
The examdesign class∗

Jason Alexander

2001/3/26

Abstract

A new class, examdesign, for LATEX2ε is defined. It provides several fea-
tures useful for designing tests or question sets: (1) it allows for an explicit
markup of questions and answers; (2) the class will, at the user’s request,
automatically generate answer keys; (3) multiple versions of the same test
can be generated automatically, with the ordering of questions within each
section randomly permuted so as to minimize cheating; (4) the generated an-
swer keys can be constructed either with or without the questions included;
and (4) some environments are provided to assist in constructing the most
common types of test question: matching, true/false, multiple-choice, fill-in-
the-blank, and short answer/essay questions

1 Description

Teaching is a rewarding and enjoyable profession, designing exams is not. Grading
exams is even worse, but for help with that last bit you’ll need more than a
LATEX class. This class file started out with a relatively simply goal: randomize a
collection of questions so that the author wouldn’t need to do it by hand. Since
then, it has grown in functionality and size and is now (I hope) a reasonably
complete general-purpose class for constructing exams and question sets.

2 Usage

To begin, simply create a new LATEX2ε document starting with

\documentclass{examdesign}

\begin{document}

If you want to create an exam in 12pt type, use \documentclass[12pt]{examdesign}
instead. If you need to load additional packages, they may be loaded via the com-
mand \usepackage as always. The class includes a number of packages included
with a standard LATEX distribution: keyval, multicol, and enumerate. If you don’t
have these packages, your LATEX distribution is nonstandard (or incomplete), and
you’ll have to grab these packages from the nearest CTAN site in order to use
examdesign.

Most exams/questions sets are split into sections according to the type of
question asked, and examdesign follows this practice. There are five environments

∗This file has version number v1.1, last revised 2001/3/26.

1

defined, one environment for each type of question: matching, shortanswer, true-
false, multiplechoice, and fillin. N.B. Previous versions of examdesign had starred
forms of these environments of well. The starred forms (as well as the fixed envi-
ronment, have been eliminated in this new release. Their functionality has been
incorporated into the standard environments.

All the environments are designed to make binding answers to questions easier.
This not only makes the job of writing the exam easier, but it allows the automated
generation of answer keys.

2.1 Switches

There are two ways to customize the output of the exam class: switches and special
formatting environments. Descriptions of the special formatting environments
(such as frontmatter, endmatter, etc.) can be found in section 3.1.

A switch is a single command that changes an internal parameter influencing
the overall formatting of the exam. Switches should be included in the preamble
because doing so will guarantee that they will apply to the entire exam. Putting
switches elsewhere may result in odd results because examdesign shuffles around
what you write quite a lot, and you won’t always know when a switch will be
executed.

One change between this release and previous releases is that all of the class
options unique to examdesign have been converted to switches for sake of consis-
tency.

Although the original reason behind writing examdesign was to automate the\NoRearrange

random rearranging of questions, people have pointed out that it would be nice
to turn off the feature (say, when writing the exam). The \NoRearrange switch
suppresses the rearrangement of questions. You can override this setting on a
section-by-section basis, though, by setting the correct environment option (see
the discussion of the options in section 2.2 for more details). In addition, see the
discussion of the \setrandomseed macro below for how to generate “randomly
rearranged” question sets in the same order across runs.

The switch \NoKey suppresses the generation of all answer keys, whereas\NoKey

\OneKey \OneKey generates an answer key for the first exam only.
The switch \BoldfaceCorrectMultipleChoiceAnswer identifies the correct\BoldfaceCorrectMultipleChoiceAnswer

\UnderlineCorrectMultipleChoiceAnsweranswer in multiple choice questions by using boldface text instead of placing a box
around the correct letter. The switch \UnderlineCorrectMultipleChoiceAnswer
identifies the correct answer in multiple choice questions by underlining. These
two switches are cumulative: including both in your exam will give you boldface
underlined answers (the order doesn’t matter). If neither one is specified, exam-
design will default to boxing the letter of the correct answer. This is shown in the
examples below.

