
spreadtab
v0.61

User’s manual

Christian Tellechea
unbonpetit@netc.fr

14 March 2025

Résumé
This package allows to use spreadsheet features in any ”table” environment with LATEX.
The main functionality is being able to write formulas in the cells of a table that refer to other cells, calculate the
formulas contained in the cells and display the numerical results of these formulas in the table.

mailto:unbonpetit@netc.fr

CONTENTS

Contents
1 Presentation 2

2 New in v0.61 2
2.1 Deletion . 2
2.2 Macro \STrep . 2
2.3 Macro-function test . 3

3 Common Features 3
3.1 Calculation . 3
3.2 Line Breaks . 3
3.3 Absolute References . 3
3.4 Relative references . 4
3.5 Text cells . 4
3.6 Mixed Cells . 5
3.7 Copying formulas . 5
3.8 Macros provided by spreadtab . 6

3.8.1 Macro \STset . 6
3.8.2 The macros \STxp and \STrep . 6

4 Table formatting 7
4.1 Codes executed before or after the table . 7
4.2 Decimal Separator . 7
4.3 Automatic rounding . 8
4.4 Macro \STprintnum . 8
4.5 Hide row or column . 9
4.6 Export cell value . 9
4.7 Display cell value . 10
4.8 Use \multicolumn . 10

5 Macro-functions 10
5.1 Math macro-functions . 10

5.1.1 Sum cells . 10
5.1.2 Macro-function sumprod . 11
5.1.3 GCD and LCM . 11
5.1.4 Scientific Notation . 12
5.1.5 Identity . 12

5.2 Comparison macro-functions . 12
5.3 Macro-functions manipulating dates . 13

5.3.1 Date to number with engshortdatetonum . 13
5.3.2 From a number to a date . 13

5.4 Coordinate macro-functions . 14
5.4.1 tag, cell, value and \STtag . 14
5.4.2 row and col . 15

6 Particular care 15
6.1 Defining new commands with \hline . 15
6.2 The use of \multicolumn and \SThidecol . 16
6.3 Messages delivered by spreadtab . 16
6.4 Debug . 17

7 List of keys 18

1

2 NEW IN V0.61

1 Presentation

Thismanual1 describes the spreadtab package. It lets you build spreadsheet-like tables. Table cells have coordinates
(column and row) which can be used in formulas to calculate values in other cells. To load the package, write in
the preamble

\usepackage{spreadtab}

This package requires the LATEX2Y format after 2022/06/01 as well as the xstring and simplekv packages.

This package is intended to be compatible with all table environments, provided that column separators are ”&”
and line breaks are ”\\”. spreadtab acts completely independently of the table environment. This means that
reading the table, processing and calculating formulas takes place before the table environment takes over and
”sees” the body of the table.

Therefore, spreadtab proceeds in 3 steps:
• First, spreadtab reads the body of the array. If the macro \STxp is present one or more times, its
argument is expanded to the maximum. The body of the table is then divided into rows and cells;

• the formulas contained in the cells are then calculated, having first calculated the dependent cells;
• the body of the table is finally reconstructed, having replaced each formula with the numerical value
previously calculated, and the whole is given to the table environment specified by the user.

The syntax is:

\begin{spreadtab}[〈options〉]{{〈tabname〉}{〈colspec〉}}
table with formulas and numbers

\end{spreadtab}

where 〈tabname〉 represents the name of any array environment available with LATEX or with a package. You can
replace \begin{spreadtab}...\end{spreadtab} with \spreadtab...\endspreadtab.

The 〈options〉 must be in the form key = 〈value〉 to apply only to the current array. To specify 〈options〉 valid
for all future arrays, use

\STset{〈key〉=〈value〉}

The list of keys and associated 〈values〉 is available on page 18.

Although the spreadsheet-like functionality of LATEX is appreciable, you should not lose sight of the fact that
the 3 steps described above are time-consuming. As a result, compilation times are much longer than with a
conventional table.

2 New in v0.61

2.1 Deletion

The macro functions ifeq, iflt and ilgt have been removed, since l3fp provides the ternary operator

〈test〉?〈true〉:〈false〉

The following macros, available in previous versions, have been removed: \STautoround, \STsetdecimalsep,
\STeol, \STsetdisplaymarks, \STmessage, \STnumericfieldmarker, \STtextcell and \STtranposechar. All set-
tings are now made via \STset{〈keys〉=〈values〉}.

2.2 Macro \STrep

See page 6.

1What you are reading is only a translation from French done by AIs (DeepL, ChatGPT, and Mistral Chat). I have barely reviewed it, so
there may be errors or inconsistencies. For reliable information, please refer to the French manual.

2

https://ctan.org/pkg/xstring
https://ctan.org/pkg/simplekv

3 COMMON FEATURES

2.3 Macro-function test

See page 12.

3 Common Features

3.1 Calculation

A cell can now contain any calculation understood by l3fp: basic operations, trigonometry and inverses, exponen-
tials and logarithms, comparisons, logical connectors2, factorials, random numbers, etc. See the documentation
for interface3.

As a result, the macro-functions rand, rnd, and fact are still usable but are no longer part of spreadtab: they are
now directly understood by l3fp.

3.2 Line Breaks

By default, spreadtab considers a line to end with \\, which is standard in tables. The optional argument
[〈dimension〉] that follows is taken into account. This line-break marker can be modified using the key tabline

sep. For example, you can write:

tabline sep = \tabularnewline

The line breaks that will be inserted into the final table will always be ”\\”, even if the line break marker was
modified when spreadtab reads the table.

Just after the line break, spreadtab recognizes most horizontal rules as well as their optional arguments: \hline,
\cline, \hhline, \noalign, \toprule, \midrule, \bottomrule, \cmidrule, \addlinespace, \morecmidrules, and
\specialrule.

For other cases, see page 15 for further instructions.

3.3 Absolute References

In the table, cells are identified by their absolute references as follows:
• the column is represented by a letter, either uppercase or lowercase, from a to z, where a represents
the first column on the left: we are thus initially limited to 26 columns, which should be sufficient for
the vast majority of cases;

• immediately following the letter, a strictly positive integer represents the row number, with row
number 1 being the topmost row.

