The cjwplain Package™
(PLAINTEX under KTEX 2¢)

Colin J. Wynnef

1998/08/31

Contents
1 Package Options 3
1.1 Regular Options . . . . .. ... ... .. . 3
1.2 Special Options . . . . . .. ... L 4
2 The Code 4
2.1 Declarations . . . . . . . . ... ... 4
2.2 Allocation Calls: outerallocs . . . . . . . ... ... ... .. .... 6
2.3 Error Processing: diagnostics . . . . .. .. ... .. 6
2.4 Skips: plainskips . . . . ... Lo 6
2.5 Fonts. . . . . . .. 7
2.6 The \line Macro: strictline . . . . . .. .. ... .. ... ..... 7
2.7 Tab Alignments: tabbing . . . . . .. ... ... .. oL 7
2.8 Ttemising: strictitem . . . . .. ... ..o 8
2.9 Miscellaneous . . . . . . .. Lo 9
2.9.1 Sectioning . . . . . ... 9
2.9.2 Proclamations . .. ... ... ... ... ... ... 9
2.9.3 Paragraph Formatting . . . . . . ... ... ... ... .. 9
2.9.4  Accents and Miscellaneous . . . . . . . ... ... 10
2.9.5 Ending the Document . . . . . ... .. ... ... ..... 10
2.9.6 Math Commands . . . . . ... ... ... ... ... ... 10
2.10 Math Alignment: eqalign . . . . . . . . ... .. oL 11
2.11 Output Routine: plainoutput . . . . . . . .. ... .. .. ... ... 11
2.11.1 Page Numbering, Running Heads and Miscellaneous . . . . 13
2.11.2 Imsertions . . . . . . . . . . . 14
2.11.3 Footnotes: srictfootnotes, altfootnotes . . . . . . . . . .. .. 14
2.11.4 Magnification: magnification . . . . . . . ... ... ... 15

Introduction

I first started using TEX some two-and-a-half years ago, having been introduced
to it by several TEXnophiles in my college math department. I was aware from the

*This file has version 1.2.
TE-Mail at: cwynne@brutus.mts. jhu.edu, cwynne@jhu.edu .



start that there was a somehow ‘bastardised’ version of this very good program
which went by the name ‘INTEX’—invariably referred to by my TEX mentors as
‘LameTEX’. Most of you have probably heard this epithet before.

Well, I count it as a good thing that I was discouraged from using BTEX at
first, as I ended up writing quite a lot of TEX code for myself before I ever got
around to actually reading The TgXbook in its entirety, which I did only a few
months ago. My first real project for TEX was writing a large macro set for my
undergraduate thesis—table of contents, marks for the running heads, chapter
and section delineation and so forth. This growing library was expanded as I
decided I wanted a good set of macros for writing outlines and by requirements for
various papers, such as using endnotes in lieu of footnotes. This rather haphazard
collection of mine underwent a major change when I found the macro package for
NFSS (version 1) under PLAIN TEX, of which I promptly took advantage.

This year I finally got my own computer, mainly to run TEX. Given my newly
purchased copy of The TgXbook and some free time, I began to try to organise
that cluster of code. Having learned something in the meanwhile about generic
markup, and why it is preferable, I started rewriting for more generalisation. Also
in the meanwhile, WTEX 2¢ had come along, greatly enhancing ITEX’s own use of
generic markup. It also standardised the NFSS, which I had so come to appreciate.
Basically, between the various chunks of IATEX 2¢ which I had already hacked to
work under my custom format and the movement towards increasingly generic
code by both myself and the I TEX folks, that a convergence was taking place, so
I finally decided to give IMTEX 2¢ a serious looking-at.

I started by printing out the documented source code. I liked a lot of what I
saw—but there were two problems. Some of my favourite bits of PLAIN TEX got
left by the wayside. For doing a lot of mathematics, I still find \eqalign to be the
easiest way of aligning a bunch of related equations. First, it involves less typing
than a \begin...\end pair, and I don’t often need equation numbers—something
not easily done away with under vanilla IZTEX. The bigger concern was that I had
a bunch of source files that were written under PLAIN TEX (or, rather, under my
PraiN TgX), and I didn’t want to have to make the dozens of minor modifications
necessary to get them to work under KTEX.

So, I decided to learn how IXTEX does things and to do so by writing
a package that would, at its simplest, let me add a \documentclass and a
\begin{document} line to one of my existing PLAIN TEX sourc files and get it
to compile under BTEX.

Thus, I have written my first ITEX package. I consider the main feature to
be the ability to very easily add NFSS commands to a document written under
PLAIN TEX. Secondly, maybe it will help convince some other PLAIN TEX die-
hards to give INTEX a try, inasmuch as all of their standard commands will be
supported. Finally, it should let those who use IMTEX exclusively to easily deal
with PLAIN TEX files if the need arises.