Technical note: The ordinary LATEX2ε \underline command does not work
well when the underlined text spans several lines. Consequently, I’ve incorporated
the ulem package, written by Donald Arseneau, for underlining. Since this package
is embedded in this class, you do not need to load it again if you should need it.

The \NumberOfVersions macro takes a single numerical argument—the num-\NumberOfVersions

ber of different versions of the test to generate. Under the default settings, if you
request more than 26 versions of the test you will get an error. This is because
the forms are labelled according to letters of the alphabet, and LATEX2ε doesn’t
like it when you try to ask for the 27th letter of the alphabet. If you really need

2

more than 27 copies of an exam, you will need to use one of the special formatting
environments redefine the material inserted at the top of each exam and key.

The \class macro takes one argument: the name of the class to appear on\class

the exam. For example, \class{Math 205A: Set Theory} will cause the name of
the class to appear in the appropriate place (if you are using the default setting).

\examname takes one argument, just like \class. The argument is used to iden-\examname

tify the type of test. For example, \examname{Final Exam}, \examname{Midterm Exam},
\examname{Pop Quiz},. . .

\ConstantBlanks has one mandatory argument (a length). It tells TEX to\ConstantBlanks

typeset the underline in fill-in-the-blank environments using lines of a constant
length, regardless of the length of the correct word.

\ProportionalBlanks has one mandatory argument (a real number r). It tells\ProportionalBlanks

TEX to typeset the underline in fill-in-the-blank environments using lines that are
exactly r times the length of the correct answer when the correct answer is typeset
by TEX. The default setting is \ProportionalBlanks{1}. If you include both
\ConstantBlanks and \ProportionalBlanks in the preamble, the exam will be
typeset using whichever switch was last set.

\StudentInfoLineSpacing requires a length as its argument. This value is\StudentInfoLineSpacing

used to determine the amount of additional spacing between lines in the student
data box appearing in the upper right-hand corner of the exam. The default value
is 6pt. If you change the definitions these environments using examtop and keytop,
this command will have no effect.

This macro takes one argument, which can be any declarative font-changing\SectionFont

commands (i.e., \em rather than \emph). It changes the default font used to
typeset the section titles.

This macro takes no argument. It changes the default numbering behavior.\ContinuousNumbering

Instead of resetting the numbers at the start of each section, it will continue
the numbering from previous sections. (Notice that the matching and truefalse
environments are not affected by this, as they don’t number their questions.)

This macro takes no argument. It changes the way answer keys are typeset.\ShortKey

Basically, it will delete any question text, any instructions at the start of a block
of questions (or at the start of a section), and only print the answer.

This macro takes two arguments. For the shortanswer environment, the first\DefineAnswerWrapper

argument will always be inserted before the answer, and the second argument will
always be inserted after the answer.

This macro takes one argument, which specifies the default appearance of the\SectionPrefix

section number preceding each title. Its default setting is
\SectionPrefix{Section \arabic{sectionindex}. \space}

3

2.1.1 Summary of Switches

Switch Name Function
\NoKey Suppress all answer keys
\OneKey Generate only the first answer key, suppressing all others
\BoldfaceCorrectMultipleChoiceAnswer See above
\UnderlineCorrectMultipleChoiceAnswer See above
\NumberOfVersions specify number of exams to make
\class Class data (E.g., “Philosophy 29”)
\examname Exam name (E.g., “Midterm Exam”)
\ConstantBlanks See above
\ProportionalBlanks See above
\StudentInfoLineSpacing Set spacing in data box
\SectionFont Change section font
\ContinuousNumbering Change numbering style
\ShortKey Change key formatting
\DefineAnswerWrapper Change tags surrounding answers
\SectionPrefix Change the appearance of the section number

2.2 Environments

There has been a significant change in the environments between this version of
examdesign and earlier versions. In this version, all question environments can
take an optional single argument which can be used to set a number of different
parameters. (Before, the optional argument was used to set the title for a section.)
Exams written for the previous version will have to be updated to work with the
new version. Sorry.

