makematch.sty
Pattern matching with wildcards
version 1.7925

David Kastrup*

2007/02/23

1 Using makematch

The basic idea of makematch is to compile patterns and targets (and/or lists of
them) and match the former to the latter. This functionality is used extensively
in QuinScape’s package for unit testing. We’ll use that package for doc-
umenting usage of makematch; the following construct is skips the tests when
makematch.dtx is used as a standalone file.

1 (xdtx)

2 \iffalse

3 (/dtx)

4 (xtest)

5 \RequirePackage{makematch,qstest}

6 \IncludeTests{*}

makematch requires an eTEX-based IATEX which should be standard for current

TEX distributions.

1.1 Match patterns and targets

This package has the notion of match patterns and targets. Patterns and targets
get sanitized at the time they are specified; this means that nothing gets expanded,
but replaced by a textual representation consisting of spaces (with catcode 10) and
other characters (catcode 12). Control words are usually followed by a single space
when getting sanitized.

Patterns and targets are actually generalized to pattern and target lists by
this package: you can, when specifying either, instead give a list by using an
optional argument for specifying a list separator (the lists used in gstest are
comma-separated).

*David.Kastrup@QuinScape.de, QuinScape GmbH

mailto:dak@gnu.org
http://quinscape.de

\MakeMatcher

Target lists are unordered: the order of targets in them is irrelevant. Leading
spaces in front of each target get stripped, all others are retained.

Pattern lists similarly consist of a list of patterns, with leading spaces stripped
from each pattern. In contrast to target lists, the order of pattern lists is signif-
icant, with later patterns overriding earlier ones. Also in contrast to target lists,
empty patterns are removed.

There are two special characters inside of a pattern: the first is the wildcard *
which matches any number of consecutive characters (including the empty string)
in a target. Wildcards can occur anywhere and more than once in a pattern.

The second special character in a pattern is only recognized at the beginning
of a pattern, and only if that pattern is part of a pattern list (namely, when a list
separator is speciﬁed)ﬂ If a pattern is preceded by ! then the following pattern,
if it matches, causes any previous match from the pattern list to be disregarded.

So for example, the pattern list {*,!foo} matches any target list that does
not contain the match target foo.

An empty target list {} is considered to contain the empty string. Thus the
pattern * matches every target list, including empty ones, while the pattern list
{} does not match any keyword list, including empty ones.

1.2 The Interface

takes two mandatory arguments. The first is a macro name. This macro will be-
come the new matcher. The second argument of \MakeMatcher is the pattern to
match. An optional argument before the mandatory ones can be used for specify-
ing a list separator in which case the first mandatory argument becomes a pattern
list (only in this case are leading ! characters before list elements interpreted
specially).

7 \begin{gstest}{\MakeMatcher}{\MakeMatcher}

8 \MakeMatcher\stylefiles{*.sty}

9 \MakeMatcher\headbang{!*}

10 \MakeMatcher[,]\truestylefiles{*.sty,!.thumbnails/*,!*/.thumbnails/*}
The matcher constructed in that manner is called with three arguments. The first
argument is a control sequence name containing a match target (or target list)
prepared using \MakeMatchTarget (see below).

Alternatively, the first argument can be a brace-enclosed list (note that you’ll
need two nested levels of braces, one for enclosing the argument, one for specifying
that this is a list) which will then get passed to \MakeMatchTarget (see below)
for processing before use. The inner level of braces inside of the first argument
may be preceded by a bracketed optional argument specifying the list separator
for this list.

The second argument of the matcher is executed if the pattern list for which
the matcher has been built matches the keyword list. The third is executed if it
doesn’t. List separators of pattern and keyword list are completely independent

LAnd if ! is not the list separator of the list.

\MakeMatchTarget

\MatchedTarget

\RemoveMatched

from each other. Ok, we expect the following to result just in calls of \true (a
call of \false is turned into a failed expectation):

11 \begin{gstest}{\Makematcher literal}{\MakeMatcher}
12 \begin{ExpectCallSequence}{\true{}\false{} %

13 .#1{\Expect*{\CalledName#1}{true}}+’}

14 \stylefiles{{xxx/.thumbnails/blubb.sty}}{\true}{\false}

15 \truestylefiles{{xxx/.thumbnails/blubb.sty}}{\false}{\true}

16 \headbang{{xxx/.thumbnails/blubb.sty}}{\false}{\true}

17 \stylefiles{[]{x.sty.gz .thumbnails/x.sty !'x}}{\true}{\false}

18 \truestylefiles{[1{x.sty.gz .thumbnails/x.sty !x}}{\false}{\true}
19 \headbang{[J{x.sty.gz .thumbnails/x.sty !x}}{\true}{\false}