Options

Feel free to let me know if you find this package useful or, of course, if you find
any bugs or wish to suggest improvements.

This Package

This package is built over the file 1tplain.dtx, or, more correctly, over those parts
of 1tplain.dtx which were changes to or omissions of the original PLAIN TEX
source. Some parts, specifically font changes, have not been reproduced in their
entirety, due basically to the fact that such would be a pointless exercise. See the
comments in Section 2.5 for the explanation.

Finally, this document prints with all source code because I feel the source
itself, and the modifications to it, are the best documentation.

1 Package Options

According to the documented ETEX 2¢ source file 1tplain.dtx,

ETEX includes almost all of the functionality of Knuth’s original ‘Basic
Macros’ That is, the plain TEX format described in Appendix B of the

TEXBook.

It seems to me that removing the qualifying ‘almost’ would be no bad thing.

The idea behind the available options is that a given user may need only certain
aspects of PLAIN TEX added back in for a document. Furthermore, the additional
code can sometimes be specified in different ways—i.e., either strictly according to
the definitions of PLAIN TEX or in a manner syntactically identical to PLAIN TEX
but functionally grounded in IXTEX. The overall goal, though, is completeness;
I have therefore included everything, in one form or another, even when I can’t
think of a reason why some things would be necessary.

There are nineteen regular and two special options available for the cjwplain
package. (All are entered in standard I¥TEX form, as optional arguments to the
\usepackage command. I only call two of them ‘special’ so as to draw attention
to them.)

1.1 Regular Options

The regular options are:

outerallocs diagnostics plainskips
outerallocsoff ~ diagnosticsoff plainskipsoff
strictline tabbing strictitem
strictlineoff tabbingoff strictitemoff
eqalign magnification plainoutput
eqalignoff magnificationoff  plainoutputoff
strictfootnotes altfootnotes footnotesoff

Note that most of these options come in (option)/{option)off pairs. These are
particularly useful in conjunction with the special options (1.2) or to toggle the
default options. By default, the options diagnostics, tabbing and eqalign are
active (just what I tend to use...).



none
all

The actual options will be explained in section 2. Keep in mind, though, that
some options affect others—for example selecting one of strictfootnotes and
altfootnotes will automatically turn the other off; you can, however, disable both
forms either with footnotesoff or by giving the two separate ...off commands
separately. Also, plainoutput requires strictfootnotes and magnification,
but plainoutputoff itself does not disable the PLAIN TEX footnote macros or
magnification.

1.2 Special Options

Two options, called none and all, are available to allow maximum flexibility.
These function because cjwplain calls the starred command \ProcessOptions*
and therefore processes options in the order specified to \usepackage, and not
the package’s internal declaration order. Thus, to make only PLAIN TEX’s tabbing
commands available, one would use the call

\usepackage [none, tabbing] {cjwplain}

and to use everything while leaving I#TEX’s \item command alone one would enter
the command

\usepackage [all,strictitemoff]{cjwplain}

in the preamble.

2 The Code

2.1 Declarations

The options are implemented as \if statements, as that seemed to me to be the
easiest way of including or excluding relatively large sections of code. First we
allocate the \ifs.

1 (xpackage)

2 \newif\if@outerallocs \@outerallocsfalse

3 \newif\if@diagnostics \@diagnosticstrue

4 \newif\if@plainskips \@plainskipsfalse

5 \newif\if@strictline \@strictlinetrue

6 \newif\if@tabbing \@tabbingtrue

7 \newif\if@strictitem \@strictitemfalse

8 \newif\if@eqalign \@eqgaligntrue

9 \newif\if@strictfootnotes \@strictfootnotesfalse
10 \newif\if@altfootnotes \@altfootnotesfalse

11 \newif\if@plainoutput \@plainoutputfalse

12 \newif\if@magnification \@magnificationfalse
Now we declare how the options affect these \if tests.

13 \DeclareOption{outerallocs}{\@outerallocstrue}

14 \DeclareOption{outerallocsoff}{\@outerallocsfalse}
15

16 \DeclareOption{diagnostics}{\@diagnosticstrue}

17 \DeclareOption{diagnosticsoff}{\@diagnosticsfalse}



18

19 \DeclareOption{plainskips}{\@plainskipstrue}

20 \DeclareOption{planiskipsoff}{\@plainskipsfalse}
21

22 \DeclareOption{strictline}{\@strictlinetrue}

23 \DeclareOption{strictlineoff}{\@strictlinefalse}
24

25 \DeclareOption{tabbing}{\@tabbingtrue}

26 \DeclareOption{tabbingoff}{\@tabbingfalse}

27

28 \DeclareOption{strictitem}{\@strictitemtrue}

29 \DeclareOption{strictitemoff}{\@strictitemfalse}
30

31 \DeclareOption{eqalign}{\@eqaligntrue}

32 \DeclareOption{eqalignoff}{\@eqalignfalse}

We will have two possible ways of providing a \footnote command. As these
are mutually exclusive, we make sure that they cannot both be true.

