The sverb* package

Mark Wooding

8 May 1996
Contents
1 User guide 1 3.2 Tab character handling . . 7
1.1 The listing environment 2 3.3 Reading verbatim text . . 8
1.11 C.lo.nﬁgurir}g the 3.4 Listing environments . . . 12
listing .envuror.lment 2 3.5 The verbwrite environment 14
1.1.2 Choosing a differ- 3.6 The demo environment . . 14
ent end-text 3
1.2 ertlng text to aﬁle P 3 The GNU General Public
1.3 The \verbinput command 4 Licence 17
1.4 The demo environment . . 4 A1l Preamble 17
2 Programmer interface 5 A2 Terrr}s and. copdit%ons for
2.1 Environment hooks 5 copy.lng, (.11str1but10n and
2.2 Reading the verbatim text 5 modification 18
A.3 Appendix: How to Ap-
3 Implementation 6 ply These Terms to Your
3.1 Simple things 6 New Programs 22

1 User guide

The sverb package provides some useful commands and environments for doing
things with verbatim text. I prefer this code to the standard verbatim package (by

Rainer Schopf et al.) although I'm biased.

The package was written to fulfil a particular purpose: I wanted to be able
to typeset ARM assembler code, 77 columns wide, on A5 paper, with the fields
separated by tab characters. It’s grown up fairly organically from that, and I've
tidied it when I've seen the code get too ugly.

The current features are:

e A ‘listing’ environment which typesets verbatim text nicely.

e A command to read verbatim text from an external file.

*The sverb package is currently at version 1.3, dated 8 May 1996.

listing

Support for arbitrary-sized chunks of text without overflowing TEX’s mem-
ory.

Support for tab characters in the verbatim text.

e An environment for typesetting demonstrations of ITEX markup.

It all works correctly with the doc system for documenting KTEX packages.

A fairly hairy but quite powerful programmer interface to the yukky bits of
the package.

The interface is described in its own section, so that more timid readers can
avoid it. That said, some of the stuff in this section gets rather technical.

Note that this package doesn’t even try to do anything with short bits of ver-
batim text (as handled by the \verb:...: command). I have a separate package
(syntax) which does all sorts of horrible things along those lines.

1.1 The listing environment

The main method for typesetting verbatim text is the listing environment. This
works pretty much the same as the standard verbatim environment, with some
exceptions, which are described below.

So that you know exactly what you’re getting, here are the rules by which sverb
decides what the verbatim text actually is:

o If there’s any text, other than spaces, on the same line as the
“\begin{listing}’, then the contents of the environment begins immedi-
ately after the closing brace (with all leading spaces preserved). Otherwise,
the text begins on the following line.

e If there is any text, other than spaces, before the ‘\end{1listing}’, but on
the same line, this is considered to be the last line of the text; otherwise the
text is presumed to have ended at the end of the previous line.

e Any text following the \end{listing} on the same line is thrown away.
There are good reasons for this, but they’re technical. Essentially there’s
nothing I can do about it.

Tab characters are supported within the environment: tab stops are set every
eighth column, although this can be modified.

1.1.1 Configuring the listing environment

The text size used in the listing environment is set by the \listingsize command.
By default, this is set to \small, although you can redefine it in the document
preamble, or it can be set in the document class.

The amount by which the listing text is indented is controlled by the
\listingindent length parameter. This is a fixed length, whose default value
is 1em.

listing*

verbwrite

The listing environment

...in the following code:

init MOV RO, #200 ;Version 2.00 please
LDR R1,=&4B534154 ;Magic number (‘TASK’)
ADR R2,appName ;Find application name
SWI Wimp_Initialise ;Register as a WIMP task

The next step is to ...

\dots in the following code:

\begin{listing}

init MOV RO, #200 ;Version 2.00 please
LDR R1,=&4B534154 ;Magic number (‘TASK’)
ADR R2,appName ;Find application name
SWI Wimp_Initialise ;Register as a WIMP task

\end{listing}

The next step is to \dots

1.1.2 Choosing a different end-text

The listing environment is terminated by the exact character sequence
“\end{listing}’. This isn’t too much of a problem, unless you want to include
this string in the text. This is achieved by the listingx environment, which allows
you to specify the end-text to find as an argument.

For example:

| The listing* environment

Type a listing as follows: Type a listing as follows:
\begin{listing} \begin{listing*}{<end-listing*>}
This is a listing. Yes. \begin{listing}

\end{listing} This is a listing. Yes.
\end{listing}

<end-listing*>

Don’t include ‘special’ characters in your chosen end-text unless you know
what you're doing.

1.2 Writing text to a file

You can write verbatim text to a file using the verbwrite environment. The syntax
is fairly straightforward:

\begin{verbwrite}{(file-name)} ...\end{verbwrite}

\verbinput

The text of the environment is written to the named file. The rules about where
the text actually starts and ends are the same as for the listing environment.

