\setparsechar

\getargs

The getargs Package

Provides the \getargs list parsing macro and associated configurations

Steven B. Segletes
steven.b.segletes.civ@mail.mil

May 20, 2016
v1.01

This is the 3rd incarnation of the \getargs macro in some form or another. The
first was in the stringstrings package, but it is slow, can only parse an expanable
list with space delimiters, and brings all the baggage of my bloated stringstrings
package with it. An much more efficient form was reformulated in my readarray
package, under the name \getargsC, but like its predecessor, it can only parse
with space delimiters. So here, I reintroduce the \getargs macro, both efficient
and capable of parsing based on any delimiter character desired. In addition,
it allows for the root-name of the parsed-argument list to be customized. It is
my intent to eventually have the parsers of those other packages point to this
package, to achieve uniformity.

This package is very short, providing three user macros plus one diagnostic
macro. The macro \setparsechar, invoked as

\setparsechar{<parse-character>},

provides the means to designate the delimiter character by which the parser
breaks the argument list into pieces. Because of the popularity of the csv format,
the parsing delimiter character is set to a comma (,), when the package is
initially invoked. The parsing delimiter character can also be set to a space
with \setparsechar{ }. If the parsing delimiter is not a space, however, then
leading and trailing spaces in the parsed argument list are retained (note that,
in the standard KTEX fashion, multiple adjacent spaces are parsed as a single
input space).!

The primary user macro of this package is \getargs, which is used to parse a
delimited argument list. The invocation syntax is

\getargs{<argument-list to parse using parse-character>}

Like prior formulations of the \getargs macro, the result of the parsing are
twofold:

1. The number of items parsed from the argument-list is stored, via \xdef,
in the macro named, by default, \narg.

IThe current parse character is stored in \getargsparsechar, for reference only. How-
ever, a new parse character can only be set with an invocation of \setparsechar.

\setparserootname

\showargs

2. The actual tokens of the parsed argument-list are placed in a series of
macros, which are, by default, named \argi, \argii, \argiii, \argiv, ...,
in roman-numeral naming fashion.

The root name of the macros into which the parsed argument-list are placed
can itself be designated by the user, using the \setparserootname macro. This
macro is invoked as

\setparserootname [<root-name>]

The default root-name employed is “arg”, if the optional argument is not spec-
ified. When the root-name of the \getargs parser is changed, not only are
the subsequently parsed arguments stored in new macro names \<root-name>i,
\<root-name>ii, \<root-name>iii, etc., but the total number of arguments parsed
is no longer stored in \narg, but now in \n<root-name>.

The final macro provided is the \showargs diagnostic macro. It can be invoked
with or without the [x] optional argument, which determines whether the parsed
argument list is presented as tokens (the default, via \detokenize?) or, if it is
presented in expanded form, when the [x] optional argument is employed. Be
forewarned that not all parsed tokens will present without error in
expanded form. If the parsing separates a macro from its arguments, or if it
separates some types of opening and closing delimiters (paired $, for example),
then errors will be generated, not from the parsing, but from an attempt to
\showargs the result in expanded [x] form.

The \showargs invocation will first list the number of items most recently parsed
from the input list associated with the current <root-name>. It will provide that
root-name of the parsed items and whether or not the parsed items that follow
are presented as raw tokens or in expanded form. Finally, it will sequentially
list the parsed items between vertical dividing rules, in a line breakable way.

This version of \getargs and \showargs will overwrite any existing version that is
already loaded (for example, from the stringstrings package), without providing
warning or error. If that is the intent of the user, then make sure the getargs
package is loaded after the other conflicting packages.

2Dont forget that IATEX’s \detokenize always presents macro names with a trailing space,
regardless of whether that space actually exists in the parsed argument.

Examples

e The difference between expanded and raw-token \showargs

\def\myname{Steven Segletes}

\getargs{Signed/dated as follows, \myname, \today}
\showargs [x] \par

\showargs

3 \arg... items (expanded): [Signed/dated as follows| Steven Segletes|
May 20, 2016,

3 \arg... items (tokens): |Signed/dated as follows| \myname | \today |.

When presented in expanded form, the macros are fleshed out with their
expansions. However, one can see that the original tokens remain in the
tokenized presentation of \argii and \argiii.

e The behavior of leading/trailing spaces (with a non-space parse
character)

\getargs{A, A, A, A }
\showargs

4 \arg... items (tokens): JA] A|A|A]

Note above, in the expression of \argiv, that multiple spaces in the in-
put are parsed, according to the ITEX standard, as single spaces. Thus,
\argiii and \argiv are functionally identical.

e Changing the parsing character

\setparsechar{&}
\getargs {y&\frac{x}{y}&(x_0-y_0)"3}
$\showargs [x]$

3\arg...items(exzpanded) : |5 (zo — v0)?)