An absolute reference is thus written, for example: ”b4”, ”C1”, or ”d13”. Visually, this can be illustrated by a table
similar to a spreadsheet, here intentionally limited to 5 rows and 5 columns:

A B C D E
1
2
3
4
5

In this example, we calculate the sum of each row and column, and then the total sum:

2If you wish to use the logical connector ”and” in l3fp, denoted by ”&&”, it is mandatory to enclose this operator in braces within a table
to prevent the & tokens from being interpreted as column separators. In a table cell, for example, to check if the content of the cell a1 belongs
to an interval, you would write: ”a1>1 {&&} a1<10”.

3

http://mirrors.ctan.org/macros/latex/required/l3kernel/interface3.pdf

3 COMMON FEATURES

\begin{spreadtab}{{tabular}{rr|r}}

22 & 54 & a1+b1 \\

43 & 65 & a2+b2 \\

49 & 37 & a3+b3 \\

\hline

a1+a2+a3 & b1+b2+b3 & a4+b4

\end{spreadtab}

22 54 76
43 65 108
49 37 86

114 156 270

In this other example, we calculate a few lines of Pascal’s triangle:

\begin{spreadtab}{{tabular}{ccccc}}

1 & & & & \\

a1 & a1 & & & \\

a2 & a2+b2 & b2 & & \\

a3 & a3+b3 & b3+c3 & c3 & \\

a2 & a4+b4 & b4+c4 & c4+d4 & d4

\end{spreadtab}

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

3.4 Relative references

To reference a cell, you can specify its position relative to the cell containing the formula. Thus, the ”relative”
coordinates of a cell are 2 relative numbers written according to this syntax: [〈x〉,〈y〉], where 〈x〉 is the horizontal
offset from the cell containing the formula and 〈y〉 is the vertical offset. Thus, [-2,3] refers to the cell 2 columns
before (left) and 3 rows after (lower) the cell containing the formula.

Here again is the Pascal triangle seen above, but the references are relative and the ”matrix” environment of the
amsmath package is used:

$

\begin{spreadtab}{{matrix}{}}

1\\

[0,-1] & [-1,-1]\\

[0,-1] & [-1,-1]+[0,-1] & [-1,-1]\\

[0,-1] & [-1,-1]+[0,-1] & [-1,-1]+[0,-1] & [-1,-1]\\

[0,-1] & [-1,-1]+[0,-1] & [-1,-1]+[0,-1] & [-1,-1]+[0,-1] & [-1,-1]

\end{spreadtab}

$

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

A mixture of absolute and relative references can be used in the same formula.

3.5 Text cells

If you want to put text in a cell, simply place the ”@” character somewhere in the cell. In doing so, the cell is
ignored by spreadtab and becomes an inert cell that cannot be referred to anywhere else in the table.

The key text mark is used to modify the text marker. For example

\STset{text mark=`}

will cause a cell containing the character ”`” to be understood as a text cell. It’s important to note, however,
that the text mark key detokenizes its value, making the text marker made up of token(s) of catcode 12: to be
recognized by spreadtab, these tokens must have this catcode 12 at the time the array is read.

\begin{spreadtab}{{tabular}{|r|ccc|}}\hline

@ values of x & -5 & -1 & 4 \\

@ $f(x)=2x$ & \STcopy>{2*[0,-1]} & & \\\hline

\end{spreadtab}\medbreak

\STset{text mark=`}

\begin{spreadtab}{{tabular}{|r|ccc|}}\hline

`values of x & -5 & -1 & 4 \\

`$f(x)=2x$ & \STcopy>{2*[0,-1]} & & \\\hline

\end{spreadtab}

values of G -5 -1 4
5 (G) = 2G -10 -2 8

values of G -5 -1 4
5 (G) = 2G -10 -2 8

If a cell is empty or made up entirely of spaces, then spreadtab will treat it as a text cell.

4

https://ctan.org/pkg/amsmath

3 COMMON FEATURES

3.6 Mixed Cells

In reality, each cell consists of two fields. On one side, the 〈numeric field〉 contains the formula, and on the other
side, the 〈text field〉 will be ignored by the calculation engine and does not contribute to the calculations:

• In a cell, if nothing is specified, the entire cell is considered the 〈numeric field〉, and the 〈text field〉 is
empty;

• If the cell contains ”@”, then the entire cell is considered the 〈text field〉. The 〈numeric field〉 is empty
and inaccessible.

• If the cell contains ”:=”, then the argument in curly braces that follows is the 〈numeric field〉, and
everything else is the 〈text field〉. The cell has this structure:

〈text field〉:={〈numeric field〉}〈text field〉
With the key numeric mark, you can change this marker to ”\=” with:

numeric mark={\=}

In this case, the definition of \= would have no importance and would not intervene in the process:
for spreadtab, it is simply a marker for the start of the formula that is searched for and recognized
without being expanded.

Once the 〈numeric field〉 is calculated, only it and the marker ”:=” will be replaced by the calculated numeric value.

It is worth noting that the 〈numeric field〉 can be inside curly braces.

To illustrate the idea, here is a very simple example:

\begin{spreadtab}{{tabular}{|c|c||c|}}\hline

val 1: :={50} & val 2: :={29} & mean: \textbf{:={(a1+b1)/2}}\\\hline

\end{spreadtab}

val 1: 50 val 2: 29 mean: 39.5

Note also that ”:={}”, which defines an empty formula, has the same effect as ”@” in a cell: the cell is understood
as a text cell. However, ”@” and ”:={}” are not equivalent because a text cell containing the latter can receive a
formula by copying (see the next section), which is impossible with ”@”.

3.7 Copying formulas

To avoid having to re-enter identical formulas in adjacent cells, spreadtab provides the \STcopy instruction.

This command is placed in a cell using the syntax \STcopy{>〈x〉,v〈y〉}{〈formula〉}, where 〈x〉 and 〈y〉 are positive
numbers representing horizontal and vertical offsets from the cell containing the instruction. The cell containing
the command and the cell obtained by these offsets define a rectangular range of cells that will receive the
〈formula〉3. The \STcopy must not be in a cell where a numeric field marker ”:=” is present.

For each target cell, all references in the formula are incremented to account for the offset between the target cell
and the source cell. The formula may also contain relative references, which, being relative, will not be modified.

By preceding a coordinate reference with a ”!” character, this coordinate remains unchanged during the copy.
The character ”!” can be changed with freeze char = 〈character〉. It is important to note that the 〈character〉
is detokenized.