The options available for each section are:

4

Name Function
title Specifies the title for each section. When no title is speci-

fied, no section number is displayed (giving an entirely blank
header before the section). However, the section instruc-
tions will still be printed. If you would like a section num-
ber without a title, simply give a blank space for the title,
or use \relax, as in title={ } or title={\relax }.

rearrange This option takes one of two values, either yes or no. If
yes,then the questions in that section are randomly re-
arranged; if no, then questions in that section appear in
the order in which they are written. This option works for
all environments (and hence replaces the old fixed environ-
ment).

resetcounter This option takes one of two values, either yes or no. If
yes, then the question numbers for that section start at 1,
overriding the \ContinuousNumbering switch. If no, then
the question numbers for that section will not be reset. This
gives you section-level control over the numbering.

keycolumns This option should be set to a number. It specifies the
number of columns that should be used when typesetting
the section in the answer key. For example, if you use the
\ShortKey switch to only include the correct answer for
multiple-choice questions, each answer takes up very little
space on the line. If you have 40 questions, it would take
40 lines—a waste of paper. Setting keycolumns=5 would
typeset the answer key using 5 columns, requiring only 8
lines for the answers. The section instructions will not be
typeset in columns, but will span the width of the page,
instead. Note that it is very easy to get overfull/underfull
box messages with this option (and the next).

examcolumns Same as above, except it affects the exam.
suppressprefix Can be set to either yes or no. If yes, it suppresses the

section prefix for that particular section; if no, the prefix
will appear as always. This option replaces the starred en-
vironments in the the previous release.

2.2.1 The fillin environment

This environment is for fill-in-the-blank questions. The syntax is:

\begin{fillin}[title={Insert title here}]

\begin{question}

How much \blank{wood} could a \blank{woodchuck} chuck if a woodchuck could

\blank{chuck} wood?

\end{question}

\end{fillin}

When typeset using \ProportionalBlanks, the questions will be printed in the
exam as:

1. How much could a chuck if a woodchuck could wood?

but in the answer key as:

5

1. How much wood could a woodchuck chuck if a woodchuck could chuck wood?

2.2.2 The shortanswer environment

The shortanswer environment does not format its questions in any way other than
enumerating them. (It is then a catch-all environment for any other type of ques-
tion.) It does allow the group of answers with questions. Including an answer is
not mandatory (but you will get errors if you do not include an answer and ask
for a \ShortKey). The general syntax is:

\begin{shortanswer}[title={Interesting questions...},

rearrange=yes]

\begin{question}

State Hobbes’ definition of the state of nature and the role it plays in

his social philosophy.

\begin{answer}

The state of nature is\ldots

\end{answer}

\end{question}

\begin{question}

State several examples that seem to illustrate that Mill’s theory of

Utilitarianism cannot be followed in practice, and explain why.

Afterwards, state Mill’s response to the problems you raised.

\begin{answer}

Often times it appears we need to act on our moral instincts without

taking time to deliberate (as in the case of saving a drowning child).

According to Mill, though, it seems that before each moral action we

ought to deliberate in order to be sure that the action we take is such

as to maximize the overall general utility\ldots

\end{answer}

\end{question}

\end{shortanswer}

Note that the answer environment appears inside the question environment.
In the exam, this will be typeset as:

1. State Hobbes’ definition of the state of nature and the role it plays in his
social philosophy.

2. State several examples that seem to illustrate that Mill’s theory of Utilitar-
ianism cannot be followed in practice, and explain why. Afterwards, state
Mill’s response to the problems you raised.

The answer key, in normal form with the default definition of \DefineAnswerWrapper,
will appear as:

1. State Hobbes’ definition of the state of nature and the role it plays in his
social philosophy.

Answer: The state of nature is. . .

2. State several examples that seem to illustrate that Mill’s theory of Utilitar-
ianism cannot be followed in practice, and explain why. Afterwards, state
Mill’s response to the problems you raised.