There is also a *-variant, like listing*, which allows you to choose the end-text.
The end-text is the first argument, the filename comes second.

There is a restriction on the characters you can write to the file: they must all
be considered ‘printable’ by TEX; otherwise they will be read back in as ‘~~(chars)’
which isn’t too good. Unfortunately, this includes tab characters, so you can’t
write them.!

For example:

\begin{verbwrite}{wrdemo.tmp}
This is some text written to
a file near the beginning of
the file.

\end{verbwrite}

1.3 The \verbinput command

You can input a pre-prepared text file exactly as it is in the input using the
\verbinput command. The filename is given as an argument. For example:

| The \verbinput command |

This is some text written to \verbinput{wrdemo.tmp}
a file near the beginning of
the file.

1.4 The demo environment

Package authors need to document their packages, and it’s common to want to
display examples showing the original text and the output side-by-side (or, when
space doesn’t permit this, one above the other). Both the IWTEX book and The
BTEX Companion contain such examples.

The demo environment allows such displays to be created easily. The syntax
of the environment is as follows:

\begin{demo} [(shape)]1{(title)} ... \end{demo}

The optional (shape) argument can be either ‘w’ (wide), or ‘n’ (narrow). A
‘wide’ shape places the input and output one above the other, while the ‘narrow’
shape puts them side-by-side. The default shape is ‘narrow’. An attractive border
is drawn around the display to finish it off nicely.

An example:

1Well, not without doing serious surgery on TEX itself, anyway.

The demo environment
From the TgXbook

\[\sum_{p\;\rm prime}
S fp)= f@)dn(r) £(p) = \int_{t>1}
t>1 £\, {\rm dX\pi(t) \]

p prime

\begin{demo}{From the \textit{\TeX bookl}}
\[\sum_{p\;\rm prime}
£(p) = \int_{t>1}
£\, {\\rm dX\pi(t) \]
\end{demo}

demo* As with the other environments created by this package, there’s a x-variant
which takes the end-text as an argument.

2 Programmer interface

This section describes the publicly available routines provided by the sverb pack-
age. Routines not described here are libable to be changed or even removed
without warning, so don’t use them.

2.1 Environment hooks

Each of the environments created here works in the same way. For each environ-
ment foo, there’s a main command responsible for doing the work, called \sv@foo.
This is given all the arguments of the normal environment, and two more:

e The ‘end-text’ to search for, which marks the end of the environment.

e Some actions to perform after the text has been read and processed. This
allows the calling macro to do some extra actions, like closing boxes, etc.

All the environments do is call the main command with appropriate arguments.

2.2 Reading the verbatim text
\sv@read The main scanning routine is \sv@read. It is called with three arguments:
e The end-text marking the end of the environment.

e The name of a macro (which must be a single token) which is called with a
line of text as its single argument. This is given each line of text which is
read from the environment in turn.

e A macro, or other sort of action, which is to be done when the text has been
read and processed.

\sv@safespc

\@cspecials

\svO@startlisting

The macro \sv@read assumes that the caller has already made some provision
for removing the category codes of the following text, by either calling \@verbatim
or using the construction

\let\do=\@makeother
\dospecials

Note that any space characters you read using \sv@read will be catcoded as
\active. Normally this is OK because \obeyspaces (or \@vobeyspaces) will
be in effect. If you're doing something more exotic, like writing text to a file or
building a command string, you can call \sv@safespc which defines the active-
space character to be a normal whitespace-space when expanded.

3 Implementation

This section defines several macros and environments which allow verbatim typing,
with a high degree of configurability. OK, so this sort of thing’s been done so often
before that it isn’t true, but I don’t really care.

1 (xpackage)

3.1 Simple things

To help us build funny macros which involve strange and different category codes,
T’ll write some simple macros which I can use while building my complicated and
clever ones.

This macro is used to assist the definition of some of the environments. It makes
‘\’, ‘{” and ‘}’ into ‘other’ characters, and replaces them with ‘|’, ‘<’ and ‘>’ respec-
tively. Note that ‘[’ and ‘]’ aren’t used, because they make defining commands
which take optional arguments awkward. Note that we open a group here. This
should be closed using |endgroup at the end of the special section.

2 \def\@cspecials{’
\begingroup/,
\catcode* | 0%
\catcode‘<1%
\catcode‘>2%
\catcode‘\{12%
\catcode‘\}12%
\catcode‘\\12%

}

S © W N OO W

=

This macro sets everything up nicely for a listing-type verbatim environment.