In the syntax \STcopy{>〈x〉,v〈y〉}{〈formula〉}, if the number 〈x〉 is omitted, the copy in the horizontal direction
is made to the right up to the right edge of the table. If 〈y〉 is omitted, the copy in the vertical direction is made
down to the bottom of the table.

This allows generating the multiplication table from 1 to 10:

3The copy can therefore only be made to cells that are to the right and below the cell where the command is located.

5

3 COMMON FEATURES

\begin{spreadtab}{{tabular}{|c|*{10}{c}|}}

\hline

@\times & 1 & \STcopy{>}{b1+1} & & & & & & & & \\\hline

1 & \STcopy{>,v}{!a2*b!1} & & & & & & & & & \\

\STcopy{v}{a2+1} & & & & & & & & & & \\

& & & & & & & & & & \\

& & & & & & & & & & \\

& & & & & & & & & & \\

& & & & & & & & & & \\

& & & & & & & & & & \\

& & & & & & & & & & \\

& & & & & & & & & & \\

& & & & & & & & & & \\\hline

\end{spreadtab}

× 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90
10 10 20 30 40 50 60 70 80 90 100

When copying a formula, if the target cell already contains a non-empty numeric field, this is not overwritten and
the copy is not made.

3.8 Macros provided by spreadtab

3.8.1 Macro \STset

The \STset macro includes in its mandatory argument a csv of keys = 〈values〉 to specify settings that operate
for the rest of the document.

The list of keys and associated 〈values〉 is available on the 18 page.

3.8.2 The macros \STxp and \STrep

The presence4 of \STxp{<argument>} in the body of the table has the effect of fulle xpansion of the 〈argument〉. If
one or more parts of the <argument> are not expandable (e.g. non-robust macros), it’s up to the user to block full
expansion using, for example, the \noexpand or \unexpanded primitives. The \STxp macro must not be enclosed
in braces: it will be ignored and executed much later, causing a compilation error.

The expandable macro \STrep replicates times an arbitrary 〈code〉:
\STrep{〈n〉}{〈code〉}

Used in the argument of \STxp, it allows you to generate empty cells or identical lines in a concise way.

4spreadtab tests its presence and then acts on its argument: \STxp takes the place of a marker and is not executed when the array is read.

6

4 TABLE FORMATTING

\begin{spreadtab}{{tabular}{|c|*{10}{c}|}}

\hline

@\times & 1 & \STcopy{>}{b1+1} \STxp{\STrep8&}\\\hline

1 & \STcopy{>,v}{!a2*b!1} \STxp{\STrep9&}\\

\STcopy{v}{a2+1} \STxp{\STrep9{\STrep{10}&\\}}

\hline

\end{spreadtab}

× 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90
10 10 20 30 40 50 60 70 80 90 100

If one or more parts of the <code> cannot be expanded (non-robust macros in particular), it is up to the user to
stop the full expansion initiated by \STxp with, for example, the \noexpand or \unexpanded primitives.

4 Table formatting

4.1 Codes executed before or after the table

The pretab code = 〈code〉 and posttab code = 〈code〉 keys define arbitrary codes executed just before and just
after table display.

A simple

\begin{spreadtab}[pretab code=\begingroup\color{red},

posttab code=\endgroup]{{tabular}[t]{r}}

149\\

287\\\hline

a1+a2

\end{spreadtab} addition.

A simple 149
287
436

addition.

4.2 Decimal Separator

Since l3fp gives decimal results with the dot as the decimal separator, it is possible to change this decimal separator
so that all results are returned as if they accounted for it.

The key dec sep = 〈char〉 allows changing the decimal separator to a comma, but this choice is not neutral in
math mode. In fact, it is considered punctuation, which explains why it is followed by a space.

To avoid this typographic error, you can:
• define the decimal separator in curly braces with dec sep={{,}}

• execute the code \mathcode`,="013B\relax before displaying the table
The most elegant solution is to use a configurable package specialized in number formatting, such as siunitx.

7

http://mirrors.ctan.org/macros/latex/contrib/siunitx/siunitx.pdf

4 TABLE FORMATTING

\begin{spreadtab}[dec sep={,}]{{tabular}{|*3{>{$}r<{$}}|}}\hline

@x & @y & @\text{Mean}\\\hline

5 & -4 & (a2+b2)/2\\

-6.1 & -8 & (a3+b3)/2\\

9.85 & 3.7 & (a4+b4)/2\\\hline

\end{spreadtab}\par\smallskip

\begin{spreadtab}[dec sep={{,}}]{{tabular}{|*3{>{$}r<{$}}|}}\hline

@x & @y & @\text{Mean}\\\hline

5 & -4 & (a2+b2)/2\\

-6.1 & -8 & (a3+b3)/2\\

9.85 & 3.7 & (a4+b4)/2\\\hline

\end{spreadtab}\par\smallskip

\begin{spreadtab}[dec sep ={,},

pretab code ={\begingroup\mathcode`\,="013B\relax},

posttab code={\endgroup}]{{tabular}{|*3{>{$}r<{$}}|}}\hline

@x & @y & @\text{Mean}\\\hline

5 & -4 & (a2+b2)/2\\

-6.1 & -8 & (a3+b3)/2\\

9.85 & 3.7 & (a4+b4)/2\\\hline

\end{spreadtab}

G ~ Mean
5 −4 0, 5

−6, 1 −8 −7, 05
9, 85 3, 7 6, 775

G ~ Mean
5 −4 0,5

−6,1 −8 −7,05
9,85 3,7 6,775

G ~ Mean
5 −4 0,5

−6,1 −8 −7,05
9,85 3,7 6,775

4.3 Automatic rounding

The l3fp engine gives up to 16 significant decimals. If you don’t want such precision, you can automatically
round off the result of each calculation with the autoround key. Acting on this key implies a deliberate limitation
of the precision of internal calculations.

\begin{spreadtab}{{tabular}{*4c}} \hline

@x & 3 & 17 & 751 \\\hline

@$1/x$ & \STcopy>{1/b1} & & \\\hline

@$x\cdot(1/x)$ & \STcopy>{b2*b1} & & \\\hline

\end{spreadtab}

\bigbreak

\begin{spreadtab}[autoround=6]{{tabular}{*4c}} \hline

@x & 3 & 17 & 751 \\\hline

@$1/x$ & \STcopy>{1/b1} & & \\\hline

@$x\cdot(1/x)$ & \STcopy>{b2*b1} & & \\\hline

\end{spreadtab}

G 3 17 751
1/G 0.3333333333333333 0.05882352941176471 0.00133155792276964

G · (1/G) 0.9999999999999999 1 0.9999999999999996

G 3 17 751
1/G 0.333333 0.058824 0.001332

G · (1/G) 0.999999 1.000008 1.000332

To return to the default behavior and do no rounding, set an empty value:

autoround={}

4.4 Macro \STprintnum

Each number processed by spreadtab is given to the \STprintnum macro in the final array. By default, this macro
does not modify any of its arguments, and its definition is as follows:

\def\STprintnum#1{#1}

If you wish, you can modify using the siunitx package and its \num macro:

8

http://mirrors.ctan.org/macros/latex/contrib/siunitx/siunitx.pdf

4 TABLE FORMATTING

\def\STprintnum#1{\num[round-mode = places,

round-precision = 6,

drop-zero-decimal=true,

output-decimal-marker = {,}]{#1}%

}

\begin{spreadtab}{{tabular}{*4c}} \hline

@x & 3 & 17 & 751 \\\hline

@$1/x$ & \STcopy>{1/b1} & & \\\hline

@$x\cdot(1/x)$ & \STcopy>{b1*b2} & & \\\hline

\end{spreadtab}

G 3 17 751
1/G 0,333 333 0,058 824 0,001 332

G · (1/G) 1 1 1

In this case, no change is made to the accuracy of internal calculations.

4.5 Hide row or column

Sometimes, an entire row or column is used for intermediate calculations that don’t need to be displayed in the
final table. For this purpose, \SThiderow and \SThidecol control sequences are available which, when placed in a
cell, hide the row or column in which the cell is located.

\begin{spreadtab}{{tabular}{|r|ccc|}} \hline

@ values of x & -1 & 0\SThidecol & 2 & 3 \\\hline

@$f(x)=2x-1$ & 2*[0,-1]-1 & 2*[0,-1]-1 & 2*[0,-1]-1 & 2*[0,-1]-1 \\

@$g(x)=x-10$\SThiderow & [0,-2]-10 & [0,-2]-10 & [0,-2]-10 & [0,-2]-10 \\

@$h(x)=1-x$ & 1-[0,-3] & 1-[0,-3] & 1-[0,-3] & 1-[0,-3] \\\hline

\end{spreadtab}

values of G -1 2 3
5 (G) = 2G − 1 -3 3 5
ℎ (G) = 1 − G 2 -1 -2

You can see how the row containing 6(G) and the column corresponding to the value 0 are hidden.

Remember that masked rows and columns are invisible for the user’s chosen array environment, which explains
why in the array preamble only 4 columns (|r|ccc|) have been defined and not 5 as shown.

4.6 Export cell value

You may need to save the numerical value of a cell in a macro (the assignment is global) to display it in a text
field5 or even outside the table. In this case, use the key save list:

save list={〈macroA〉 = 〈refA〉, 〈macroB〉 = 〈refB〉,...}

where each reference must be absolute.

\STset{ save list = { \resultC = c1 , \resultB = b1 }}

\begin{spreadtab}{{tabular}{|c|c|c|c|c|}}\hline

10 & a1+10 & b1+10 & a1+b1+c1 & @cell c1: \resultC\\\hline

\end{spreadtab}

\par\medskip

Here is cell c1: \resultC\ and b1: \resultB

10 20 30 60 cell c1: 30

Here is cell c1: 30 and b1: 20

When the key aux save list is used with the same syntax, everything happens as before, but the assignment is
also written to the auxiliary file. In this way, the value of a cell can be transmitted between compilations, so that
it can be referred to before the array is encountered.

Valeur of d1 is \cellD.\par

\STset{ aux save list = { \cellD = d1 }}

\begin{spreadtab}{{tabular}{|c|c|c|c|}}\hline

1 & a1+10 & b1+10 & a1+b1+c1\\\hline

\end{spreadtab}

Valeur of d1 is 33.
1 11 21 33

In both cases, the value of the save cell and aux save cell keys is reset to empty after the table following
\STset is displayed.

It is also possible, using the macro function tag, to export a value to the auxiliary file, see page 14.
5It’s easier to use << and >>, see next section.

9

5 MACRO-FUNCTIONS

4.7 Display cell value

To simply display the value of a cell’s numeric field in a text field, you can use the syntax <<〈reference〉>> which
will be replaced by the cell’s numeric value 〈reference〉 where 〈reference〉 can be relative or absolute. If what’s
between << and >> is not a reference, then nothing is done. The <reference> must not contain any spaces. If you
write << a1>> then the space means that the reference is not recognized.

\begin{spreadtab}{{tabular}{|c|c||c|}}\hline

23 & 32 & Moy $= \frac{<<a1>>+<<b1>>}{2} = :={(a1+b1)/2}$\\\hline

\end{spreadtab}

23 32 Moy = 23+32
2 = 27.5

Reference delimiter characters are set to << and >> by default. They can be modified with the key display marks.
If you write display marks={|;|}, you’ll have to write |<reference>|:

\begin{spreadtab}[display marks={|;|}]{{tabular}{|c|c||c|}}\hline

23 & 32 & Mean $= \frac{|a1|+|b1|}{2} = :={(a1+b1)/2}$\\\hline

\end{spreadtab}

23 32 Mean = 23+32
2 = 27.5

4.8 Use \multicolumn

The spreadtab package supports the \multicolumn{〈number〉}{〈type〉}{〈content〉} syntax, whichmerges 〈number〉
cells into a cell of the type and content specified in the arguments.

By using \multicolumn, spreadtab even maintains consistency in cell referencing. On this table where cells are
merged, the table cells contain the absolute references seen by spreadtab:

a1 b1 c1 d1 e1 f1 g1

a2 b2 d2 e2 f2 g2

a3 d3 e3 g3

So, whatever the number of cells merged, the next cell has a column number that takes into account the number
of cells merged.

On the last line, cells a3, b3 and c3 are merged, and if cell a3 contains a formula, cells b3 and c3 doesn’t exist for
spreadtab: these cells can’t be referred to anywhere.

