The comment package®

Victor Eijkhout
victor@eijkhout.net

August 2016

1 Purpose:

Selectively in/exclude pieces of text: the user can define new comment versions,
and each is controlled separately. Special comments can be defined where the user
specifies the action that is to be taken with each comment line.

Plain TEX support has been phased out.

As of 3.8 the package will increasingly use eTEX features, for instance to solve
Unicode support issues.

2 Usage:

The ‘comment’ environment is defined by default: all text included between
\begin{comment}

\end{comment}

is discarded.

The opening and closing commands should appear on a line of their own. No starting
spaces, nothing after it. This environment should work with arbitrary amounts of
comment, and the comment can be arbitrary text.

Other ‘comment’ environments are defined by and are selected/deselected with

\includecomment{versiona}
\excludecoment{versionb}

These environments are used as
\begin{versiona}

\end{versiona}

with the opening and closing commands again on a line of their own.

Note: for an included comment, the \begin and \end lines act as if they don’t exist.
In particular, they don’t imply grouping, so assignments &c are not local.

Trick for short in/exclude macros (such as \maybe{this snippet}):

* This manual corresponds to comment v3.8 of July 2016.

mailto:victor@eijkhout.net

\includecomment{cond}
\newcommand{\maybe} [1]{}
\begin{cond}
\renewcommand{\maybel} [1]{#1}
\end{cond}

3 Special comments

It is possible to make highly customized versions of the comment environment.
Special comments are defined as

\specialcomment{(name)}{(before commands)}{(after commands)}

where the second and third arguments are executed before and after each comment
block. You can use this for global formatting commands.

To keep definitions &c local, you can include \begingroup in the ‘{before commands)’
and \endgroup in the ‘(after commands)’.
Example:

\specialcomment{smalltt}
{\begingroup\ttfamily\footnotesize}{\endgroup}

Special comments are automatically included.

The comment environments use two auxiliary commands. You can get nifty special
effects by redefining them.

3.1 The cutfile

The commented text is written to an external file, the ‘cutfile’. Default definition:
\def\CommentCutFile{comment.cut}

Included comments are processed like this:
\def\ProcessCutFile{\input{\CommentCutFile}\relax}

and excluded files have
\def\ProcessCutFile{}

. By redefining the name of the cutfile, the value of the macro \ommentCutFile,
it becomes possible to have nested comment environments.
. If you are writing a textbook, you could have the answers to exercises in your

source, but write them to file rather than formatting them:
\generalcomment{answer}
{\begingroup
\edef\tmp{\def\noexpand\CommentCutFile
{answers/\chapshortname-an\noexpand\arabic{excounter}.tex}}\tmp
\def\ProcessCutFile{}}
{\ifIncludeAnswers \begin{quote}
\leavevmode
\hbox{\kern-\unitindent
\textbf Solution to exercise \arabic{chapter}.\arabic{excounter}.\hspace{lem}]
\ignorespaces\it
\input{\CommentCutFile}
\end{quote}\fi
\endgroup}

3.2 Comment inclusion

The inclusion of the comment is done by \ProcessCutFile, so you can redefine
that:

\specialcomment
{mathexamplewithcode}
{\begingroup\def\ProcessCutFile{}} % argl
{\verbatiminput{\CommentCutFile} 7% arg2
\endgroup
This gives:
\begin{equation} \input{\CommentCutFile} \end{equation}
}

The idea here is to disable inclusion of the file, but include it in the after commands,
in display math.

3.3 Processing each line

You can also apply processing to each line. By defining a control sequence
\def\Thiscomment##1{...}

in the before commands the user can specify what is to be done with each comment
line. If something needs to be written to file, use \WriteCommentLine{the stuff}
Example:

\specialcomment
{underlinecomment}
{\def\ThisComment##1{\WriteCommentLine{\underline{##1}\par}}
\par}
{\par}

3.4 More examples

\newcount\comlines

\specialcomment{countedcomment}

{\comlines=0\relax \def\ProcessCutFile{}/
\def\ThisComment##1{\global\advance\comlinesi\relax}}
{**Comment: \number\comlines\ line(s) removed**}

\specialcomment

{underlinecomment}

{%
\def\ProcessCutFile{\input{\CommentCutFile}\relax}
\def\ThisComment##1{\WriteCommentLine{u: \underline{##1}\parl}}
\par

}

{\par}

4 Unicode support

Unicode support works if you use eTgX, which is for instance the case if you use
pdflatex. You need the following lines:

\usepackage [T1]{fontenc}
\usepackage [utf8]{inputenc}

in your preamble.

5.2

5.3

5.7

Change log
Changes in version 3.1

updated author’s address

cleaned up some code

trailing contents on \begin{{env)} line is always discarded even if you’'ve done
\includecomment{(env)}

comments no longer define grouping!! you can even
\includecomment{env}

\begin{env}

\begin{itemize}

\end{env}

Isn’t that something. ..

included comments are written to file and input again.

Changes in 3.2
\specialcomment brought up to date (thanks to Ivo Welch).

Changes in 3.3

updated author’s address again
parametrised \CommentCutFile

Changes in 3.4

added GNU public license
added \processcomment, because Ivo’s fix (above) brought an inconsistency
to light.

Changes in 3.5

corrected typo in header.

changed author email

corrected \specialcomment yet again.

fixed excludecomment of an earlier defined environment.

Changes in 3.6

The ‘cut’ file is now written more verbatim, using \meaning; some people
reported having trouble with ISO latin 1, or umlaute.sty.
removed some \newif statements. Has this suddenly become \outer again?

Changes in 3.8

T1 font encoding is now supported. See t1test.tex.

	 Purpose:
	 Usage:
	 Special comments
	 The cutfile
	 Comment inclusion
	 Processing each line
	 More examples

	 Unicode support
	 Basic approach of the implementation:
	 Change log
	 Changes in version 3.1
	 Changes in 3.2
	 Changes in 3.3
	 Changes in 3.4
	 Changes in 3.5
	 Changes in 3.6
	 Changes in 3.8