11 \def\sv@startlisting{%

12 \def\par{\@@par\penalty\interlinepenaltyl}/
13 \@Qpary

14 \leftskip\@totalleftmarginj,

15 \obeylines,

16 \@noligs/,

17 \let\do\@makeother\dospecials,

18 \verbatim@font}

19 \frenchspacing},

\settabwidth

\sv@vtab

\verbinput

20 \@vobeyspaces,

21 \settabwidth’

22 \catcode9\active’,

23 \lccode‘\~“9\lowercase{\let~\sv@vtab}},

24 \lccode‘\~13\lowercase{\let~\vinput@cr}}
25 \interlinepenalty500%

26 }

3.2 Tab character handling

One of the things we want to do here is handle tab characters properly. (Here,
‘properly’ means ‘moving to the next column which is a multiple of eight’; the way
these things were always meant to.)

The tabs used by our tabbed verbatim environments are set up by this routine. It
sets the tab width parameter \svtab to 8 times the width of a \tt space. If you
really want, you can redefine this macro.

27 \newdimen\svtab
28 \def\settabwidth{\setbox\z@\hbox{\texttt{\space}}\svtab8\wd\z0}

Here we handle tabs inside verbatim environments. We expect each line to be
typeset as a box, using something like

\setboxO\hbox{#1}
\leavevmode

\box0

\par

The idea is that you make tab active, and set it to this macro. We stop the
current box, stretch it to the right width, and start another one straight after, so
nobody know the difference. The code here is straight from Appendix D of The

TEXbook.

29 \def\sv@vtab{}

30 \hfill\egroup%

31 \@tempdima\wd\z@Y

32 \divide\@tempdima\svtab¥,
33 \multiply\@tempdima\svtab¥
34 \advance\@tempdima\svtab/
35 \wd\z@\@tempdima%

36 \leavevmode\box\z@%

37 \setbox\z@\hbox\bgroup’,
38 }

We allow input from a file, by the \verbinput command. We display the text
pretty much the same as the listing environment below.

We set tab and return active, and get them to do appropriate things. This
isn’t actually all that hard.

39 \def\verbinput#1{%

40 \begin{listinglist}%

41 \listingsize),

42 \sv@startlisting},

43 \setbox\z@\hbox\bgroup,

\vinput@cr

\matcher

44 \input{#1}},

45 \sv@stripspc),

46 \egrouph

47 \ifdim\wd\z@=\z@}
48 \ifhmode\par\fi},

49 \else%

50 \leavevmode\box\z@\par’,
51 \fi}

52 \end{listinglist}/

53 }

This macro handles return characters while inputting text in \verbinput. We
just output our current box, and start another.

54 \def\vinput@cr{/
55 \egroup’
56 \leavevmode\box\z@Y%

57 \par/
58 \setbox\z@\hbox\bgroup/
59 }

3.3 Reading verbatim text

The traditional way of reading verbatim text is to use a delimited argument, as
described in the TEXbook. This works well-ish if the text isn’t very long. A better
solution would be to pick out the text line-by-line and process it like that. So this
is what we do.

For long verbatim environments, we need to be able to find the end text. This
is rather tricky. The solution here is rather horrible. The environment picks out
each line of the text at a time, as an argument, and tests to see if it contains the
text we're after. We do the test in a particularly yukky way: we add the actual
target text to the end of the line, and inspect the text following the match to see
if the match is at the end.

The \matcher macro creates a ‘matcher’ which will test strings to see if they
contain something interesting.

To create a matcher, say \matcher{({cmd-name)}{(target)}{(process-cmd)}.
The command {cmd-name) accepts a line of text as an argument and calls the
(process-cmd) with the text of the line before the match, or the whole lot. It also
sets \@ifmatched appropriately.

(Having spent ages coming up with this cruft myself, I found some very similar,
but slightly better, code in Appendix D. So I’ve changed mine to match Donald’s.
Anyway, credit where it’s due: cheers Don.)

60 \newif\if@matched

61 \def\matcher#1#2#3{/,

62 \expandafter\def\csname\string#l$match\endcsname##1#2##2##3\end{’
63 \ifx##2\relaxy

64 \@matchedfalse},
65 \else’,

66 \@matchedtrue
67 \fi%

68 #3{##1}%

69 Y%

\sv@stripspc

\sv@percent

\@isspaces

70 \expandafter\def\expandafter#1\expandafter##\expandafterl\expandafter{)
71 \csname\string#1$match\endcsname##1#2\relax\end’%

72 Yh

73 }

This macro strips any trailing glue in the current horizontal list. This is fairly
simple, actually: we just loop while glue is the last item. It’s slightly complicated
by penalties which TEX puts into the list between the glue items, but we just
remove them too.

74 \def\svO@stripspc{/
75 \unpenalty’
76 \ifdim\lastskip=\z0@\else},

7 \unskip\expandafter\sv@stripspc,
78 \fi}
79 }

This macro strips a single leading percent character if there is one, and if the doc
package is loaded. We store the possibly stripped text in \@tempa.