Here’s an example where each number on the top line is the product of the 2 numbers below it:

\newcolumntype{K}[1]{@{}>{\centering\arraybackslash}p{#1cm}@{}}

\begin{spreadtab}{{tabular}{*6{K{0.5}}}}

\cline{2-5}

&\multicolumn{2}{|K{1}|}{:={a2*c2}} & \multicolumn{2}{K{1}|}{:={c2*e2}} &\\\hline

\multicolumn{2}{|K{1}}{:=8}&\multicolumn{2}{|K{1}}{:=7}&\multicolumn{2}{|K{1}|}{:=6}\\\hline

\end{spreadtab}

56 42
8 7 6

Note that the numeric field marker ”:=” is required in every cell containing the command \multicolumn. If this
marker didn’t exist, the entire cell - i.e. \multicolumn{2}{|c|}{〈formula〉} would be considered a formula.

5 Macro-functions

5.1 Math macro-functions

5.1.1 Sum cells

The sum function is used to sum one or more cell ranges.

Its syntax is sum(〈range 1〉;〈range 2〉;...;〈range n〉), where a cell range is:

10

5 MACRO-FUNCTIONS

• either an isolated cell such as ”a1” or ”[2,1]”;
• either a rectangular area delimited by the upper left and lower right cell in this way 〈cell 1〉:〈cell 2〉.

In cell ranges, empty cells or cells containing only text are considered to contain the number 0. The same applies
to cells masked by \multicolumn.

Relative and absolute references can be used together, as the user sees fit. Here’s an example of summing Pascal’s
triangle coefficients:

\begin{spreadtab}{{tabular}{*5c}}

\multicolumn{5}{c}{sum=:={sum(a2:e6)}}\\

[0,1] & [-1,1]+[0,1] & [-1,1]+[0,1] & [-1,1]+[0,1] & [-1,1]\\

[0,1] & [-1,1]+[0,1] & [-1,1]+[0,1] & [-1,1] & \\

[0,1] & [-1,1]+[0,1] & [-1,1] & & \\

[0,1] & [-1,1] & & & \\

1 & & & &

\end{spreadtab}

sum=31
1 4 6 4 1
1 3 3 1
1 2 1
1 1
1

5.1.2 Macro-function sumprod

The sumprod function multiplies the corresponding elements of 2 or more ranges and then adds these products
together.

Its syntax is: sumprod(〈range 1〉;〈range 2〉;...;〈range n〉). All rectangular ranges must have the same dimen-
sions.

Here’s a simple example of calculating the average age of a group of children aged between 10 and 15:

\begin{spreadtab}{{tabular}{r*6c}}

@Ages & 10 & 11 & 12 & 13 & 14 & 15\\

@Number & 5 & 8 & 20 & 55 & 9 & 3 \\\hline

\multicolumn{7}{c}{Mean = :={sumprod(b1:g1;b2:g2)/sum(b2:g2)}}

\end{spreadtab}

Ages 10 11 12 13 14 15
Number 5 8 20 55 9 3

Mean = 12.64

As with the summacro function, text cells, whether empty or merged by a \multicolumn, are considered to contain
the number 0.

5.1.3 GCD and LCM

The macro functions gcd and lcm calculate the Greatest Common Divisor (GCD) and the Least Common Multiple
(LCMM) of numbers passed as arguments and separated by commas:

gcd(〈nombre1〉,〈nombre2〉,...,〈nombreN〉)
lcm(〈nombre1〉,〈nombre2〉,...,〈nombreN〉)

\begin{spreadtab}{{tabular}{|r|r|r||c|c|}}\hline

\multicolumn3{|c||}{@Numbers}& @GCD & @LCM \\\hline

24 & 18 & 12 & \STcopy{v}{gcd(a2,b2,c2)} & \STcopy{v}{lcm(a2,b2,c2)}\\

15 & 10 & 25 & & \\

16 & 12 & 15 & & \\\hline

\end{spreadtab}

Numbers GCD LCM
24 18 12 6 72
15 10 25 5 150
16 12 15 1 240

11

5 MACRO-FUNCTIONS

5.1.4 Scientific Notation

The macro function scitodec allows converting a number written in scientific notation to a decimal number. The
syntax is scitodec(〈text〉), where 〈text〉 is:

1. a sequence of characters in the syntax 〈mantissa〉EE〈exponent〉, where the 〈mantissa〉 is a decimal
number and the 〈exponent〉 is an integer. The ”E”s can be uppercase or lowercase;

2. a reference to the text field of a cell, which must contain characters following the syntax described in
the previous point.

\begin{spreadtab}{{tabular}{|r|r|}}\hline

@Scientific notations & @Decimal \\\hline

@4EE2 & \STcopy{v}{scitodec([-1,0])}\\

@-3.1EE-3 & \\

@15ee5 & \\

@-0.025ee7 & \\

@2.125EE0 & \\

@3.1575EE-4 & \\\hline

\end{spreadtab}

Scientific notations Decimal
4EE2 400

-3.1EE-3 -0.0031
15ee5 1500000

-0.025ee7 -250000
2.125EE0 2.125

3.1575EE-4 0.00031575

The l3fp engine natively understands numbers written in scientific notation in the form 〈a〉e〈b〉 but using this
syntax is impossible to use with spreadtab because the number 4e3, which is 4000, would be understood by
spreadtab as 4 followed by the content of the cell e3.

5.1.5 Identity

The simplest macro function is id, since id(〈number〉) returns the 〈number〉 enclosed in brackets. Mathematically,
it’s of little use, but with spreadtab, it lets you pass mathematical expressions to macros that don’t admit them.
For example, it can be used in the cell ranges of sum.

In the code below, the id macro is used to determine the cell range to be added with sum. In this example, the
value of the numeric field in cell a2 is 8. Therefore, sum([0,-1]:[id(a2-1),-1])/a2 is equivalent to sum([0,-

1]:[7,-1])/8:

\begin{spreadtab}{{tabular}{r*{10}c}}

@Int from 1 to 10 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\\

Mean of :={8} first int & sum([0,-1]:[id(a2-1),-1])/a2 \\

\end{spreadtab}

Int from 1 to 10 1 2 3 4 5 6 7 8 9 10
Mean of 8 first int 4.5

5.2 Comparison macro-functions

There are no more comparison macros since the l3fp engine has a ternary operator 〈a〉?〈b〉:〈c〉. If the test 〈a〉 is
true, 〈b〉 is returned; otherwise, 〈c〉 is returned.

On the other hand, spreadtab offers the macro function test which has a special syntax with 2 arguments:

test(csv of 〈tests〉)〈optional spaces〉(csv of 〈texts〉)

The 〈tests〉 are performed from left to right and the first one that is true, the corresponding 〈text〉 is returned.
If there are = 〈test〉, the 〈text〉 of index = + 1 will be returned if all the tests are false.