6

Answer: Often times it appears we need to act on our moral instincts with-
out taking time to deliberate (as in the case of saving a drowning child).
According to Mill, though, it seems that before each moral action we
ought to deliberate in order to be sure that the action we take is such
as to maximize the overall general utility. . .

If you specify a \ShortKey, only the answers will be presented:

1. Answer: The state of nature is. . .

2. Answer: Often times it appears we need to act on our moral instincts with-
out taking time to deliberate (as in the case of saving a drowning child).
According to Mill, though, it seems that before each moral action we
ought to deliberate in order to be sure that the action we take is such
as to maximize the overall general utility. . .

2.2.3 The truefalse environment

True/false questions. The general syntax is:

\begin{truefalse}

\begin{question}

\answer{False} Laden swallows fly faster than unladen swallows,

especially if they carry coconuts.

\end{question}

\begin{question}

\answer{True} Quantum mechanics was first stated using the

mathematical tools of Hilbert spaces by John von~Neumann.

\end{question}

\end{truefalse}

Again, note that the answer environment appears within the question environ-
ment. The above will be typeset in the exam as:

Laden swallows fly faster than unladen swallows, especially if they carry
coconuts.

Quantum mechanics was first stated using the mathematical tools of
Hilbert spaces by John von Neumann.

It will be typeset in the answer key as:

False Laden swallows fly faster than unladen swallows, especially if they carry
coconuts.

True Quantum mechanics was first stated using the mathematical tools of
Hilbert spaces by John von Neumann.

2.2.4 The multiplechoice Environment

It isn’t difficult to format multiple choice questions in ordinary LATEX with multiply
nested enumerate’s, but this environment provides for a simpler entry scheme, and
the answer key can indicate the correct answer. The syntax is:

\begin{multiplechoice}

7

\begin{question}

How much wood could a woodchuck chuck if a woodchuck could chuck wood?

\choice{A lot.}

\choice{More than most.}

\choice{Exactly π cords.}

\choice[!]{It depends on the nature of the woodchuck.}

\end{question}

\end{multiplechoice}

In the exam, this is typeset as:

1. How much wood could a woodchuck chuck if a woodchuck could chuck
wood?

(a) A lot.
(b) More than most.
(c) Exactly π cords.
(d) It depends on the nature of the woodchuck.

In the answer key, if neither of the options mcbold nor mcunderline were given,
the answer will be typeset as:

1. How much wood could a woodchuck chuck if a woodchuck could chuck
wood?

(a) A lot.
(b) More than most.
(c) Exactly π cords.

(d) It depends on the nature of the woodchuck.

You can have up to 26 choices. Also, notice that the correct answer was specified
by giving the optional argument [!] to \choice.

2.2.5 The matching environment

This environment is new in this release of examdesign. It provides an environment
for the creation of matching tests. The syntax is:

\begin{matching}[title={Some matching questions}]

\pair{John Steinbeck}{\emph{The Grapes of Wrath}}

\pair{Will Self}{\emph{My Kind of Fun}}

\pair{Charles Darwin}{\emph{The Origin of Species}}

\end{matching}

In the exam, this will be typeset as:

Will Self

Charles Darwin

John Steinbeck

(a) The Origin of Species

(b) The Grapes of Wrath

(c) My Kind of Fun

In the answer key, this will be typeset as:

8

(c) Will Self

(a) Charles Darwin

(b) John Steinbeck

(a) The Origin of Species

(b) The Grapes of Wrath

(c) My Kind of Fun

The \pair macro preceeds the matched pair of statements. The environment
will randomly shuffle the first and second columns in order to create the (hope-
fully randomized) lists. Because of the way the randomizer is implemented, this
environment will produce better results (i.e., more scrambled) results the longer
the list of questions is.

N.B. The block environment will break badly in this environment, so don’t
use it.

2.2.6 The block environment

The block environment lets you identify a group of questions, as well as some
preceeding text, as a “block” that should be kept together even though the rest of
the section gets rearranged. (The questions inside the block will not be rearranged.
That’s on my to-do list, but it will take more time than I have, and it’s already
been a long time since the last update.)

