
interface might provide a visual clue to make the user aware of the available links
for example using a special cursor when hovering over a link. But it also may
choose to leave the visual clues completely to the author of the document (e.g.
using a special colors, images, or fonts).

The syntax is \HINTstartlink 〈destination 〉 and \HINTendlink with

〈destination 〉: goto 〈 label 〉.
〈 label 〉: name {〈general text 〉} | num 〈 integer 〉.

As you can see, the link refers to its destination using a label which is either
a name or a number. The destination can be defined by using the \HINTdest

primitive. Forward and backward links are allowed; the definition of a label can
either precede or follow the use of the label. If at the end of the document a label
is undefined, a warning is given, and the label will reference the beginning of the
document.

The syntax is

\HINTdest 〈 label 〉 [〈placement 〉]

with

〈placement 〉: top | bot.

The optional placement argument specifies how to build the page containing the
destination location. top demands a page starting with the destination location.
This is useful if the destination is for example the start of a section or chapter
heading. Similarly bot asks for a page that ends with the destination location.
The most common case is to omit the placement argument. In this case, the
viewer will build a “good” page that includes the given destination. In case of a
section heading, for example, it will most probably start the page with the section
heading because section headings are usually preceded by a negative penalty that
will convince the page builder that this is a good place to break the page. But
if the section heading is immediately preceded by a chapter heading, the negative
penalty found there will probably persuade the page builder to start with the
chapter heading instead.

There is a special label that has the form name {HINT.home}. It is used to mark
the “home page” of the document. User interfaces are encouraged to offer a button
or keyboard shortcut to navigate to the document location labeled this way. The
page should be a convenient starting point to explore the document. The typical
place for this label would be the documents table of content.

The labels that identify destinations in a document can also be used to define
document outlines. A document outline is a document summary given as a hi-

2.6 Page Templates and Streams 13

erarchical list of headings where each of them refers to a specific location in the
document.

The syntax is

\HINToutline 〈destination 〉 [〈depth 〉] {〈horizontal list 〉}

〈depth 〉: depth 〈 integer 〉.

The user interface can format the 〈horizontal list 〉 much like a \hbox would do
and display it to the user. When the user selects this text, the document will
be repositioned to show the destination location in the same way as with a link.
In order to support also simpler user interfaces, the current HINT backend also
extracts the characters (and spaces) from the horizontal list (in top-left to bottom-
right order) and makes this character string available to the user interface.

The order in which outline items are defined is important because this is the
order in which they will be presented to the reader of the document. The optional
depth argument allows to structure the list of outline items as a hierarchy. Outline
items with a higher depth value are considered to be sub-items of items earlier in
the list with lower depth values. If no depth value is given, the depth value is set
to zero. It is not necessary to define depth values strictly consecutive.

2.6 Page Templates and Streams

To produce the final page, TEX uses a special piece of program called the output
routine. Because a HINT file is pure data, it can not contain output routines.
Instead it uses page templates to assemble pages from the main text, footnotes,
floating illustrations, and other material. I start here by describing how HINT’s
page templates work and the special syntax used to specify them in a TEX file that is
about to be processed with HiTEX. For those interested in how the design decision
was made and how page templates relate to TEX’s page building mechanism, a
separate section follows at the end.

The syntax of a page template specification is:

\HINTsetpage 〈 integer 〉 [=] 〈name 〉 [〈priority 〉] [〈width 〉] [〈height 〉] {〈vertical
list 〉 〈stream definition list 〉}

The 〈 integer 〉 specifies the page templates number in the range 1 to 255. The
number 0 is reserved for the build in page template of the HINT file format, which
is used if no other page template has been defined. The page template 0 can not
be redefined. The 〈name 〉 associates a name with the page template. The name
can be displayed by the HINT viewer to help the user selecting a suitable page
template.

After the name follows an optional priority; it is used to select the “best page
template” if multiple templates are available. The default value is 1. The build-in
template has priority 0.

〈priority 〉: priority 〈 integer 〉.

After that follows an optional width and height of the full page including the
margins. After subtracting \hsize from the width and \vsize from the height,

14 2 HiTEX primitives

the remainder is used for the margins around the displayed text. For example
giving the width as 1.2\hsize will leave 0.1\hsize for the margins on both sides.
In this case the margins will grow together with the available width of the display.
If the width is computed by adding 20pt to \hsize, the margin will be 10pt on
both sides. In this case the margin will not grow with the size of the display, but
it will grow with the magnification factor. Of course both methods can be used
together. The default is \hsize for the width and \vsize for the height so there
are no margins.