If the number of 〈texts〉 is insufficient compared to the number of 〈tests〉, the missing 〈texts〉 are considered
empty.

12

5 MACRO-FUNCTIONS

\begin{spreadtab}{{tabular}{c|c}}

\hline

@Month & @Season \\\hline

1 & \STcopy v{test("a2=1||a2>10 , a2<5 , a2<8")

(Winter,Spring,Summer,Fall)} \\

\STcopy v{a2+1} \STxp{\STrep{11}{& \\}}% 11 empty lines

\hline

\end{spreadtab}

Month Season
1 Winter
2 Spring
3 Spring
4 Spring
5 Summer
6 Summer
7 Summer
8 Fall
9 Fall
10 Fall
11 Winter
12 Winter

The part of the formula to be copied between the characters ”"” indicates which part should be taken into account
for the offset when copying. It can be modified with the key copy char.

If you wish to use the logical connector &&, it is necessary to enclose it in braces. In this way, the cell to be copied
could contain the following equivalent tests

\STcopy v{test("a2>2{&&}a2<6,a2>5{&&}a2<9,a2>8{&&}a2<12")

(Spring,Summer,Fall,Winter)}

5.3 Macro-functions manipulating dates

5.3.1 Date to number with engshortdatetonum

The macro engshortdatetonum converts a short date like 1789/7/14 to an integer which is the number of days
passed since the 1st March of the year 0. It is important to note that this macro-function requires a textual
argument and not a number or the result of a mathematical calculation. Therefore, if the argument of this
macro-function refers to a cell, that cell must be a text cell, i.e. a cell containing ‘@’ or ‘:={}’.

\begin{spreadtab}{{tabular}{cc}}

@1789/7/14 & engshortdatetonum(a1)\\

2001/1/1 :={} & engshortdatetonum(a2)\\\hline

\end{spreadtab}

1789/7/14 653554
2001/1/1 730791

Another macro-function provides the same feature but with a long date like ‘December 25, 2024’

\begin{spreadtab}{{tabular}{cc}}

@January 1, 2001 & englongdatetonum(a1)\\

@December 25, 2024 & englongdatetonum(a2)

\end{spreadtab}

January 1, 2001 730791
December 25, 2024 739550

5.3.2 From a number to a date

Several macro functions can be used to translate a number into a date. All these macro-functions have in common
that their result is text. As a result, immediately after a number-to-text macro function has been evaluated, any
other evaluation in the cell is stopped and the cell becomes a text cell. If there was text in the cell with the formula,
the result of the formula will be inserted instead of :={〈formula〉}. As the cell is made up of text only, it can no
longer be processed mathematically.

These macro-functions are:
• numtoengshortdate translate a number into a short date like ‘1789/7/14’;
• numtoenglongdate translate a number into a long date like ‘July 14, 1789’;
• numtoengmonth given a number representing a date, it finds the name of the month;
• numtoengday same as above but it finds the name of the day.

Here is an example in which we consider 30 days before and 30 days after 2009/6/1. For each of these 2 dates, we
calculate the short date, long date, month and day of the week

13

5 MACRO-FUNCTIONS

\begin{spreadtab}{{tabular}{cc}} \hline

\multicolumn{2}{|c|}{@2009/6/1} \\\hline\hline

30 & numtoengshortdate(engshortdatetonum(a1)+[-1,0])\\

30 & numtoenglongdate(engshortdatetonum(a1)+[-1,0]) \\

30 & numtoengmonth(engshortdatetonum(a1)+[-1,0]) \\

30 & numtoengday(engshortdatetonum(a1)+[-1,0]) \\\hline

-30 & numtoengshortdate(engshortdatetonum(a1)+[-1,0])\\

-30 & numtoenglongdate(engshortdatetonum(a1)+[-1,0]) \\

-30 & numtoengmonth(engshortdatetonum(a1)+[-1,0]) \\

-30 & numtoengday(engshortdatetonum(a1)+[-1,0])

\end{spreadtab}

2009/6/1
30 2009/7/1
30 July 1, 2009
30 July
30 wednesday
-30 2009/5/2
-30 May 2, 2009
-30 May
-30 saturday

5.4 Coordinate macro-functions

5.4.1 tag, cell, value and \STtag

Rather than referring to a cell by its coordinates, which are difficult to remember and change if a row or column is
inserted, it is sometimes much more practical to give a cell a name and refer to it later by that name.

The macro function tag has the syntax tag(〈name〉). This causes the cell in which it is located to be named. It
is not really a macro function like the others since it returns nothing when placed in a formula: it disappears
without affecting the mathematical result. Thus, tag(〈name〉) can be written anywhere in the numeric field of a
cell. The 〈name〉 can be any alphanumeric string, but it is not recommended to use a letter and a number, which
could be interpreted as a cell reference and therefore modified during a copy operation with \STcopy. This macro
function has an additional action: it globally stores the numeric value of the cell in which it is located via a \gdef,
so that it can be called later outside the table using the expandable command \STtag{〈name〉}.

Later in the table, instead of using the coordinates of the cell 〈name〉, one can write cell(〈name〉), which is a
macro function that returns the coordinates of the previously named cell. For example, if tag(〈name〉) was written
in cell B3, then later writing cell(〈name〉) will cause this macro function to return B3.

Here is an example where we sum cells and give the name foo to the first number and bar to the last. It can be
observed that tag(bar) is between 1 and 9, and ultimately, since this macro function disappears, the numeric field
of the cell will contain 19:

\begin{spreadtab}{{tabular}{r@{}r}}

& 15tag(foo) \\

@+ & 37 \\

@+ & 13 \\

@+ & 48 \\

@+ & 1tag(bar)9 \\\cline{2-2}

& sum(cell(foo):cell(bar))tag(baz)

\end{spreadtab}

foo=\STtag{foo}, bar=\STtag{bar}, baz=\STtag{baz}

15
+ 37
+ 13
+ 48
+ 19
132

foo=15, bar=19, baz=132

To pass values between tables calculated by spreadtab, it is possible to tag the cell in the first table using the
macro function tag(〈name〉), and then in the second table, refer to the value via the tag with value(〈name〉).

\begin{spreadtab}{{tabular}{|c|c|c|}}\hline

100 & 75 & a1+b1tag(ab:sum)\\\hline

\end{spreadtab}

\begin{spreadtab}{{tabular}{|c|c|}}\hline

value(ab:sum) & 1.20*value(ab:sum)\\\hline

\end{spreadtab}

100 75 175
175 210

If the key tag to aux is 〈true〉, the assignments are also written to the auxiliary file, making them transferable
from one compilation to another. It then becomes possible to place \STtag{〈name〉} before the table where
tag(〈name〉) is specified.