80 \begingroup

81 \catcode‘\%=12

82 \gdef\sv@percent#1#2\relax

83 {\ifx\check@percent\@@undefined

84 \ifx#1\relax\def\Q@tempa{}\else

85 \def\Qtempa{#1#2}\fi\else

86 \ifx#1\relax\def\@tempa{}\else

87 \ifx#1%\def\Q@tempa{#2}\else

88 \def\Qtempa{#1#2}\fi\fi\fi}

89 \endgroup

We want to avoid writing the first and last lines of the environment to the file
if there’s nothing in them. To do this, we need to know whether a piece of text
contains only space characters. This macro does this, in a rather nasty way. See
the other macros below for details of how this works.

We define \sv@safespc at the same time: this makes space active and expand
to a space character which is not active. Neat, huh?

90 \1lccode‘\~32
91 \1lccode“\!32
92 \lowercase{%
93 \def\Q@isspaces#1{/,

94 \ifx#1\relax,
95 \def\@tempb{\@tempswafalse}’%
96 \else\ifx#1~Y
97 \let\@tempb\Q@isspacesy,
98 \elseY
99 \def\@tempb##1\relax{}%
100 \fi\fi¥%
101 \@tempb?,
102 %
103 \def\sv@safespc{’
104 \catcode32\activeY
105 \def~{ }%
106 %}
107 }

\sv@read This macro does the main job of reading a chunk of verbatim text. You call it like
this:

\sv@read{(end-text) }H (process-line-proc) }H{(end-proc)}

The (end-text) is the text to find at the end of the ‘environment’: we stop
when we find it.

The (process-line-proc) is a macro which is passed as an argument each line
which we read from the text.

The (end-proc) is a macro to call once we’ve finished reading all of the text.
This can tidy up an environment or close a file or whatever.

We read the text by picking out newlines using a delimited macro. We have
to be a little clever, because newlines are active in verbatim text.

We will also strip ‘%4 signs off the beginning if the doc package is here (doc
tries to play with IXTEX’s verbatim stuff, and doesn’t understand the way we do
things).

108 \def\sv@read#1#2#3{/,

This code does all sorts of evil things, so I'll start by opening a group.
109 \begingroup’

So that I can spot the end-text, I’ll create a matcher macro.

110 \matcher\@match{#1}\sv@read@iiy

So that I can identify line ends, I'll make them active. T’ll also make spaces
active so that they can expand to whatever they ought to expand to (spaces in
files, or funny ., characters or whatever.

111 \catcodel3\activel,
112 \catcode32\active},

I’ll use the \if@tempswa flag to tell me whether I ought to output the current
line. This is a little messy, so I'll describe it later. I’ll initialise it to false because
this is the correct thing to do.

113 \@tempswafalse’

Most of the job is done by two submacros. T’ll define them in terms of my
current arguments (to save lots of token munging). The first just extracts the
next line (which ends at the next newline character) and tries to match it.

114 \lccode‘\~13\lowercase{%
115 \def\sv@read@i##1~{\Cmatch{##1}}%
116 }h

The results of the match get passed here, along with the text of the line up to
the matched text.

117 \def\sv@read@ii##1{Y

The first job to do is to maybe strip off percent signs from the beginning, to
keep doc happy.

118 \sv@percent##1\relax\relax/,

10

\sv@readenv

Now I need to decide whether I ought to output this line. The method goes
like this: if this is the first line (\if@tempswa is false) or the last (\if@matched is
true), and the text consists only of spaces, then I'll ignore it.

The first thing to do is to notice the last line — if \if@matched is true, then I’ll
make \if@tempswa false to make the first-line and last-line cases work the same
way.

119 \if@matched\Q@tempswafalse\fi%

Now if this is the first or last line, I'll examine it for spaces. This is done in a
separate macro. It will set \if@tempswa false if the text contains only spaces.

120 \if@tempswa\else\@tempswatrue\expandafter\Q@isspaces\Q@tempa\relax\fi/,

Now, if \if@tempswa is still true, perform the (process-line-proc) on the line
of text. I'll provide a group, so that it doesn’t upset me too much.

121 \if@tempswa

122 \begingroup/

123 \expandafter#2\expandafter{\@tempal},
124 \endgroup’,

125 \£fi%

The next line won’t be the first one, so I'll set the flag true in readiness.
126 \@tempswatruel,

Now, if that wasn’t the last line, go round again; otherwise end the group I
started ages ago, and do the user’s (end-proc).

127 \if@matched\def\Q@tempa{\endgroup#3}\else\let\@tempa\svOreadQi\fiy,
128 \@tempa’,
129 Y

Now to start the thing up. I'll read the first line.

130 \sv@read@iY
131 }

This macro works out an appropriate end-text for the current environment. If you
say \sv@readenv{(macro-name)}, it will expand do

(macro-name){\12end{12{current-env-name) }12}{\end{(current-env-name) }}

Easy, no?
This is all done with mirrors. No, err... it’s done with \expandafter.