The following 〈vertical list 〉 defines the page itself. It should assign suitable
values to \topskip and \maxdepth because the values valid at the end of the
vertical list are stored in the page template and are used in the page building
process. The vertical list usually also specifies the insertion of content streams
using a 〈stream insert point 〉.

〈stream insert point 〉: \HINTstream 〈 integer 〉.

Here the 〈 integer 〉 must be in the range 0 to 254. The value 255 is invalid; the
value 0 indicates the main body of text (what TEX’s page builder would normally
put into box 255 before calling the output routine). Otherwise, the 〈 integer 〉 is
TEX’s insertion number, that is the number of TEX’s box containing the insertions.
As usual, this box is filled using TEX’s \insert primitive. So after plain TEX
has defined \footins, the footnotes for the current page can be inserted after
the main body of text in the 〈vertical list 〉 by saying \HINTstream0 followed by
\HINTstream\footins. Of course you might want to have a footnote rule and a
small skip to separate the footnotes —if there are any—from the main text. This
can be achieved by a suitable 〈stream definition 〉 in the 〈stream definition list 〉.

〈stream definition list 〉: | 〈stream definition list 〉 〈stream definition 〉.
〈stream definition 〉: \HINTsetstream 〈 integer 〉 [=] [preferred 〈 integer 〉]

[next 〈 integer 〉] [ratio 〈 integer 〉] {〈vertical list 〉}.

The first 〈 integer 〉 is the streams insertion number i, and it must match the
〈 integer 〉 previously used in the 〈stream insert point 〉. Then follows the optional
specification of a preferred stream with insertion number p, a next stream with
insertion number n, and a split ratio r. If r > 0, the contributions to stream i are
split between stream p and n in the ratio r/1000 for p and 1− r/1000 for n before
contributing streams p and r to the page. Else if p ≥ 0 any insertion to stream i is
moved to stream p as long as possible, and if n ≥ 0 we move an insert to stream
n if there is “no room left” in p nor in i. How much “room” is available for the
insertions is specified inside the vertical list that follows. Here \dimeni should be
set to the maximum total height of the insertions in class i per page. \counti
should be set to the magnification factor f , such that inserting a box of height h
will contribute h ∗ f/1000 to the main page; and \skipi should be set to the extra
space needed if an insertion in class i is present.

This extra space is usually taken up by material that is inserted before and after
the insertions, such as for example the footnote rule. This material can be defined
by a 〈before list 〉 and an 〈after list 〉.

2.6 Page Templates and Streams 15

〈before list 〉: \HINTbefore [=] {〈vertical list 〉}.
〈after list 〉: \HINTafter [=] {〈vertical list 〉}.

If you are interested in the design decision that motivate the definitions that
have be given in this section, you should read section 4.

17

3 Other Primitives

Since I consider the support for LATEX to be crucial for the success of the HINT
project, quite a few primitives have been added to HiTEX that go beyond TEX’s
original specification.

3.1 ε-TEX

First, the primitives of ε-TEX have been added with the exception of those primi-
tives that deal with line breaking, with right to left reading, and with marks. Here
is a list of ε-TEX primitives that are missing in HiTEX:

• \TeXXeTstate (current reading direction)

• \beginL, \endL (switching reading direction)

• \beginR, \endR (switching reading direction)

• \predisplaydirection (reading direction)

• \lastlinefit (line breaking)

• \marks (multiple marks)

• \botmarks, \splitbotmarks (multiple marks)

• \firstmarks, \splitfirstmarks (multiple marks)

• \topmarks (multiple marks)

3.2 LATEX and PRoTE

Second, the primitives required to support LATEX were added using Thierry Laron-
des implementation of PRoTE.

• \Proteversion, \Proterevision (version information)

• \resettimer, \elapsedtime (timing information)

• \creationdate, \filemoddate, \filesize, \filedump, \mdfivesum (file infor-
mation)

• \shellescape (Currently only a dummy implementation.)

• \setrandomseed, \randomseed, \normaldeviate, \uniformdeviate (random
numbers)

• \expanddepth, \expanded (programming)

• \ifincsname, \ifprimitive \primitive (programming)

• \savepos, \lastxpos, \lastypos, \pageheight, \pagewidth (Only dummy im-
plementations since this information is not available to HiTEX at runtime.)