14

6 PARTICULAR CARE

5.4.2 row and col

Although at first sight less useful, spreadtab also provides the macro functions row(〈name〉) and col(〈name〉) that
return the number of the row or column of the cell tag(〈name〉). Here is an example of how to calculate the
average of a number of values; the first and last values are tagged ‘first’ and ‘last’ and therefore, the number of
values is row(last)-row(first)+1:

mean =

\begin{spreadtab}{{tabular}[b]{r}}

7tag(first)\\9\\15\\6\\20\\13\\11\\55tag(last)\\

\hline\hline

sum(cell(first):cell(last))/(row(last)-row(first)+1)

\end{spreadtab}

mean =

7
9

15
6

20
13
11
55
17

6 Particular care

6.1 Defining new commands with \hline

It may be useful to define a new command to produce, for example, a double horizontal line:

\newcommand\dline{\hline\hline}

and then try to use it in a table as in this simple example that computes the Fibonnacci sequence in the second
line::

0 1 2 3 4 5 6 7 8
1 1 2 3 5 8 13 21 34

But, if you write the following code, there is a problem when compiling:

\newcommand\dline{\hline\hline}

\def\xtracol{&&&&&&}

\begin{spreadtab}{{tabular}{*9c}}

0 & 1 & \STcopy>{b1+1} \STxp\xtracol\\\dline

1 & 1 & \STcopy>{a2+b2}\STxp\xtracol

\end{spreadtab}

In the log file, you can read that \FPeval fails and complains: ! Improper alphabetic constant.

The reason is simple, \dline in line 4 is not recognized by spreadtab as a horizontal rule and therefore, it is placed
in the cell in the next line. For spreadtab, the cell b1 contains:

\dline 1

To compile without error, the cell a2 must contain a numeric field marker:

\newcommand\dline{\hline\hline}

\def\xtracol{&&&&&&}

\begin{spreadtab}{{tabular}{*9c}}

0 & 1 & \STcopy>{b1+1} \STxp\xtracol\\\dline

:={1} & 1 & \STcopy>{a2+b2}\STxp\xtracol

\end{spreadtab}

0 1 2 3 4 5 6 7 8
1 1 2 3 5 8 13 21 34

15

6 PARTICULAR CARE

6.2 The use of \multicolumn and \SThidecol

Firstly, in normal use, joint use of \multicolumn and \SThiderow should not happen, and most users should not
encounter this situation and should not read this section.

Here is the problem: first, a hidden column must not contain a cell with the command \multicolumn! But what
happens if a hidden column hides cells merged with \multicolumn?

In general, there is no compilation error or error messages, but there are some subtleties about the references that
are a bit turned upside down in the line after the \multicolumn command…

Let’s take an example, and let’s say that, in the following table, we want to merge the cell b2 to h2 and we also
want to hide the colomns c, d and f, here in gray:

a1 b1 c1 d1 e1 f1 g1 h1 i1 j1

a2 b2 i2 j2

There are 4 visible merged cells, so we write \multicolumn{4} because hidden columns are never taken into
account when counting the number of \multicolumn.

Then we count 4 letters from b (this letter included): we obtain the letter e. In the range b-e, let’s count: 2 gray
hidden columns are included (c and d) and 1 hidden column is not included (f). These numbers are important to
understand the following, also let’s call them G and ~ in the general case.

The rule is:
• it is necessary to add ~ signs & after \multicolumn (in the example above, it would be 1);
• references to columns of cells after the \multicolumn will be shifted G to the beginning of the alphabet.
For the example given, if we want to refer to the cell i2, we should write g2 instead of i2.

Here is an example with a similar structure to the previous (G = 2 and ~ = 1) with simple formulas: add 1 to the
number above.

\begin{spreadtab}{{tabular}{|*{7}{c|}}}\hline

1 & 2 & \SThidecol3 & \SThidecol4 & 5& \SThidecol6 & 7& 8& 9 & 10 \\\hline

a1+1& \multicolumn4{l|}{:={b1+1}}& & i1+1 & j1+1\\\hline

a2+1& b2+1 & & & & & & & g2+1 & h2+1\\\hline

\end{spreadtab}

1 2 5 7 8 9 10
2 3 10 11
3 4 11 12

6.3 Messages delivered by spreadtab

The package delivers error messages and aborts compilation in these cases:
• a circular reference is found in a cell. In this case, the dependent cells are displayed;
• a cell refers to an empty cell or a text cell when a non-empty numeric field is expected;
• a cell refers to an undefined cell (outside the table);
• a cell refers to a cell merged by a \multicolumn command;
• a relative reference has bad syntax.²

The package can deliver informative messages (in the log file), which it does by default. The key messages,
depending on whether it is true or false, enables or disables the transmission of information messages.

To understand the meaning of these messages, let’s take a simple table:

\begin{spreadtab}{{tabular}{|cccc|c|}}\hline

b1+1 & c1+1 & d1+1 & 10 & a1+b1+c1+d1\\\hline

\end{spreadtab}

13 12 11 10 46

16

6 PARTICULAR CARE

Here are the messages deliverd by spreadtab:
New spreadtab: \begin{tabular}{|cccc|c|}

* reading tab: ok

* computing formulas:

cell A1-B1-C1

cell B1

cell C1

cell D1

cell E1

* building tab: ok

End of spreadtab: \end{tabular}

Preceded by a star, we recognize the 3 steps necessary for spreadtab to complete its task: reading the table,
calculation of the formulas and building the final table.

For the second step, cells are evaluated from top to bottom, left to right: at line 4 in the code above, spreadtab
says that it begins by trying to calculate the first cell A1. After a dash, we see that for this, it must first compute
the cell B1, which itself requires that the cell C1 is calculated: the latter can be calculated since it depends only on
D1 which is a cell containing the number 10.

In the following (lines 5 to 8), there is only one cell per line which means that when spreadtab tries to evaluate
the cell, either it contains a number or dependent cells are already calculated.