132 \begingroup

133 \lccode ‘\<=“\{

134 \lccode‘\>=‘\}

135 \lccode‘\|=\\

136 \lowercase{\endgroup

137 \def\sv@readenv#1{},

138 \expandafter\expandafter\expandaftery,

139 #1\expandafter\sv@readenv@i\@currenvir\0ey,
140 }

141 \def\sv@readenv@i#1\@Q{{|end<#1>}{\end{#1}}}
142 }

11

\sv@verbline

\listinglist
listinglist

This macro typesets a line in a verbatim way, so you can construct a real verbatim
environment from it. It’s a bit tricky in the way that it catches the last line. Don’t
worry about this: it’s easy really. Note the \relax after the \par — this is because
doc tries to do clever things with \par to strip ‘%’ signs out.

143 \def\sv@verbline#1{}

144 \setbox\z@\hbox{#1\sv@stripspcl}/
145 \ifdim\wd\z@=\z@%

146 \if@matched\ifhmode\par\relax\fi\else\leavevmode\par\relax\fiY
147 \elsel,

148 \leavevmode\box\z@\par\relax}

149 \fi}

150 }

3.4 Listing environments

The listing environment is our equivalent of the standard verbatim environment.
We do some slightly cleverer things, though, to make sure (for example) that even
text which contains \end{listing} can be typeset.

This defines the layout for the listing environment. It starts a list with the ap-
propriate shape. It’s also made into an environment, so that the end-paragraph-
environment bits work correctly.

The \listingindent length parameter sets up the indentation of the listings.
If there’s a \parindent setting, I'll line listings up with that; otherwise I'll just
choose something which looks right.

151 \newdimen\listingindent

152 \AtBeginDocument{}

153 \ifdim\parindent=\z@\listingindentlem\else\listingindent\parindent\£fiJ
154 }

Now to define a size hook for the environment. This is fairly simple stuff.

155 \ifx\listingsize\@Qundefined
156 \let\listingsize\small
157 \fi

Now to define the environment itself. Suppress the indentation if we’re first
thing on a new list item, so that the listing lines up with everything else.

158 \def\listinglist{%
159 \list{}{%

160 \if@inlabel’,

161 \leftmargin\z@%

162 \elseY,

163 \leftmargin\listingindent,
164 \fi%

165 \rightmargin\z@},

166 \labelwidth\z@%

167 \labelsep\z@/

168 \itemindent\z@Y%

169 \listparindent\z@J

170 \let\makelabel\relax,
171 \parsep\z@skip/,

172 Y

12

listing

ignore

173 \parfillskip\@flushglue,
174 \item\relax},

175 ¥

176 \let\endlistinglist\endlist

The listing environment is the only real verbatim-like environment we create will
all this kit, although it does the job very nicely.

The environment indents its contents slightly, unlike verbatim, and uses a
smaller typeface in an attempt to fit 77-column text on an A5 page. There is
also a x-variant, which allows you to specify the terminating text. This enables
you to include absolutely any text in the environment, including \end{1listing}.

First, we must define the \1listing command.

177 \def\listing{%

178 \listinglist)

179 \listingsize),

180 \sv@readenv\sv@listing},
181 }

Now we define the \@listing command, which does most of the work. We
base the listing environment on a list.

182 \def\sv@listing#1#2{J,

183 \sv@startlisting}

184 \sv@read{#1}\sv@verbline{\endlistinglist#2}/,
185 }

Now we define the starred version. The command name needs to include the
‘*’ character, so we must use \csname. There’s some hacking here to allow us
to read the name using the appropriate catcodes for otherwise normal characters:
IATEX activates some characters and makes them typeset themselves to suppress
some ligaturing.

186 \expandafter\def\csname listing*\endcsname{’

187 \listinglist%

188 \listingsize},

189 \begingroup’

190 \@noligs’

191 \def\@tempa##1{\endgroup\sv@listing{##1}{\end{listing*}}}/
192 \@tempal,

193 }

The ignore environment entirely ignores its contents. Anything at all may be put
into the environment: it is discarded utterly.

We define some macros for defining ignoring environments, because this can
be useful for version control, possibly.

194 \def\sv@ignore#1#2{J

195 \@bsphack

196 \let\do\G@makeother\dospecials’,

197 \sv@read{#1}\@gobble{\@esphack#2}%

198 }

199 \def\ignore{\sv@readenv\sv@ignore}

200 \def\ignoreenv#1{},

201 \expandafter\let\csname #1\endcsname\ignorey,
202 }

13

\sv@urite

verbwrite

\sv@demoname

203 \def\unignoreenv#1{J,

204 \expandafter\def\csname #1\endcsname{\endgroupl}’
205 \expandafter\def\csname end#1\endcsname?,

206 {\begingroup\def\@currenvir{#1}}%

207 }

3.5 The verbwrite environment

The verbwrite environment allows text to be written to a file in a verbatim way.
Note that tab characters don’t work, because TEX refuses to be nice.

