
The cjwoutl Package∗

Colin J. Wynne†

1996/04/26

Contents
1 Making an Outline 2

1.1 Outline Labels . 3
1.2 Cross References . 4

2 The Code 4
2.1 Allocations . 4
2.2 The Environment . 6
2.3 Outline Styles . 6
2.4 The Entries . 7
2.5 Labels . 8

Introduction
This package originated as a simple set of macros for doing outlines under
Plain TEX. The original macros simply provided n\parindent as a left indenta-
tion for a single paragraph. This was almost three years ago. The macros improved
somewhat with my knowledge of (and experience with) TEX. Last summer I finally
had the time to add what I had always wanted—automatic level numbering.

This year I decided to find out just what LATEX was all about. After deciding
that it wasn’t that bad, I rewrote (and improved yet again) the outlining macros.
Conveniently enough, a large chunk of the original Plain TEX code dedicated to
resetting the proper counters disappeared with the change to LATEX.

At a basic level, the outline environment functions like enumeration. However,
one needn’t nest the calls of the outline environment. Rather, the macros used to
identify the entries of the outline itself take care of this.

I think this code is now both fairly generic and rather useful, and I would be
more than happy to know that it is useful to others. Feel free to e-mail me with
comments, suggestions, etc. The Plain TEX version is still available by request
for anyone who might want it.

∗This file has version 0.6 as of 1996/04/26.
†E-Mail at: cwynne@brutus.mts.jhu.edu, cwynne@jhu.edu .

1

1 Making an Outline
An outlined portion of a document is implemented, naturally enough, inside anoutline
environment, the outline environment. There is one optional argument to the
\begin command. If the argument new is given, then the outline counters will be
reset. Otherwise, the values of the counters will be exactly as they were at the
end of the last outline environment.

Inside of an outline environment, there are two main user macros, one for auto-\outl
labelled entries and one for user-supplied labels. For labels to be automatically
numbered and printed, the user simply enters \outl〈level〉. The 〈level〉 is simply
an integer which corresponds to the depth within the outline. For example, level
one of an outline begins at the left margin (more precisely, the text begins at the
left margin with the label offset by 1 en to the left of that) and in a standard
outline, and, indeed, according to this package’s defaults, a capitalised roman
numeral is used as a label. Therefore

\begin{outline}
\outl{1}This is outline level one.

\end{outline}

will produce

I. This is outline level one.

The package supplies seven defined levels of outline as well as a default ‘level’.
The default is used for any levels over seven. These levels will still receive
the correct indentation (specifically, level n is prefaced by \leftskip = (n −\outlindent
1)\outlindent worth of space), but will all receive the default label, normally a
bullet. Thus, the user is provided with the following:

I. . . .

A. . . .

1. . . .

a. . . .

i. . . .

(a) . . .

(i) . . .

• . . .

• . . .

• . . .

Note that levels eight through ten have the default bullet for a label, though
the indentation levels are preserved. There are a few special symbols which can be
given as the 〈level〉 argument. If the user enters a +, - or = then the indentation
level of that entry will be respectively one greater, one less or the same as that of
the previous entry. Thus,

2

\begin{outline}
\outl{1} Level one,
\outl{+} Level two,
\outl{=} Level two,
\outl{-} Level one.

\end{outline}

gives

I. Level one,

A. Level two,

B. Level two,

II. Level one.

The macro \ol is almost identical to the \outl macro, except that it takes\ol
a second argument: \ol〈level〉〈label〉. The 〈level〉 argument functions identically,
and the 〈label〉 argument is set as entered 1 en to the left of the text. Two macros\npp

\unpp are derived from \ol. Both take a 〈level〉 argument. The \npp macro is essentially
\ol〈level〉{\null}\indent. The \unpp macro does not indent the first line of text.
(The macros stand for “new paragraph” and “unindented \npp”.)

There is also a macro to allow for some modifications in how an outline entry\outlstyle
is typeset. The default style, plain, does nothing. An alternate style, calledfirstpar

\firstparfont firstpar, sets the first paragraph of an outline entry in \firstparfont. By
default, this is italics, but the font command can, of course, be renewed by the
user. To change styles, one simply calls \outlstyle〈style〉; for example,

\outlstyle{firstpar}

calls the firstpar outline style.
N.B.: There is one ‘secret’ left to tell. Unless one wants to reset the counters

by calling \begin{outline}[new], it is really unnecessary to call the environ-
ment. Instead, one can simply use the \ol or \outl commands as desired. The
only caveat is that the final outline grouping must be closed. Therefore, the
\endoutline macro must be called. Granted, this doesn’t make a whole big dif-
ference. I happen to use this ‘feature’ simply because I have used these macros
since long before it was written in a LATEX-environment format. YMMV.