6.4 Debug

To ease the use spreadtab, a debug mode is available. It is activated when the key debug is not empty and contains
at least one of the words 〈formula〉, 〈text〉 or 〈cellcode〉, separated by commas. These words each cause a
debugging table to be displayed:

• 〈formula〉: displays all the numeric fields and the ends of lines;
• 〈text〉: displays all the textual fields;
• 〈cellcode〉 displays the internal code of the cells. Indeed, spreadtab assigns a code to every cell when
it reads the table. Here are the possible values of this code:

• −1 if the cell is merged with \multicolumn;
• 0 if the cell is a text cell or is empty;
• 1 if the numeric field of the cell contains a formula which will be computed later;
• 2 if the numeric field of the cell contains a number.

You can add the value 〈show tab〉 to force the display of the resulting table, which is otherwise not displayed.

Here’s a table for which we display the 3 debugging tables and also the final table obtained:

17

7 LIST OF KEYS

\STset{debug={text,formula,cellcode,show tab}}

\begin{spreadtab}{{tabular}{|rr|r|}}\hline

@x &@y & @$x+y$\\\hline\hline

22 & 54 & \STcopy{v3}{a2+b2} \\

43 & 65 & \\

49 & 37 & \\\hline

$Sx=:={a2+a3+a4}$ & $Sy=:={b2+b3+b4}$ & $Sx+Sy=:={}$\\\hline

\multicolumn2{|r|}{$Sy-Sx=:={b5-a5}$} & @\multicolumn1c{}\\\cline{1-2}

\end{spreadtab}

A B C
1 x y $x+y$
2 := := :=
3 := := :=
4 := := :=
5 $Sx=:=$ $Sy=:=$ $Sx+Sy=:=$
6 \multicolumn 2{|r|}{$Sy-Sx=:=$} \multicolumn 1c{}

A B C \hline
1 \\\hline \hline
2 22 54 a2`+b2 \\
3 43 65 a3`+b3 \\
4 49 37 a4`+b4 \\\hline
5 a2`+a3+a4 b2`+b3+b4 a5`+b5 \\\hline
6 b5`-a5 \\\cline {1-2}

A B C
1 0 0 0
2 2 2 1
3 2 2 1
4 2 2 1
5 1 1 1
6 1 -1 0

G ~ G + ~

22 54 76
43 65 108
49 37 86

(G = 114 (~ = 156 (G + (~ = 270
(~ − (G = 42

These 3 debugging tables can help you understand the inner workings of spreadtab. Table 2 shows that all cells
with a numeric field have an internal code of 1 or 2 (see Table 3) and have an associated numeric field marker ”:=”
(see Table 1). This marker represents the place where the result of the numeric field calculation will be inserted by
substitution. Once the numerical fields have been calculated, the cells in the final table are reconstituted from the
contents of the textual fields in Table 1, by simple substitution.

In debugging tables, cells containing coordinates are only grayed out if the colortbl package has been loaded.

7 List of keys

All settings concerning spreadtab are made from version 0.6 onwards by a system of 〈keys〉=chevronsvalue which
can be found:

1. in the \STset argument, in which case the settings specified concern all future arrays;
2. in the optional argument of \begin{spreadtab} or spreadtab, in which case the settings specified

concern only the current array.
Here is the list of 〈keys〉 and their default values:

〈key〉 〈value〉 see page Details

tabline sep 〈\\〉 3 separator between table rows
text mark 〈@〉 4 the 〈value〉 is detokenized: if it is present in a cell, spreadtab

understands it as a text cell
numeric mark 〈:=〉 5 the argument between braces that follows is the numeric field
freeze char 〈!〉 5 detokenized character which, if present in front of the letter or

number of a reference, does not increment it when the formula
is copied

pretab code 〈〉 (empty) 7 code executed just before displaying the table

18

https://ctan.org/pkg/colortbl

7 LIST OF KEYS

〈key〉 〈value〉 see page Details

posttab code 〈〉 (empty) 7 code executed just after displaying the table
dec sep 〈.〉 7 decimal separator for numbers after table calculation

autoround 〈〉 (empty) 8 An empty value is the normal behavior; otherwise, a positive
〈integer〉 is expected and indicates the rank of the internal calcu-
lation rounding.

save list 〈〉 (empty) 9 csv list of the form 〈macro〉=〈absolute reference〉: each number
contained in the referenced cells is stored (globally) in a macro.
This key is reset to empty after each table.

aux save list 〈〉 (empty) 9 same syntax and behavior as above, but assignments are also
written to the auxiliary file. This key is reset to empty after each
table.

display marks 〈<<;>>〉 10 markers around an absolute reference in a text field to display
the number contained in the referenced cell

copy char 〈"〉 13 in the argument to \STcopy, sets the beginning and end of the
part of the formula which must be taken into account for the
offsets when copying

tag to aux 〈false〉 14 when 〈true〉, assignments made by the macro function tag are
also written to the auxiliary file.

messages 〈false〉 16 allows spreadtab to send messages to the log file about what it’s
doing

debug 〈〉 (empty) 17 must contain words from 〈text〉, 〈formula〉 or 〈cellcode〉 in csv
format to display the corresponding debugging table. If the word
〈show tab〉 is added, the table is also displayed. This key is reset
to empty after each table.

To return to the default values, you can run the \STreset macro at any time.

* *
*

Please let me know by email any bugs, regressions or new features to implement that you think might be useful.

19

mailto:unbonpetit@netc.fr

	Presentation
	New in v0.61
	Deletion
	Macro \STrep
	Macro-function test

	Common Features
	Calculation
	Line Breaks
	Absolute References
	Relative references
	Text cells
	Mixed Cells
	Copying formulas
	Macros provided by spreadtab
	Macro \STset
	The macros \STxp and \STrep

	Table formatting
	Codes executed before or after the table
	Decimal Separator
	Automatic rounding
	Macro \STprintnum
	Hide row or column
	Export cell value
	Display cell value
	Use \multicolumn

	Macro-functions
	Math macro-functions
	Sum cells
	Macro-function sumprod
	GCD and LCM
	Scientific Notation
	Identity

	Comparison macro-functions
	Macro-functions manipulating dates
	Date to number with engshortdatetonum
	From a number to a date

	Coordinate macro-functions
	tag, cell, value and \STtag
	row and col

	Particular care
	Defining new commands with \hline
	The use of \multicolumn and \SThidecol
	Messages delivered by spreadtab
	Debug

	List of keys