20 \end{ExpectCallSequence}

21 \end{gstest}

So how do we create a sanitized keyword list in a control sequence?

is called with two mandatory arguments, the first being a control sequence
name where the keyword list in the second argument will get stored in a sani-
tized form: it is converted without expansion to characters of either “special” or
“space” category (catcodes 12 and 10, respectively), and any leading spaces at the
beginning of an element is removed. Without an optional bracketed argument,
not more than sanitization and leading space stripping is done. If an optional
bracketed argument before the mandatory arguments is specified, it defines the
list separator: this has to be a single sanitized character token (either a space or a
character of category “other”) that is used as the list separator for the input (the
finished list will actually always use the macro \, as a list separator).

22 \begin{gstest}{\Makematcher with \MakeMatchTargetl}/,

23 {\MakeMatcher, \MakeMatchTarget}

24 \MakeMatchTarget\single{xxx/.thumbnails/blubb.sty}
25 \MakeMatchTarget[]\multiple{x.sty.gz .thumbnails/x.sty !x}
26 \begin{ExpectCallSequence}{\true{}\false{}‘/

27 .#1{\Expect*{\CalledName#1}{true}}+’}

28 \stylefiles{\single}{\true}{\false}

29 \truestylefiles\single{\false}{\true}

30 \headbang\single{\false}{\true}

31 \stylefiles{\multiple}{\true}{\false}

32 \truestylefiles\multiple{\false}{\true}

33 \headbang\multiple{\true}{\false}

34 \end{ExpectCallSequence}

35 \end{gstest}

This will after a match process contain the target matched by the last matching
pattern (if several targets in a match target list match, only the first of those is
considered and recorded), regardless of whether the corresponding pattern was
negated with !.

After a successful match, you can call \RemoveMatched with one argument: the
control sequence name where the list was kept, and the match will get removed
from the list. If every list element is removed, the list will be identical to \@empty.
36 \begin{gstest}{\MatchedTarget}

37 {\MakeMatcher, \MakeMatchTarget, \MatchedTarget}

38 \MakeMatchTarget\single{xxx/.thumbnails/blubb.sty}

39 \MakeMatchTarget [J\multiple{x.sty.gz .thumbnails/x.sty !x}
40 \begin{ExpectCallSequence}{\true{}\false{}‘%
41 .#1{\Expect*{\CalledName#1}{true}}+’3}

42 \stylefiles{\single}{\true}{\false}

43 \Expect*{\single}{xxx/.thumbnails/blubb.sty}
44 \Expect*{\meaning\MatchedTarget}*{\meaning\single}
45 \RemoveMatched\single

46 \Expect*{\meaning\single}{macro:->}

47 \truestylefiles\single{\false}{\true}

48 \headbang\single{\false}{\true}

49 \stylefiles{\multiple}{\true}{\false}

50 \Expect*{\MatchedTarget}{.thumbnails/x.sty}
51 \RemoveMatched\multiple

52 \Expect\expandafter{\multiple}{x.sty.gz\, !x}
53 \truestylefiles\multiple{\false}{\true}

54 \Expect*{\meaning\MatchedTarget}{undefined}
55 \headbang\multiple{\true}{\false}

56 \Expect*{\MatchedTarget}{!x}

57 \RemoveMatched\multiple

58 \Expect*{\multiple}{x.sty.gz}

59 \end{ExpectCallSequence}

60 \end{gstest}
61 \end{gstest}

1.3 Notes on sanitization

Note that sanitization to printable characters has several consequences: it means
that the control sequence \, will turn into the string \ followed by the end of the
keyword. Note also that single-character control sequences with a nonletter name
are not followed by a space in sanitization. This means that sanitization depends
on the current catcodes. Most particularly, sanitizing the input \@abc12 will turn
into \@abc 12 when @ is of catcode letter, but to \@abc12 when @ is a nonletter.
So sanitization cannot hide all effects of catcode differences. It is still essential
since otherwise braces would cause rather severe complications during matching.
Another curiosity of sanitization is that explicit macro parameter characters
(usually #) get duplicated while being sanitized.
So this is the end of the documentation section, so we end our test file setup
by complementing the beginning:
62 (/test)
63 (*xdtx)
64 \fi
65 (/dtx)

	Using makematch
	Match patterns and targets
	The Interface
	Notes on sanitization