Note that the parsing of math expressions did not take place in math
mode. However, as long as they are presented in math mode, all is well.

The changed parsing character will remain & until subsequently changed
(or until the group ends, if it was changed within a group).

e Space as the parsing character

\setparsechar{ }
\getargs{A B C D}\showargs

4 \arg... items (tokens): |A[B|C|D].

When a space-character is used as the parsing character, one can see
above that multiple leading/trailing spaces are absorbed in the parsing, so
that \argiii is left as a simple “C”, despite being surrounded by multiple
spaces.

e Parsed macros are not expanded at time of parsing

\setparsechar{&}

\def\A{Alpha α}

\getargs {parameter (1)& ¶meter {\A}}
\argiii{} VS. \def\A{Beta β}\argiii

parameter Alpha « VS. parameter Beta 3

Because \argiii is stored as this: “parameter {\A 1}”, it follows that after
\A is redefined, the redefinition carries over into the expansion of \argiii.

e Nested parsing

\setparserootname [ROW]

\setparsechar{\\}

\getargs {A_{11} & A_{12} & A_{13}\\ A_{21} & A_{22} & A_{23}}
\setparsechar{&}

\setparserootname [ROWiCOL]
\expandafter\getargs\expandafter{\ROWi}

\setparserootname [ROWiiCOL]
\expandafter\getargs\expandafter{\ROWii}

$(\ROWiCOLi) (\ROWiCOLii) (\ROWiCOLiii)$\\

$(\ROWiiCOLi) (\ROWiiCOLii) (\ROWiiCOLiii)$

(A11)(A12)(A13)
(A21)(A22)(A23)

Above, I perform all the tasks manually, but it is not hard to set it in a loop
based on the respective values of \nROW (2), \nROWiCOL (3), and \nROWiiCOL
(3). This is a powerful way to retieve and store all the elements of a matrix
in a structured way. Note that \ROWi and \ROWii each had to be expanded
exactly once in order to be digested as input to \getargs.

Source Code

\def\getargsversionnumber{v1.01}
\ProvidesPackage{getargs}
[2016/05/20 \getargsversionnumber\

%

Macro to parse an argument list, using user-specified parsing character]

CREATED BY Steven B. Segletes <steven.b.segletes.civ@mail.mil>

% THIS PACKAGE IS RELEASED IN ACCORDANCE WITH THE LaTeX PUBLIC PROJECT LICENSE

%

LPPL v1.3c (http://ctan.org/license/lppll.3) OR ITS SUCCESSORS

% V1.00-Initial release
\newcounter{getarg@ctr}
\let\getargs\relax
\newcommand\getargs{}

\newcommand\setparsechar [1]{%

}

\def\getargparsechar{#1}/,
\renewcommand{\getargs} [1]{/
\setcounter{getarg@ctr}{0}/
\parse@args##1#1\relax\relax,
Y
\def\parseQargs##i#1##2\relax{/,
\stepcounter{getarg@ctr}y
\expandafter\gdef\csname\getarg@root\romannumeral\value{getarg@ctr}\endcsname{##1}}
\ifx\relax##2\relax/,
\expandafter\xdef\csname n\getarg@root\endcsname{\thegetarg@ctr}\else,
\parseQ@args##2\relax\fiJ,
Y

\newcommand\setparserootname [1] [arg] {\def\getarg@root{#1}}

\let\showargs\relax
\newcommand\showargs [1] [t]1{/

}

\fboxrule=.7pt\relax\fboxsep=\dimexpr-.5pt-\fboxrule\relaxy

\csname n\getarg@root\endcsname{} \textbackslash\getarg@root\ldots{} items %
\if x#1(expanded)\else (tokens)\fi%

: \showargs@help{#1}{1}{\csname n\getarg@root\endcsname}\unskip\fbox{\strut}.’

\newcommand\showargs@help [3]{/

}

\setcounter{getarg@ctr}{#2}/

\if x#17,
\fbox{\strut}\csname\getarg@root\romannumeral\value{getarg@ctr}\endcsname’,
\hskipOpt\relax,

\else
\fbox{\strutl}/

\expandafter\detokenize\expandafter\expandafter\expandafter{y,
\csname\getarg@root\romannumeral\value{getarg@ctr}\endcsname}\hskipOpt\relax,

\fi

\ifnum\value{getarg@ctr}<#3\relax\stepcounter{getarg@ctr}y
\showargs@help{#1}{\thegetarg@ctr}{#3}/

\fi%

\setparserootname
\setparsechar{,}
\endinput