33 \DeclareOption{strictfootnotes}{%

34 \@strictfootnotestrue \@altfootnotesfalse}

35 \DeclareOption{altfootnotes}{’%

36 \@altfootnotestrue \@strictfootnotesfalse}

37 \DeclareOption{footnotesoff}{%

38 \@altfootnotesfalse \@strictfootnotesfalse}

39

40 \DeclareOption{magnification}{\@magnificationtrue}

41 \DeclareOption{magnificationoff}{\@magnificationfalse}

To use PLAIN TEX's entire output routine will require that magnification code as
well as PLAIN TEX style footnotes be defined.

42 \DeclareOption{plainoutput}{%

43 \@plainoutputtrue \@strictfootnotestrue

44 \@altfootnotesfalse \@magnificationtruel}

45 \DeclareOption{plainoutputoff}{\@plainoutputfalse}

The two special options are given.

46 \DeclareOption{none}{%

47  \@outerallocsfalse \@eqgalignfalse

48 \@diagnosticsfalse \@plainskipsfalse
49 \O@strictfootnotesfalse\@strictlinefalse
50 \@altfootnotesfalse \@tabbingfalse

51 \@magnificationfalse \@strictitemfalse
52 \@plainoutputfalse}

53

54 \DeclareOption{all}{%

55 \@outerallocstrue \@eqgaligntrue

56  \@diagnosticstrue \@plainskipstrue

57 \@strictfootnotestrue\@strictlinetrue
58 \@altfootnotestrue \@tabbingtrue

59 \@magnificationtrue \@strictitemtrue
60 \@plainoutputtrue}

Finally we define a default option handling routine. I prefer only a warning as
opposed to an error.

61 \DeclareOption*{Y
62 \PackageWarning{cjwplain}{Unknown option ‘\CurrentOption’}}



\newcount
\newdimen
\newskip
\newbox
\newwrite
\newfam

Now that all the options are declared, we process them in the order specified in
the package call.

63 \ProcessOptions*

2.2 Allocation Calls: outerallocs

Originally PLAIN TEX had all allocation macros (\newcount, etc.) defined as
\outer. ITEX redefines several of them to be non-outer. Careful consideration
has failed to yield to me why these would need to be rewritten as \outer in
this package—any PLAIN TEX file which expects \outer definitions would not call
them in a non-outer position, and any other files would themselves have redefined
versions of the macros.

Since, however, it is such a small change, we will provide it. NOTE: Using the
outerallocs option will break a good deal of standard ITEX code, namely the
standard macros for counters and lengths. This means you probably do not want
to use it. It is here only for completeness’s sake.

64 \if@outerallocs

65

66 \outer\def\newcount{\alloc@0\count\countdef\insc@unt}
67 \outer\def\newdimen{\alloc@i\dimen\dimendef\insc@unt}
68 \outer\def\newskip{\alloc@2\skip\skipdef\insc@unt}

69

70 \outer\def\newbox{\alloc@4\box\chardef\inscQunt}

71 \outer\def\newwrite{\alloc@7\write\chardef\sixt@on}
72 \outer\def\newfam{\alloc@8\fam\chardef\sixt@@n}

73

74 \fi

2.3 Error Processing: diagnostics

Any PrLAINTEX afficianados using this package will feel more comfortable to
have the standard values for error processing information. One change, though.
ITEX 2¢ uses a counter named errorcontextlines, and not a count.

75 \if@diagnostics

76

77 \showboxbreadth=5

78 \showboxdepth=3

79 \setcounter{errorcontextlines}{5}
80

81 \fi

2.4 Skips: plainskips

When the plainskips option is selected, the three \...skip macros should un-
conditionally leave horizontal mode and insert a skip, like in PLAIN TEX.

82 \if@plainskips

83  \def\smallskip{\vskip\smallskipamount}

84 \def\medskip{\vskip\medskipamount}

85 \def\bigskip{\vskip\bigskipamount}

86 \fi



\line
\latex@line

2.5 Fonts

A package already exists whereby oldstyle font commands can be given, namely
oldlfont. Furthermore, one can use rawfonts, if necessary, to load in such
specific fonts as \ninebf, etc.