As seems to be traditional now, we first define a general hookable macro which
allows a caller to specify the end-text and what to do afterwards.

208 \newwrite\sv@uritefile

209 \def\svOwrite#1#2{Y

210 \begingroup%

211 \@bsphack’,

212 \let\do\@makeother\dospecials}

213 \sv@safespc

214 \sv@read{#1}\sv@uriteline{\sv@endwrite#2}J,
215 }

216 \def\sv@writeline#1{}

217 \immediate\write\sv@writefile{#1}J
218 }

219 \def\sv@endwrite{},

220 \@esphack’,

221 \endgroup’

222 }

Now we can define the actual environment. We define a *-variant which allows
the user to specify the end-text, just to make sure.

223 \def\verbwrite#1{},

224 \immediate\openout\sv@uwritefile#1\relax,

225 \sv@readenv\svQurite/,

226 }

227 \def\endverbwrite{\immediate\closeout\sv@uritefile}

228 \expandafter\def\csname verbwritex\endcsname#1#2{J,

229 \immediate\openout\sv@uwritefile#2\relax/,

230 \sv@urite{#1}{\immediate\closeout\sv@uritefile\end{verbwrite*x}}
231 }

3.6 The demo environment

By way of tying all of this together, I present an environment for displaying demon-
strations of I TEX markup. We read the contents of the environment, write it to a
temporary file, and read it back twice, typesetting it the first time and displaying
it verbatim the second time.

This macro expands to the filename to use for the temporary data. To allow the
package documentation to demonstrate the demo environment itself, we need to
keep a nesting count. This avoids too much hackery, which unfortunately appears
to plague all of my TEX code.

14

\sv@demo

demo

\sv@dodemo

232 \newcount\sv@nestcount
233 \def\sv@demoname{demo\number\sv@nestcount.tmp}

As for listing, we do all the business through a private macro. This is good because
it means we can leave the main macro readable. The argument is the end-text to
spot.

234 \def\sv@demo#1#2{},

235 \@ifnextchar [{\sv@demo@i{#1}{#2}}{\sv@demo@i{#1}{#2}[n]}V
236 }

237 \def\sv@demo@i#1#2 [#3]#4{%

238 \advance\sv@nestcount by\@ne}

239 \immediate\openout\sv@uwritefile\sv@demoname\relax,
240 \sv@write{#1}{%

241 \immediate\closeout\sv@writefile,

242 \sv@dodemo{#2}{#3}{#4}/,

243 Yh

244 }

This is the real environment. We provide demox too, to allow the user to choose
the end-text.

245 \def\demo{\sv@readenv\sv@demo}
246 \expandafter\def\csname demo*\endcsname#1{\sv@demo{#1}{\end{demo*}}}

First, let’s define some common bits of code in the stuff below. The minipages
used to typeset the material has some clever stuff to avoid strange spacing in the
output.

247 \def \sv@demosmp{%

248 \begin{minipage} [t]{\@tempdima}’
249 \vskip8\p@%

250 \hrule\G@height\z@Y%

251 \raggedright/,

252 \vbox\bgroup/

253 }
254 \def\sv@demoemp{’,
255 \par\unpenalty\unskip%

256 \egroup

257 \vskip8\p@/

258 \hrule\G@height\z@Y%
259 \end{minipage}%

260 }

This is the macro which actually typesets the demonstration.
261 \def\sv@dodemo#1#2#3{/,

Now work out some values. We set \hsize to the line width leaving 2 em of
space on either side. The size of the minipages is calculated depending on the
shape of the demonstration. This is all fairly simple.

262 \begingroup

263 \@tempdima\linewidthy

264 \advance\@tempdima-2em}
265 \hsize\@tempdimay,

266 \if#2wl

267 \advance\@tempdima-2em},

15

268 \else’,

269 \advance\@tempdima-3emy,
270 \divide\@tempdima2y,
271 \fij

Now we open a big vertical box, and put in a header to mark off the demon-
stration.

272 \par’

273 \setbox\z@\hbox{\strut\enspace#3\enspace\strut}’
274 \Qtempdimb.5\dp\z@%

275 \advance\@tempdimb-.5\ht\z@Y%

276 \ht\z@\Q@tempdimb\dp\z@\@tempdimb}

277 \noindent\hskiplem\vtop{%

278 \hb@xt@\hsize{%

279 \hrulefill},

280 \raise\@tempdimb\box\z@%
281 \hrulefillY

282 1A

283 \nointerlineskip

284 \hb@xt@\hsize{\vrule\@height5\p@\hfil\vrule\Cheight5\p@}’
285 \nointerlineskip/

Now we insert the output text in the first minipage. T’ll force ‘4’ to be a
comment character, in case something like doc has had its wicked way.