• \strcmp (comparing strings)

18 3 Other Primitives

3.3 kpathsearch and \input

In Don Knuth’s implementation of TEX, the \input primitive will add the extension
.tex to any filename that does not have an extension. This implies that a file
without extension cannot be opened as an input file. The usual engines do not
add such an extension but pass the filename as given to kpse_find_file function.
HiTEX does the same. The kpathsearch library will find files in a variety of
directories and yes, it will also find files without extension. Using this library,
or equivalent functionality, is just about mandatory for any engine that wants to
process LATEX input.

19

4 Replacing TEX’s Page Builder
TEX uses an output routine to finalize the page. The output outline takes the
material which the page builder had accumulated in box255 and attaches headers,
footers, and floating material like figures, tables, and footnotes. The latter material
is specified by insert nodes while headers and footers are often constructed using
mark nodes. Running an output routine requires the full power of the TEX engine
and is not part of the HINT viewer. Therefore, HINT replaces output routines
by page templates. TEX can use different output routines for different parts of a
book—for example the index might use a different output routine than the main
body of text.

TEX uses insertions to describe floating content that is not necessarily displayed
where it is specified. Three examples may illustrate this:

• Footnotes* are specified in the middle of the text but are displayed at the bottom
of the page. Several footnotes on the same page are collected and displayed
together. The page layout may specify a short rule to separate footnotes from
the main text, and if there are many short footnotes, it may use two columns to
display them. In extreme cases, the page layout may demand a long footnote to
be split and continued on the next page.

• Illustrations may be displayed exactly where specified if there is enough room
on the page, but may move to the top of the page, the bottom of the page, the
top of next page, or a separate page at the end of the chapter.

• Margin notes are displayed in the margin on the same page starting at the top
of the margin.

HINT uses page templates and content streams to achieve similar effects. But
before I describe the page building mechanisms of HINT, let me summarize TEX’s
page builder.

4.1 TEX’s page building mechanism

TEX’s page builder ignores leading glue, kern, and penalty nodes until the first
box or rule node is encountered; whatsit nodes do not really contribute anything*
to a page; mark nodes are recorded for later use. Once the first box, rule, or
insert arrives, TEX makes copies of all parameters that influence the page build-
ing process and uses these copies. These parameters are the page_goal and the
page_max_depth. Further, the variables page total, page shrink, page stretch,

* Like this one.
* This changes when images are implemented as whatsit nodes.

20 4 Replacing TEX’s Page Builder

page depth, and insert penalties are initialized to zero. The top skip adjust-
ment is made when the first box or rule arrives—possibly after an insert. Now
the page builder accumulates material: normal material goes into box255 and will
change page total, page shrink, page stretch, and page depth. The latter is
adjusted so that is does not exceed page max depth.

The handling of inserts is more complex. TEX creates an insert class using
newinsert. This reserves a number i and four registers: boxi for the inserted
material, counti for the magnification factor f , dimeni for the maximum size per
page d, and skipi for the extra space needed on a page if there are any insertions
of class i.

For example plain TEX allocates n = 254 for footnotes and sets count254 to 1000,
dimen254 to 8in, and skip254 to \bigskipamount.

An insertion node will specify the insertion class i, some vertical material, its
natural height plus depth x, a split top skip, a split max depth, and a floa-

ting penalty.
Now assume that an insert node with subtype 254 arrives at the page builder.

If this is the first such insert, TEX will decrease the page goal by the width of
skip254 and adds its stretchability and shrinkability to the total stretchability
and shrinkability of the page. Later, the output routine will add some space and
the footnote rule to fill just that much space and add just that much shrinkability
and stretchability to the page. Then TEX will normally add the vertical material
in the insert node to box254 and decrease the page goal by x× f/1000.

Special processing is required if TEX detects that there is not enough space on the
current page to accommodate the complete insertion. If already a previous insert
did not fit on the page, simply the floating penalty as given in the insert node
is added to the total insert penalties. Otherwise TEX will test that the total
natural height plus depth of box254 including x does not exceed the maximum size
d and that the page total+page depth+x×f/1000−page shrink ≤ page goal.
If one of these tests fails, the current insertion is split in such a way as to make the
size of the remaining insertions just pass the tests just stated.