87 %\font\tenrm=cmri0 % roman text

88 %\textfont\ttfam=\tentt

2.6 The \1line Macro: strictline

Now we get to the first tricky part. The \line macro needs to be available to
the picture environment in IATEX, as well as restoring the original PLAIN TEX
definition for our usage here. The good news is that ITEX only uses \line
inside of the picture environment. So we employ the following solution: we keep
the definition of \@@line as per IATEX convention, and give in any case a user
accessible \plainline.

89 \let\plainline\@@line

90

91 \if@strictline

92

93 %\def\@@line{\hbox to\hsize} % Defined in |ltplain.dtx|

Now we define an internal name for the standard IXTEX macro and restore the
PrLaIN TEX definition.

94 \let\latex@line\line
95 \let\line\@@line

The definitions of \leftline, \rightline and \centerline can be left as is
(though users depending upon personal redefinitions of \1line for special effects
in these macros should simply put their redefinition into the macro \@@line).

96 %\def\leftline#1{\@@line{#1\hss}}

97 %\def\rightline#1{\@@line{\hss#1}}

98 %\def\centerline#1{\@@line{\hss#1\hss}}

Now we make a patch to the definition of \@picture (the workhorse macro for
the picture environment) which will restore the WTEX definition only within that
environment.

99 \def\@picture (#1,#2) (#3,#4){/,

100 \let\line\latex@line}

101 \@picht#2\unitlength

102 \setbox\@picbox\hbox to#l\unitlength\bgroup

103 \hskip -#3\unitlength

104 \lower #4\unitlength\hbox\bgroup
105 \ignorespaces}

106

107 \fi

2.7 Tab Alignments: tabbing

The tabbing macros from PLAIN TEX use the \newif construction, so must occur
at an \outer level. Thus, they are included in a separate package.



\cleartabs
\settabs
\tabalign
\+

\@@item
\plainitem

108 \if@tabbing
109 \InputIfFileExists{cjwpltab.clo}{}{%

110 \PackageWarning{cjwplain}{Option ‘cjwpltab.clo’ not found.}
111 \@tabbingfalse}
112 \fi

113 (/package)
114 (xtabbing)

KTEX may have it’s own tabbing environment, but I like PLAIN TEX’s. The
only potential conflict I saw was with the \+ macro. However, IATEX only defines
\+ inside of the tabbing environment itself, so there should be absolutely no
problem.

115 \newif\ifus@ \newif\if@cr

116 \newbox\tabs \newbox\tabsyet \newbox\tabsdone

117

118 \def\cleartabs{\global\setbox\tabsyet\null \setbox\tabs\null}
119 \def\settabs{\setbox\tabs\null \futurelet\next\sett@b}

120 \let\+=\relax ’ in case this file is being read in twice

121 \def\sett@b{\ifx\next\+\let\next\relax

122 \def\next{\afterassignment\s@tt@b\let\nextl}

123 \else\let\next\s@tcols\fi\next}

124 \def\s@tt@b{\let\next\relax\us@false\m@ketabbox}

125 \def\tabalign{\us@true\m@ketabbox} % non-\outer version of \+
126 \outer\def\+{\tabalign}

127 \def\s@tcols#1\columns{\count@#1 \dimen®@\hsize

128  \loop\ifnum\count@>\z@ \@nother \repeat}

129 \def\@nother{\dimen@ii\dimen@ \divide\dimen®@ii\count@

130 \setbox\tabs\hbox{\hbox to\dimen@ii{}\unhbox\tabs}}

131 \advance\dimen@-\dimen@ii \advance\count@\m@ne}

132

133 \def\m@ketabbox{\begingroup

134 \global\setbox\tabsyet\copy\tabs

135  \global\setbox\tabsdone\null

136 \def\cr{\@crtrue\crcr\egroup\egroup

137 \ifus@\unvbox\z@\lastbox\fi\endgroup

138 \setbox\tabs\hbox{\unhbox\tabsyet\unhbox\tabsdonel}}/,

139 \setbox\z@\vbox\bgroup\@crfalse

140 \ialign\bgroup&\t@bbox##\t@bbOx\crcr}

141

142 \def \t@bbox{\setbox\z@\hbox\bgroup}

143 \def\t@bb@x{\if@cr\egroup % now \box\z@ holds the column

144 \else\hss\egroup \global\setbox\tabsyet\hbox{\unhbox\tabsyet
145 \global\setbox\@ne\lastbox}} now \box\@ne holds its size
146 \ifvoid\@ne\global\setbox\@ne\hbox to\wd\z@{1}/