The syntax is straightforward. For example:

\begin{block}

Here is a spot where you can put some instructions, a graph, or whatever

you want to preceed the questions in this block.

\begin{question}

This is the first question.

\begin{answer}

This is the answer to the first question.

\end{answer}

\end{question}

\begin{question}

This is the second question.

\begin{answer}

This is the answer to the second question.

\end{answer}

\end{question}

\begin{question}

This is the third question.

\begin{answer}

This is the answer to the third question.

\end{answer}

\end{question}

\end{block}

Will keep those three questions together when the rearranging happens.
The block environment may be used in any of the previously described question

environments, except for the matching environment. (There were some problems
with using blocks inside some of the other environments with earlier versions—I
believe those bugs have been fixed.)

9

The block environment can take a special optional argument, questions, that
specifies the number of questions in the block. Specifying this option sets two
counters, first and last, so that you can refer to the particular questions that
fall within the block in the instructions. So, for example:

\begin{block}[questions=3]

\noindent For questions \thefirst--\thelast, consider the following data...

would, if the block appeared after question 13, be typeset as:

For questions 14–16, consider the following data...

In previous versions of examdesign, blocks were typeset indented from the left
margin. This was undesireable because the block instructions could be misread
as belonging to the end of the preceeding question. As of this version, block
instructions are typeset using no such indent.

3 Special Formatting Tools

The following environments, macros, and length parameters allow the user to
customize virtually every aspect of the exam. As I describe below, the default
settings of the examdesign are defined using these environments.

3.1 Special Formatting Environments

Any material enclosed in the frontmatter environment will be typeset on a page (orfrontmatter

pages) by itself before the exam (and the key, too). For example, if one wanted to
make a cover sheet for the exam with the class name and a place for the student
to write their name, i.d. number, and so forth.

Any material enclosed in the endmatter environment will be typeset on a pageendmatter

(or pages) by itself after the exam (and the key, too). For example, if one wanted
to place a page with several important equations, constants, and tables at the end
of the exam for students to reference, if needed.

Any material enclosed in the examtop environment will be typeset on the nextexamtop

page following the frontmatter text, if an exam is being created, and will be omitted
if an answer key is being created. The default settings of the examdesign class use
this environment to create the area for the class name, student name, etc. as
follows:

\begin{examtop}

\@@line{\parbox{3in}{\classdata \\

\examtype, Form: \fbox{\textsf{\Alph{version}}}}

\hfill

\parbox{3in}{\normalsize \namedata}}

\bigskip

\end{examtop}

Where \classdata and \examtype are macros that use the current values assigned
by the switches \class and \examname.

The definition of \namedata is:

\def\namedata{Name: \hrulefill \\[\namedata@vspace]

10

Student Number: \hrulefill \\[\namedata@vspace]

TA: \hrulefill \\[\namedata@vspace]

Date: \hrulefill}

Where \namedata@vspace is the length set by the switch \StudentInfoLineSpacing.
For those who don’t know, \@@line is the LATEX2ε equivalent of Plain TEX’s

\line command. If you wish to use \@@line in defining your own examtop or
keytop, please be sure to use \makeatletter and \makeatother in the appropriate
places, otherwise you could get errors.

Any material enclosed in the keytop environment will be typeset on the nextkeytop

page following the frontmatter text, if a key is being created, and will be omitted
if an exam is being created. The default settings of the examdesign class use this
environment to create the top of an answer key as follows:

\begin{keytop}

\@@line{\hfill \Huge Answer Key

for Exam \fbox{\textsf{\Alph{version}}}\fi \hfill}

\bigskip

\end{keytop}

Any material enclosed in the exampreface environment will be typeset on theexampreface

same page as the examtop text, right beneath it but before any sections of the
exam are included. In case you are wondering what this environment does that
cannot be done with examtop, your question is very good. The difference is this:
The material enclosed in the exampreface environment is sensitive to whether the
twocolumn option was given. If the twocolumn option was given, then the material
in exampreface will be typeset at the start of the first column. By contrast, the
material given in examtop is always typeset in a single column spanning the entire
textwidth of the page, at the top of the exam.