286 \vskip-\parskip/

287 \noindent\hbox{}\hskiplemy
288 \sv@demosmpY,

289 \catcode ‘\%14\relax

290 \input{\sv@demoname},

291 \sv@demoemp

Insert some kind of separation between the two. In ‘wide’ format, we start a
new line, and put a ruleoff between the two. In ‘narrow’ format, we just leave
some space.

202 \if#2wY,
293 \vskip8\p@\hrule\vskip8\p@/
294 \noindent\hbox{}7
295 \fi%
296 \hskiplem}
Now we put the verbatim copy of the text in the other minipage.
297 \sv@demosmpY
208 \listingindent\z@J
299 \verbinput\sv@demoname,
300 \sv@demoempY,
301 \par’
302 \nointerlineskip¥

303 \hb@xt@\hsize{\vrule\@height5\p@\hfil\vrule\Cheight5\p@}}
304 \hrule,

305 Yh

306 \endgroup

307 \par’

308 \vskip\baselineskip/
309 #1Y

310 }

16

That’s all there is. Have fun.
311 (/package)
Mark Wooding, 8 May 1996

Appendix

A The GNU General Public Licence

The following is the text of the GNU General Public Licence, under the terms of
which this software is distrubuted.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

A.1 Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee
your freedom to share and change free software—to make sure the software is free
for all its users. This General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to using
it. (Some other Free Software Foundation software is covered by the GNU Library
General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate
to certain responsibilities for you if you distribute copies of the software, or if you
modify it.

For example, if you distribute copies of such a program, whether gratis or for
a fee, you must give the recipients all the rights that you have. You must make
sure that they, too, receive or can get the source code. And you must show them
these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify
the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to

17

know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will individually
obtain patent licenses, in effect making the program proprietary. To prevent this,
we have made it clear that any patent must be licensed for everyone’s free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

A.2 Terms and conditions for copying, distribution and
modification

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms
of this General Public License. The “Program”; below, refers to any such
program or work, and a “work based on the Program” means either the Pro-
gram or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifi-
cations and/or translated into another language. (Hereinafter, translation
is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program
is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having
been made by running the Program). Whether that is true depends on what
the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code
as you receive it, in any medium, provided that you conspicuously and appro-
priately publish on each copy an appropriate copyright notice and disclaimer
of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole
or in part contains or is derived from the Program or any part thereof,
to be licensed as a whole at no charge to all third parties under the
terms of this License.

18

(c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in
the most ordinary way, to print or display an announcement including
an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redis-
tribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is inter-
active but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be rea-
sonably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of
a whole which is a work based on the Program, the distribution of the whole
must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of
who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights
to work written entirely by you; rather, the intent is to exercise the right
to control the distribution of derivative or collective works based on the
Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under the
scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1
and 2 above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange;
or,

(b) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(¢) Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only
for noncommercial distribution and only if you received the program
in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means

19

all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of
the operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source
code from the same place counts as distribution of the source code, even
though third parties are not compelled to copy the source along with the
object code.

. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Pro-
gram or its derivative works. These actions are prohibited by law if you do
not accept this License. Therefore, by modifying or distributing the Program
(or any work based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying, distributing
or modifying the Program or works based on it.

. Each time you redistribute the Program (or any work based on the Pro-
gram), the recipient automatically receives a license from the original licen-
sor to copy, distribute or modify the Program subject to these terms and
conditions. You may not impose any further restrictions on the recipients’
exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as
a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and
the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims; this

20

10.

11.

12.

section has the sole purpose of protecting the integrity of the free software
distribution system, which is implemented by public license practices. Many
people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to dis-
tribute software through any other system and a licensee cannot impose that
choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder
who places the Program under this License may add an explicit geographi-
cal distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program spec-
ifies a version number of this License which applies to it and “any later
version”, you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Founda-
tion. If the Program does not specify a version number of this License, you
may choose any version ever published by the Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software Founda-
tion, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

Because the Program is licensed free of charge, there is no war-
ranty for the Program, to the extent permitted by applicable law.
except when otherwise stated in writing the copyright holders
and/or other parties provide the program “as is” without war-
ranty of any kind, either expressed or implied, including, but not
limited to, the implied warranties of merchantability and fitness
for a particular purpose. The entire risk as to the quality and per-
formance of the Program is with you. Should the Program prove
defective, you assume the cost of all necessary servicing, repair or
correction.

In no event unless required by applicable law or agreed to in writ-
ing will any copyright holder, or any other party who may modify

21

and/or redistribute the program as permitted above, be liable to
you for damages, including any general, special, incidental or con-
sequential damages arising out of the use or inability to use the
program (including but not limited to loss of data or data being
rendered inaccurate or losses sustained by you or third parties or a
failure of the Program to operate with any other programs), even
if such holder or other party has been advised of the possibility of
such damages.

END OF TERMS AND CONDITIONS

A.3 Appendix: How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone
can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of
warranty; and each file should have at least the “copyright” line and a pointer to
where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it
starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate
parts of the General Public License. Of course, the commands you use may be
called something other than ‘show w’ and ‘show ¢’; they could even be mouse-clicks
or menu items-whatever suits your program.