147 \else\setbox\z@\hbox to\wd\@ne{\unhbox\z@}\fi

148 \global\setbox\tabsdone\hbox{\box\@ne\unhbox\tabsdone}\fi

149 \box\z@}

150 (/tabbing)

151 (*package)

2.8 Itemising: strictitem

Now we have another problem, namely the \item macro. I unfortunately see no
way to get around the fact that \item is a general macro in KTEX, and that the



formats are completely different: i.e., PLAIN TEX expects the (label) to be the
one mandatory argument, whereas IWTEX’s \item macro takes the (label) as an
optional argument. Thus, the best I can think of is the following. We redefine
PrLaiN TEX’s \item after standard IXTEX practice,

152 \def\@@item{\par\hang\textindent}

and we \let it to something accessible in normal documents, the command
\plainitem.

153 \let\plainitem\@@item

The command \itemitem can be taken care of directly.

154 \def\itemitem{\par\indent \hangindent2\parindent \textindent}

Now a user will have to replace all occurrences of \item{foo} with either
\item[foo] or \plainitem{fool} (I imagine the choice will depend upon one’s
editor’s facilities with regexps...). It’s not perfect, but it’s the only way I can
think of to provide maximum compatibility. Of course, we will still give the
option, strictitem, of using just the original definition, but that will probably
not be terribly convenient for anyone trying to add ITEX features on top of an
existing PLAIN TEX source. Thus, we will also provide the (slightly longwinded)
replacement \latexitem.

155 \if@strictitem

156 \let\latexitem\item
157 \let\item\@Qitem
158 \fi

2.9 Miscellaneous
2.9.1 Sectioning

I have personally never used the PLAIN TEX \beginsection macro, but somebody
might have...

159 \outer\def\beginsection#1\par{\vskip\z@ plus.3\vsize\penalty-250

160  \vskip\z@ plus-.3\vsize\bigskip\vskip\parskip

161 \message{#1}\leftline{\bf#1}\nobreak\smallskip\noindent}

2.9.2 Proclamations

Once again we will leave KTEX’s NFSS based redefinition, this time for the
\proclaim command, in place.
162 %\outer\def\proclaim #1. #2\par{\medbreak

163 % \noindent{\bfseries#1.\enspace}{\slshape#2\parl}y
164 % \ifdim\lastskip<\medskipamount \removelastskip\penalty55\medskip\fi}

2.9.3 Paragraph Formatting

I have done some simple tests of KTEX’s \raggedright macro, and it seems to
me that it mimics the functionality of the PLAIN TEX macro of the same name.
Therefore I see no reason to redefine it as part of this package.

165 %\def\raggedright{%

166 % \rightskip\z@ plus2em \spaceskip.3333em \xspaceskip.b5em\relax}
Another BTEX font change will also be left as is.

167 %\def\ttraggedright{\reset@font\ttfamily\rightskip\z@ plus2em\relax}



2.9.4 Accents and Miscellaneous

These should work as is for PLAIN TEX documents.

168 %\def\_{\leavevmode \kern.O6em \vbox{\hrule \@width.3em}}
169 %\def\AA{\leavevmode\setbox0\hbox{h}\dimen@\htO\advance\dimen@-1exJ,
170 % \rlap{\raise.67\dimen@\hbox{\char’27}}A}

Nor do I see a reason to change these back to PLAIN TEX definitions.

171 %\def\pd#1{\oalign{#1\crcr\hidewidth\sh@ft{08}.\hidewidth}}

172 % \def\d{\protect\pd}

173 %

174 %\def\pb#1{\oalign{#1\crcr\hidewidth\sh@ft{29}/,

175 %\vbox to.2ex{\hbox{\char22}\vss}\hidewidthl}}

176 %\def\b{\protect\pb}

177 %

178 % \def\pc#1{\setbox\z@\hbox{#1}\ifdim\ht\z@=1ex\accent24 #1J,

179 % \else{\ooalign{\unhbox\z@\crcr\hidewidth\char24\hidewidth}}\fi}
180 %\def\c{\protect\pc}

181 %

182 %\def\pt#1{{\edef\next{\the\font}\the\textfontl\accent127\next#1}}
183 %\def\t{\protect\pt}

The KETEX definition of \1dots is more or less identical to the PLAIN TEX
macro \dots. So we will leave this alone, too.