Whenever a glue node, or penalty node, or a kern node that is followed by glue
arrives at the page builder, it rates the current position as a possible end of the
page based on the shrinkability of the page and the difference between page total

and page goal. As the page fills, the page breaks tend to become better and better
until the page starts to get overfull and the page breaks get worse and worse until
they reach the point where they become awful bad. At that point, the page builder
returns to the best page break found so far and fires up the output routine.

4.2 HINT Page Templates

Let’s look at the problems that show up when implementing a replacement for
TEX’s page building mechanism.

1. An insertion node can not always specify its height x because insertions may
contain paragraphs that need to be broken in lines and the height of a paragraph
depends in some non obvious way on its width.

2. Before the viewer can compute the height x, it needs to know the width of the

4.2 HINT Page Templates 21

insertion. Just imagine displaying footnotes in two columns or setting notes in
the margin. Knowing the width, it can pack the vertical material and derive its
height and depth.

3. TEX’s plain format provides an insert macro that checks whether there is still
space on the current page, and if so, it creates a contribution to the main text
body, otherwise it creates a topinsert. Such a decision needs to be postponed
to the HINT viewer.

4. HINT has no output routines that would specify something like the space and
the rule preceding the footnote.

5. TEX’s output routines have the ability to inspect the content of the boxes, split
them, and distribute the content over the page. For example, the output routine
for an index set in two column format might expect a box containing index entries
up to a height of 2× vsize. It will split this box in the middle and display the
top part in the left column and the bottom part in the right column. With this
approach, the last page will show two partly filled columns of about equal size.

6. HINT has no mark nodes that could be used to create page headers or footers.
Marks, like output routines, contain token lists and need the full TEX interpreter
for processing them. Hence, HINT does not support mark nodes.

Instead of output routines, HINT uses page templates. Page templates are ba-
sically vertical boxes with 〈stream insert points 〉 marking the positions where the
content of the box registers, filled by the page builder, should appear. To output
the page, the viewer traverses the page template, replaces the placeholders by the
appropriate box content, and sets the glue.

It is only natural to treat the page’s main body, inserts, and marks using the
same mechanism. We call this mechanism a content stream. Content streams are
identified by a stream number in the range 0 to 254; the number 255 is used to
indicate an invalid stream number. The stream number 0 is reserved for the main
content stream; it is always defined.

It is planed to implement a replacement for TEX’s mark nodes using

different types of streams:

• normal streams correspond to TEX’s inserts and accumulate content on

the page,

• first streams correspond to TEX’s first marks and will contain only the

first insertion of the page,

• last streams correspond to TEX’s bottom marks and will contain only

the last insertion of the page, and

• top streams correspond to TEX’s top marks. Top streams are not yet

implemented.

Nodes from the content section are considered contributions to stream 0 except
for insert nodes which will specify the stream number explicitly. If the stream is not
defined or is not used in the current page template, its content is simply ignored.

22 4 Replacing TEX’s Page Builder

The page builder needs a mechanism to redirect contributions from one content
stream to another content stream based on the availability of space. Hence a HINT
content stream can optionally specify a preferred stream number, where content
should go if there is still space available, a next stream number, where content
should go if the present stream has no more space available, and a split ratio if the
content is to be split between these two streams before filling in the template.

Various stream parameters govern the treatment of contributions to the stream
and the page building process.

• The magnification factor f : Inserting a box of height h to this stream will
contribute h×f/1000 to the height of the page under construction. For example,
a stream that uses a two column format will have an f value of 500; a stream
that specifies notes that will be displayed in the page margin will have an f value
of zero.

• The height h: The extended dimension h gives the maximum height this stream
is allowed to occupy on the current page. To continue the previous example,
a stream that will be split into two columns will have h = 2 · vsize , and a
stream that specifies notes that will be displayed in the page margin will have
h = 1 · vsize. You can restrict the amount of space occupied by footnotes to
the bottom quarter by setting the corresponding h value to h = 0.25 · vsize.

• The depth d: The dimension d gives the maximum depth this stream is allowed
to have after formatting.

• The width w: The extended dimension w gives the width of this stream when
formatting its content. For example margin notes should have the width of the
margin less some surrounding space.

• The “before” list b: If there are any contributions to this stream on the current
page, the material in list b is inserted before the material from the stream itself.
For example, the short line that separates the footnotes from the main page will
go, together with some surrounding space, into the list b.