Any material enclosed in the keypreface environment will be typeset on thekeypreface

same page as the keytop text, right beneath it but before any sections are included.
As described above, if the twocolumn option was given, then the material in
keypreface will be typeset at the start of the first column. By contrast, the material
given in keytop is always typeset in a single column spanning the entire textwidth
of the page, at the top of the key.

Essentially the same as the exampreface environment, with the obvious changeexamclosing

that the enclosed material is typeset at the end of the exam, on the same page
as the rest of the exam (if possible), but before the endmatter. (Any material
enclosed in an endmatter environment is typeset on a page by itself after the exam
or key.)

Essentially the same as the keypreface environment, with the obvious changekeyclosing

that the enclosed material is typeset at the end of the key, on the same page as
the rest of the key (if possible), but before the endmatter.

3.2 Special Formatting Macros

Due to the special way the examdesign class constructs a document (see the tech-
nical notes in section 4), several special macros are provided which enable the user
to easily take advantage of the way exams are constructed. In addition, there are
several lengths which the user can modify to further customize the appearance of
the exam.

The \exam macro takes one argument, which can be any command or sequence\exam

11

of commands subject to the constraints described in the technical notes. The
argument will be included wherever it is if and only if an exam is being made,
otherwise the argument will be ignored.

The \key macro takes one argument, which can be any command or sequence\key

of commands subject to the constraints described in the technical notes. The ar-
gument will be included wherever it is if and only if a key is being made, otherwise
the argument will be ignored.

Just like the ordinary LATEX command \vspace, with the exception that the\examvspace

vertical space is included if and only if an exam is being typeset.
Just like the ordinary LATEX command \vspace*, with the exception that the\examvspace*

vertical space is included if and only if an exam is being typeset.
Just like the ordinary LATEX command \hspace, with the exception that the\examhspace

horizontal space is included if and only if an exam is being typeset.
Just like the ordinary LATEX command \hspace*, with the exception that the\examhspace*

horizontal space is included if and only if an exam is being typeset.
Just like the ordinary LATEX command \hspace*, with the exception that the\keyvspace

horizontal space is included if and only if a key is being typeset.
Just like the ordinary LATEX command \hspace*, with the exception that the\keyvspace*

horizontal space is included if and only if a key is being typeset.
Just like the ordinary LATEX command \hspace*, with the exception that the\keyhspace

horizontal space is included if and only if a key is being typeset.
Just like the ordinary LATEX command \hspace*, with the exception that the\keyhspace*

horizontal space is included if and only if a key is being typeset.
The last new command (in version 1.02) is \word. This command allows the\word

user to insert inessential changes in the wording of a question between various
versions of the exam. Thus, not only will the order of the questions be different,
but the actual wording of the questions will be slightly different as well. For
example, if one includes:

\begin{question}

Is the most well-known \word{{astronomer} {wrestler} {physicist}} in

the world \word{{Carl Sagan} {Rowdy Roddy Piper} {Albert Einstein}}?

\end{question}

in an exam, the first version of the exam will include the question

1. Is the most well-known astronomer in the world Carl Sagan?

but the second version of the exam will include

1. Is the most well-known wrestler in the world Rowdy Roddy Piper?

and the third version of the exam will include

1. Is the most well-known physicist in the world Albert Einstein?

Let’s call the argument of \word an option-list. If one requests more ver-
sions of an exam than options in an option-list, \word will behave as if the
option list you gave “wrapped.” That is, if one requests five copies of an
exam but includes \word{{A} {B}} in the input file, A will be printed on the
fifth version of the exam, because \word will act as if the option list was
\word{{A} {B} {A} {B} {A} {B}}, where A is the fifth option.

12

If it turns out that your exams are becoming absolutely unreadable through
excessive use of \word, chances are you are not introducing inessential changes in
the wording of a question, but are actually trying to write two different exams
simultaneously.

3.3 Length Parameters

The following table describes lengths that the user may set to whatever value they
wish, and the effect that it has upon the appearance of the exam (or key).