184 %\def\dots{\1ldots}

These changes, as others before, only add functionality without seeming to
limit PLAIN TEX usage, so no change will be made.
185 %\def\hrulefill{\leavevmode\leaders\hrule\hfill\kern\z@}
186 %\def\dotfill{\leavevmode\cleaders
187 % \hbox{$\m@th \mkernl.5mu.\mkernl.5mu$}\hfill\kern\z@}
188 %
189 %\def\longrightarrow{\protect\@lra}
190 % \def\@lraf{\relbar\joinrel\rightarrow}
191 %\def\longleftarrow{\protect\@lla}
192 %  \def\@lla{\leftarrow\joinrel\relbar}

2.9.5 Ending the Document

We simply add the \bye macro back in, though the \end should be changed to
the BTEX \end{document}.

193 \outer\def\bye{\end{document}}

2.9.6 Math Commands

Operators and other math-mode font-related changes will be ignored with as other
NFSS alterations already mentioned.

194 %\def\log{\mathop{\rm log}\nolimits}

195 %\def\lg{\mathop{\rm 1lg}\nolimits}

196 %\def\deg{\mathop{\rm deg}\nolimits}

197 %\def\bmod{\mskip-\medmuskip\mkern5mu
198 % \mathbin{\rm mod}\penalty900\mkern5mu\mskip-\medmuskip}
199 %\def \pmod#1{\allowbreak\mkern18mu({\rm mod}\,\,#1)3}

10



\eqalign
\eqalignno
\leqgalignno

eqnarray*

\headline
\footline
\pageno
\folio

Various \matrix type command, including \bordermatrix and \cases have sim-
ilarly been rewritten for NFSS commands under IATEX.

2.10 Math Alignment: eqalign

If the eqalign option has been selected, we add \eqalign back in, as well
as related macros. Notice that we use the \@centering macro provided by
TEX, because ITEX itself reserves \centering. We also supply a user macro
\plaincentering in case such is needed.

200 \let\plaincentering\@centering

201

202 \if@eqalign

203

204 \def\eqalign#1{\null\,\vcenter{\openup\jot\m@th

205 \ialign{\strut\hfil$\displaystyle{##}$&$\displaystyle{{}##}$\hfil

206 \crcr#i\crcr}}\,}

207

208 \def\eqalignno#1{\displ@y \tabskip\@centering

209 \halign to\displaywidth{\hfil$\@lign\displaystyle{##}$\tabskip\z@skip
210 &$\0lign\displaystyle{{}##}$\hfil\tabskip\@centering

211 &\1lap{$\@lign##$}\tabskip\z@skip\crcr

212 #1\crcr}}

213 \def\leqalignno#1{\displ@y \tabskip\@centering

214 \halign to\displaywidth{\hfil$\@lign\displaystyle{##}$\tabskip\z@skip
215 &$\@lign\displaystyle{{}##}$\hfil\tabskip\@centering

216 &\kern-\displaywidth\rlap{$\@lign##$}\tabskip\displaywidth\crcr

217 #1\crcr}}

218

219 \else

If the user does not choose this option, we will instead define an egnarray* envi-
ronment which does not number equations.

220 \@namedef{eqnarray*}{J%

221 \let \\ \cr $$\null\,\vcenter{\openup\jot\m@th

222 \ialign{\strut\hfil$\displaystyle{##}$&$\displaystyle{{}##}$\hfil\crcr}}}
223 \@namedef{endeqnarray*}{\crcr}

224

225 \fi

2.11 Output Routine: plainoutput

The output routines also involve \newif commands, and are therefore also rele-
gated to a separate package.

226 \if@plainoutput

227  \InputIfFileExists{cjwplout.clo}{}{%

228 \PackageWarning{cjwplain}{Option ‘cjwplout.clo’ not found.}
229 \@tabbingfalse}
230 \fi

231 (/package)
232 (xoutput)

If the user wishes to use the entire PLAIN TEX output routine, we first redefine

11



\raggedbottom
\normalbottom

\topinsert
\midinsert
\pageinsert

\plainoutput

the normal versions of headline, footline and pageno, as well as related macros.
We will use NFSS definitions in place of \tenrm.

233 \countdef\pageno=0 \pageno=1 J, first page is number 1

234 \newtoks\headline \headline={\hfil} % headline is normally blank
235 \newtoks\footline \footline={\hss\reset@font\folio\hss}

236 % footline is normally a centered page number in font \tenrm

237 \def\nopagenumbers{\footline{\hfil}} % blank out the footline

238 \def\folio{%

239  \ifnum\pageno<\z@ \romannumeral-\pageno \else\number\pageno \fi}
240 \def\advancepageno{\ifnum\pageno<\z@ \global\advance\pageno\m@ne
241 \else\globalladvance\pageno\@ne \fi} % increase |pagenol|

We also supply the \raggedbottom macro and its counterpart, \normalbottom.