22

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if necessary. Here

is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider
it more useful to permit linking proprietary applications with the library. If this
is what you want to do, use the GNU Library General Public License instead of

this License.

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed, the ones underlined to the code line of the definition, the rest to the code

lines where the entry is used.

Symbols
N 91
N 81, 289
NS 133
N> 134
NOQ oo 139, 141
\@@par 12, 13
\@@undefined 83, 155
\@bsphack 195, 211
\@cspecials 2
\@currenvir 139, 206
\@esphack 197, 220
\@flushglue 173
\@gobble 197
\@height 250, 258, 284, 303
\@ifnextchar 235
\@isspaces 90, 120
\@makeother 17, 196, 212
\@match 110, 115
\@matchedfalse 64
\@matchedtrue 66
\@noligs 16, 190
\@tempa 84—

88, 120, 123, 127, 128, 191, 192
\@tempb 95, 97, 99, 101
\@tempdima

31-35, 248, 263-265, 267, 269, 270
\@tempdimb 274-276, 280
\@tempswafalse 95, 113, 119
\@tempswatrue 120, 126

23

\@totalleftmargin 14
\@vobeyspaces 20
N\ 9, 135
N 7, 133
N} 8, 134
NL 135
N~ 23, 24, 90, 114
A
\active 22, 104, 111, 112
\AtBeginDocument 152
B
\baselineskip 308
\begin 40, 248
C
\check@percent 83
D
\demo 245
demo (environment) 245
demo* (environment) 5
\do ... 17, 196, 212
\dospecials 17, 196, 212
E
\end . 52,62, 71, 141, 191, 230, 246, 259
\endlist 176
\endlistinglist 176, 184
\endverbwrite 227
\enspace 273

environments:
demo*, 5
demo, 15
ignore 13
listing* 3
listinglist 12
listing 2,13
verbwrite 3,14
F
\frenchspacing 19
H
\hbOxt@ 278, 284, 303
\hrule 250, 258, 293, 304
\hrulefill 279, 281
1
\if@inlabel 160
\if@matched 60, 119, 127, 146
\if@tempswa 120, 121
\ignore 199, 201
ignore (environment) 194
\ignoreenv 200
\input 44, 290
\interlinepenalty 12, 25
\item 174
\itemindent 168
L
\labelsep 167
\labelwidth 166
\lastskip 76
\lccode 23, 24, 90, 91, 114, 133-135
\leavevmode 36, 50, 56, 146, 148
\leftmargin 161, 163
\leftskipvvvvvvin 14
\linewidth 263
\List ... 159
\listing 177
listing (environment) 2, 177
listing* (environment) 3
\listingindent 151, 153, 163, 298
\listinglist 151, 178, 187
listinglist (environment) 151
\listingsize ... 41, 155, 156, 179, 188
\listparindent 169
\lowercase 23, 24, 92, 114, 136
M
\makelabel 170
\matcher 60, 110
N
\newcount 232

24

\newdimen 27, 151
\newif 60
\newwrite 208
\noindent 277, 287, 294
\nointerlineskip 283, 285, 302
\number 233
(0]
\obeylines 15
P
\par 12, 48,
50, 57, 146, 148, 255, 272, 301, 307
\parfillskip 173
\parindent 153
\parsep 171
\parskip 286
\penalty 12
R
\raggedright 251
\raise 280
\rightmargin 165
S
\settabwidth 21, 27
\smallc..con... 156
\strut 273
\sv@demo 234, 245, 246
\sv@demo@i 235, 237
\sv@demoemp 254, 291, 300
\sv@demoname 232, 239, 290, 299
\sv@demosmp 247, 288, 297
\sv@dodemo 242, 247
\sv@endwrite 214, 219
\sv@ignore 194, 199
\sv@listing 180, 182, 191
\sv@nestcount 232, 233, 238
\sv@percent 80, 118
\sv@read 5, 108, 184, 197, 214
\sv@read®@i 115, 127, 130
\sv@read@ii 110, 117
\sv@readenv ... 132, 180, 199, 225, 245
\sv@readenv@i 139, 141
\sv@safespc 6, 103, 213
\sv@startlisting 11, 42, 183
\sv@stripspc 45, 74, 144
\sv@verbline 143, 184
\sv@vtab 23, 29
\sv@urite 208, 225, 230, 240
\sv@writefile 208,
217, 224, 227, 229, 230, 239, 241
\sv@writeline 214, 216
\svtab 27, 28, 32-34

\texttt 28
U

\unignoreenv 203

\unpenalty 75, 255

25

A%
\verbatim@font 18
\verbinput 4, 39, 299
\verbwrite 223
verbwrite (environment) 3, 223
\vinput@cr 24, 54
\vrule 284, 303