• The top skip glue g: This glue is inserted between the material from list b and
the first box of the stream, reduced by the height of the first box. Hence it
specifies the distance between the material in b and the first baseline of the
stream content.

• The “after” list a: The list a is treated like list b but its material is placed after
the material from the stream itself.

• The “preferred” stream number p: If p 6= 255, it is the number of the preferred
stream. If stream p has still enough room to accommodate the current contribu-
tion, move the contribution to stream p, otherwise keep it. For example, you can
move an illustration to the main content stream, provided there is still enough
space for it on the current page, by setting p = 0.

• The “next” stream number n: If n 6= 255, it is the number of the next stream. If
a contribution can not be accommodated in stream p nor in the current stream,
treat it as an insertion to stream n. For example, you can move contributions to
the next column after the first column is full, or move illustrations to a separate
page at the end of the chapter.

4.2 HINT Page Templates 23

• The split ratio r: If r is positive, both p and n must be valid stream numbers
and contents is not immediately moved to stream p or n as described before.
Instead the content is kept in the stream itself until the current page is complete.
Then, before inserting the streams into the page template, the content of this
stream is formatted as a vertical box, the vertical box is split into a top fraction
and a bottom fraction in the ratio r/1000 for the top and (1000 − r)/1000 for
the bottom, and finally the top fraction is moved to stream p and the bottom
fraction to stream n. You can use this feature for example to implement footnotes
arranged in two columns of about equal size. By collecting all the footnotes in
one stream and then splitting the footnotes with r = 500 before placing them
on the page into a right and left column. Even three or more columns can be
implemented by cascades of streams using this mechanism.

HINT allows multiple page templates but HiTEX currently does not implement
restricting them to individual page ranges and the viewer selects the page template
with the highest priority. To support different output media, the page templates are
named and a suitable user interface may offer the user a selection of possible page
layouts. In this way, the page layout remains in the hands of the book designer,
and the user has still the opportunity to pick a layout that best fits the display
device.

The build-in page template with number 0 is always defined and has priority 0. It
will display just the main content stream. It puts a small margin of hsize/8−4.5pt
all around it. Given a letter size page, 8.5 inch wide, this formula yields a margin
of 1 inch, matching TEX’s plain format. The margin will be positive as long as the
page is wider than 1/2 inch. For narrower pages, there will be no margin at all.
In general, the HINT viewer will never set hsize larger than the width of the page
and vsize larger than its height.

25

Index

Symbols

| 3

A

〈after list 〉 15
alternative 3
aspect ratio 4

B

〈before list 〉 15
bot 12
box 255 20
box node 19

C

〈color 〉 6
〈color set 〉 6
〈color specification 〉 6

D

〈depth 〉 13
〈destination 〉 12
〈dimension 〉 3

F

first stream 21
footnote 19
〈 foreground 〉 5

G

〈general text 〉 3
glue 19

H

〈height 〉 4
HINT.home 12
\HINTafter 14
\HINTbefore 14
\HINTdest 12
\HINTendlink 8, 12
\HINTimage 4
\HINTminorversion 4
\HINToutline 13
\HINTsetpage 13
\HINTstartlink 8, 12
\HINTversion 4
home page 12
〈horizontal list 〉 3

I

ifhint.tex 4
illustration 19
image 4
insert node 19
〈 integer 〉 3

K

kern 19

L

〈 label 〉 12
last stream 21
link 12

M

margin note 19
mark node 19

26 Index

N

〈normal dimension 〉 3
〈number 〉 3

O

[optional] 3
outline 12
output routine 13, 19

P

page building 19
page template 13
penalty 19
〈placement 〉 12
〈priority 〉 13

R

rule 3
rule node 19

S

split ratio 23
stream 13, 21
〈stream definition 〉 14
〈stream definition list 〉 14
〈stream insert point 〉 14
〈 symbol 〉 3

T

template 19
top 12
top skip 20
top stream 21
typewriter font 3

V

verbatim 3
〈vertical list 〉 3

W

whatsit node 19

〈width 〉 4

27

	Contents
	Introduction
	HiTkern -.1667emlower .5exhbox {E}kern -.125emX primitives
	Other Primitives
	Replacing Tkern -.1667emlower .5exhbox {E}kern -.125emX's Page Builder
	Index