242 \newif\ifr@ggedbottom

243 \def\raggedbottom{\topskip 10\p@ plus60\p@ \r@ggedbottomtrue}
244 \def\normalbottom{\topskip 10\p@ \r@ggedbottomfalse}

245 % undoes \raggedbottom

If the entire output routine is being used, we define the PLAIN TEX insertion
macros as normal.

246 \newinsert\topins

247 \newif\ifpOge \newif\if@mid

248 \def\topinsert{\@midfalse\p@gefalse\@ins}

249 \def\midinsert{\@midtrue\@ins}

250 \def\pageinsert{\@midfalse\p@getrue\Q@ins}

251 \skip\topins=\z@skip % no space added when a topinsert is present
252 \count\topins=1000 % magnification factor (1 to 1)

253 \dimen\topins=\maxdimen % no limit per page

254 \def\@ins{\par\begingroup\setbox\z@\vbox\bgroup} % start a \vbox
255 \def\endinsert{\egroup % finish the \vbox

256 \ifO@mid \dimen@\ht\z@ \advance\dimen@\dp\z@ \advance\dimen@12\p@
257 \advance\dimen@\pagetotal \advance\dimen®@-\pageshrink

258 \ifdim\dimen@>\pagegoal\@nidfalse\p@gefalse\fi\fi

259 \if@mid \bigskip\box\z@\bigbreak

260 \else\insert\topins{\penaltyl00 % floating insertion

261 \splittopskip\z@skip

262 \splitmaxdepth\maxdimen \floatingpenalty\z@

263 \ifp@ge \dimen@\dp\z@

264 \vbox to\vsize{\unvbox\z@\kern-\dimen®@}} depth is zero

265 \else \box\z@\nobreak\bigskip\fi}\fi\endgroup}

Now we define the main part of the output routine. We use \@@line instead
of \line, since \@@line is guaranteed to have the definition we want.

266 \def\plainoutput{\shipout\vbox{\makeheadline\pagebody\makefootlinel}y,
267 \advancepageno

268  \ifnum\outputpenalty>-\@MM \else\dosupereject\fi}

269 \def\pagebody{\vbox to\vsize{\boxmaxdepth\maxdepth \pagecontents}}
270 \def\makeheadline{\vbox to\z@{\vskip-22.5\p@

271 \@@line{\vbox to8.5\p@{}\the\headline}\vss}\nointerlineskip}

272 \def\makefootline{\baselineskip24\p@\@@line{\the\footlinel}}

273 \def\dosupereject{\ifnum\insertpenalties>\z@

274 % something is being held over
275 \@@line{}\kern-\topskip\nobreak\vfill\supereject\fi}
276

277 \def\pagecontents{\ifvoid\topins\else\unvbox\topins\fi

12



278 \dimen@=\dp\@cclv \unvbox\@cclv % open up \box255
279 \ifvoid\footins\else 7 footnote info is present

280 \vskip\skip\footins
281 \footnoterule
282 \unvbox\footins\fi

283 \ifr@ggedbottom \kern-\dimen@ \vfil \fi}
Finally, we make the PLAIN TEX output routines active again.
284 \output{\plainoutput}

285 (/output)
286 (xpackage)

2.11.1 Page Numbering, Running Heads and Miscellaneous

We can make the PLAIN TEX head and foot commands accessible (after a fashion),
even if the entire output routine is not being used. KITEX2¢ provides the com-
mands \@oddhead and \@evenhead, as well as their footline equivalents. Therefore
we can give the following versions.

287 \if@plainoutput\else

288

289 \def\footline{\@ifnextchar ={\@@footline}{\@@footline=1}}

290 \def\@@footline=#1{\gdef\Qoddfoot{#1} \gdef\@evenfoot{#1}}

291

292 \def\headline{\@ifnextchar ={\@@headline}{\@Cheadline=1}}

293 \def\@@headline=#1{\gdef\Q@oddhead{#1} \gdef\@evenhead{#1}}

294

295 \def \nopagenumbers{\let\@oddfoot\relax \let\@evenfoot\relax}

Since the PLAIN TEX \headline and \footline macros are actually tokens, we
have to allow that the assignments to them can be made with an optional =.
The use of \@ifnextchar = nicely takes care of that. This will alas be a slightly
inefficient use of the macros, as many PLAIN TEX heads and feet already test for
odd and even pages—but not all of them. So, we compromise.

Now we can simply make \pageno an equivalent for the XTEX counter \c@page.

296 \let\pageno\c@page

This means that assignments can either be made in primitive fashion directly to
\pageno or in A TgXfashion to the page counter. We would also like to have the
PLAIN TEX \folio macro. We are going to expand upon this slightly, though. I
find \folio generally to be a useful command, so we will write it in such a way as
to make it useful with I¥TEX counters (as with, say, the \arabic macro) as well
as with counts.