Length Initial Value Effect
\beforesectsep \medskipamount Space inserted before the cur-

rent section heading.
\aftersectsep \medskipamount Space inserted after the cur-

rent section heading.
\beforeinstsep \medskipamount Space inserted before any in-

structions for the current sec-
tion are typeset.

\afterinstsep \medskipamount-\topsep Space inserted after the in-
structions for the current sec-
tion but before the questions.

Given the above parameters, there are two rules that determine whether space
is inserted. (1) If the section heading is empty (as might happen if someone used a
starred environment form and then did not include any optional argument), then
neither \beforesectsep nor \aftersecsep are used to insert vertical space, and
(2) if there are no instructions for a section, then neither \beforeinstsep nor
\afterinstsep are used to insert vertical space.

4 Miscellaneous Goodies

The \setrandomseed macro allows you to specify a random seed at the start of\setrandomseed

an exam. This allows you to have a “randomized” exam that keeps questions in
the same scrambled order across different runs. If you set the random seed, it
becomes possible to have crossreferences in the exam. In this release, the ordinary
LATEX commands \label and \ref work as expected, even across different forms
of the test (with the questions in a different order).

Math environments using numbered equations should also work correctly in
this version.

Having fixed the order of the questions, you might need to introduce a page-\pagebreak

breaks at certain points. In this release, the \pagebreak command works as
expected, with one caveat. Putting a \pagebreak before a section will introduce
a pagebreak before that section, and putting a \pagebreak before a question will
introduce a pagebreak before that question—no matter where on the page that
question may be.

If you want to insert pagebreaks before questions or sections conditionally on\BreakPageOnVersion

the exam, you will need to use the \BreakPageOnVersion{} macro. This macro,
which takes a number as its argument, will conditionally insert a \pagebreak

13

depending on whether number of the version currently being typeset equals the
version given as an argument to the macro.

If you need to use any environment which changes the catcodes of the input\IncludeFromFile

\InsertChunk

chunk

characters (such as the verbatim environment, or XY-pic), you will have to em-
ploy the following hack. The reason for this has to do with the way examdesign
scrambles the order of the questions. (Basically, each question is saved to a macro
for later recall. This assigns each character a catcode when it is saved, so it is not
possible to change the catcode at a later time.)

The hack is the following: create another file called “foo.tex” (you can name it
whatever you like) and put \IncludeFromFile{foo.tex} in the preamble of your
document. For each bit of text that you need contained category code changes
(like the verbatim environment) put, in foo.tex, a named chunk containing that
code. I.e.,

\begin{chunk}{chunk name}
\begin{verbatim}
This is some verbatim text
This is more verbatim text

\end{verbatim}
\end{chunk}

At the appropriate place in your exam, place \InsertChunk{chunk name}. This
macro inserts the named chunk into the exam (or key) at that place. All catcode
changing commands, environments, etc., should be capable of being inserted this
way. (If you find one that doesn’t, let me know.)

All of the chunks for a given exam can be stored in the same file—you just need
to give each chunk a unique name. Only the chunk you request will be inserted at
a particular point. If you have a lot of chunks, this can slow down considerably
the overall processing of the exam, but there’s no other general solution which will
work.

The chunk names can be descriptive, but don’t try anything too fancy. “Too
fancy” meaning: if it causes an error, it’s too fancy.

4.1 Bugs

No known bugs.

4.2 Changes

The changes between this version and previous versions are indicated in the above
sections. Early releases of the examdesign class required that instructions for a
given section be specified as such by using the \instructions command. The
need for using \instructions has been lifted as of release 1.02. The rule is this:
all material between the start of a section and the first \begin{question} or
\begin{block} will be taken to be the instructions for that section. Old ex-
ams created with \instructions should still work with the new release (the
\instructions macro has simply been redefined as \relax).

Thus, if you are using fixed to format a series of essay questions, you might want
to tell students that they only need to write answers to two of the following three
questions. The instruction text is always typeset at the beginning of a section,
before any questions are typeset.

14