297 \newcommand{\folio}[1] [\pageno] {\@folio{#1}}

298 \def\@folio#1{%

299 \edef\@tempa{\string#1}%

300 \expandafter\@ifundefined{c@\@tempal}), %, Does the counter exist?

301 {% % No such counter.

302 \ifnum #1 <\z@ \romannumeral-#1

303 \else \number #1

304 \fi

305 Y

306 {5 % It is a counter.

307 \ifnum\value{#1}<\z@ \roman{#1} \else \arabic{#1} \fi}
308 }

13



This is not, unfortunately, perfect, in that it must be used with an optional ar-
gument (\folio[section]) as opposed to the normal style (\arabic{section}).
On the other hand, I can’t think of many applications for \folio other than
page numbering. At any rate, we finish page numbering with the incrementation
command.

309 \def\advancepageno{\ifnum\pageno<\z@ \global\advance\pageno\m@ne
310 \else\globalladvance\pageno\@ne \fi}

One more bit from the PLAIN TEX output routine needs to be dealt with. Al-
though BTEX’s \raggedbottom macro will suffice to simulate PLAIN TEX’s com-
mand of the same name, we need to add a \let command to enable PLAIN TEX’s
counterpart, \normalbottom.

311 \let\normalbottom\flushbottom

2.11.2 Insertions

If the PLAIN TEX output routine is not being used, we simulate the insertions
using IMTEX’s figure environment.

312 \def\topinsert{\begin{figure}[t]}
313 \def\pageinsert{\begin{figure} [p]}
314 \def\midinsert{\begin{figure} [htpb]l }
315 \def\endinsert{\end{figure}}

316

317 \fi

2.11.3 Footnotes: srictfootnotes, altfootnotes

We define \@@footnote as PLAIN TEX’s footnoting macro.

318 %\newinsert\footins

319

320 \let\latex@footnote\footnote

321

322 \def\@@footnote#1{\let\@sf\empty ’, parameter #2 (the text) is read later
323  \ifhmode\edef\@sf{\spacefactor\the\spacefactor}\/\fi

324 #1\O@sf\vfootnote{#1}}

325 \def\vfootnote#1{\insert\footins\bgroup

326 \interlinepenalty\interfootnotelinepenalty

327 \splittopskip\ht\strutbox 7 top baseline for broken footnotes
328  \splitmaxdepth\dp\strutbox \floatingpenalty\@MM

329 \leftskip\z@skip \rightskip\z@skip \spaceskip\z@skip

330 \xspaceskip\z@skip

331 \textindent{#1}\footstrut\futurelet\next\fo0t}

332 \def\fo@t{\ifcat\bgroup\noexpand\next \let\next\f@@t

333 \else\let\next\f@t\fi \next}

334 \def\feet{\bgroup\aftergroup\@foot\let\next}

335 \def\f@t#1{#1\@foot}

336 \def\@foot{\strut\egroup}

337 \def\footstrut{\vbox to\splittopskip{}}

IMTEX leaves these initializations for the \footins insert.

338 %\skip\footins=\bigskipamount J space added when footnote is present
339 %\count\footins=1000 % footnote magnification factor (1 to 1)
340 %\dimen\footins=8in J maximum footnotes per page

14



Now we have several options for how to really deal with footnotes. The easy
answer is to do them entirely according to PLAIN TEX.
341 \if@strictfootnotes
342  \let\footnote\@@footnote
343 \fi
The second option is to just use the IXIEX \footnote command. This needs no
rewriting, of course. The last option is to rewrite I¥TEX’s \footnote macro to
use the PLAIN TEX format instead of the KXTEX format, which uses an optional
argument.
344 \if@altfootnotes
345 \def\footnote#1{\latex@footnote[#1]}
346 \fi
BTEX keeps PLAIN TEX’s \footnoterule as the default.

347 %\def\footnoterule{\kern-3\p@
348 % \hrule \@width 2in \kern 2.6\p@} % the \hrule is .4pt high

2.11.4 Magnification: magnification

The last part of PLAIN TEX for which we need to account is magnification. The
magnification macros are easily reinstated, either as part of the overall PLAIN TEX
output routine or standalone. Since the \mag primitive is not disabled, it could
still be used in BTEX. However, XTEX does not itself work with true units any
usage of \magnification could do some strange things to your page layouts.

349 \if@magnification

350 \def\magnification{\afterassignment\m@g\count@}

351 \def\m@g{\mag\count@

352 \hsize6.5truein\vsize8.9truein\dimen\footins8truein}

353 \fi

This brings us to the end of the main package.
354 (/package)

15