1.1 Outline Labels
The counters for the different levels are named outln, where n is a lowercase romanoutlN
numeral. Therefore, this package defines outli, outlii,. . . ,outlvii. This is, as
one easily sees, similar to the numbering scheme for the enumeration environment.
The numbering style for level n is given by the macro \theoutlN. The actual label\theoutlN

\labeloutlN which is printed for an entry at level n is given (naturally enough) by \labeloutlN.
The default label is \labeloutldef. The example above showed the label at the
sixth level as ‘(a)’. The relevant definitions are:

\renewcommand{\theoutlvi}{\alph{outlvi}}
\renewcommand{\labeloutlvi}{(\theoutlvi)}

3

The labels themselves are typeset in \labelfont, which can also be set by the\labelfont
user. The default is bold-extended.

1.2 Cross References
Cross references function as expected for outlines, using the \label and \ref
commands. The \outl function defines the current reference string, so the \label
should be put after the \outl to which it refers. For example, we might have the
code

\begin{outline}[new]
\outl{1} Main entry.
\outl{+} Next level.
\outl{+} The price of tea in China.\label{ol:tea}

\end{outline}

producing

I. Main entry.

A. Next level.

1. The price of tea in China.

whereupon the reference ol:tea would refer to tea in China I.A.1.

2 The Code

2.1 Allocations
Since the levels of an outline are defined by a \leftskip command, it is necessary
to determine when a group needs to be closed. Therefore, we define a test to see
if we are in a group.

1 \newif\ifoutl@group

This essentially keeps the first outline entry from closing a non-existent group.
Two lengths, \aboveoutlskip and \belowoutlskip, initially set to the equivalent
values for math displays, are used to separate an outline environment from the
surrounding text.

2 \newlength{\aboveoutlskip}
3 \setlength{\aboveoutlskip}{\abovedisplayskip}
4 \newlength{\belowoutlskip}
5 \setlength{\belowoutlskip}{\belowdisplayskip}

The \outlindent macro controls the increment between adjacent outline levels.
Its default value is \parindent.

6 \newlength{\outlindent}
7 \setlength{\outlindent}{\parindent}

Now we define the counters to be used. The first two identify the requested
indentation level and the previous level.

8 \newcounter {outl@indsize}
9 \newcounter {outl@lastind}

4

outlN Next come the counters for the levels themselves.
10 \newcounter {outli} % I.
11 \newcounter {outlii} [outli] % A.
12 \newcounter {outliii}[outlii] % 1.
13 \newcounter {outliv} [outliii] % a.
14 \newcounter {outlv} [outliv] % i.
15 \newcounter {outlvi} [outlv] % (a)
16 \newcounter {outlvii}[outlvi] % (i)

There is also a counter definition for the default label. This will be explained
below.
17 \newcounter {outldef}[outlvii]

\theoutlN Now we can set the proper level numbering.
18 \renewcommand{\theoutli} {\Roman{outli}}
19 \renewcommand{\theoutlii} {\Alph{outlii}}
20 \renewcommand{\theoutliii} {\arabic{outliii}}
21 \renewcommand{\theoutliv} {\alph{outliv}}
22 \renewcommand{\theoutlv} {\roman{outlv}}
23 \renewcommand{\theoutlvi} {\alph{outlvi}}
24 \renewcommand{\theoutlvii} {\roman{outlvii}}

Again we have the default label, which I promise will be explained.
25 \renewcommand{\theoutldef} {}

\labeloutlN Now the label formats will be defined.
26 \newcommand{\labeloutli} {\theoutli.}
27 \newcommand{\labeloutlii} {\theoutlii.}
28 \newcommand{\labeloutliii} {\theoutliii.}
29 \newcommand{\labeloutliv} {\theoutliv.}
30 \newcommand{\labeloutlv} {\theoutlv.}
31 \newcommand{\labeloutlvi} {(\theoutlvi)}
32 \newcommand{\labeloutlvii} {(\theoutlvii)}
33 \newcommand{\labeloutldef} {\ensuremath{\bullet}}

This next group of definitions are taken from the standard classes’ definitions
for the enumeration environment. I have not plumbed the cross-referencing code
deeply enough to see how these macros are applied, but I take it on faith from
classes.dtx that it works.
34 \renewcommand{\p@outli} {}
35 \renewcommand{\p@outlii} {\theoutli.}
36 \renewcommand{\p@outliii} {\p@outlii\theoutlii.}
37 \renewcommand{\p@outliv} {\p@outliii\theoutliii.}
38 \renewcommand{\p@outlv} {\p@outliv\theoutliv.}
39 \renewcommand{\p@outlvi} {\p@outlv\labeloutlv.}
40 \renewcommand{\p@outlvii} {\p@outlvi\labeloutlvi.}

And now we have the promised explanation of having a counter for the default
labels. Simply put, the \p@. . . commands are defined via \setcounter. To be
able to supply cross-references for outline entries above the seven numbered levels
it seems necessary to have the relevant counter definition already made. I could be
wrong on this, and maybe I could have defined the cross-reference label directly.
If so, let me know. Anyway, that was the explanation—probably not worth the
wait, was it?
41 \renewcommand{\p@outldef} {\p@outlvii\ldots}

5

2.2 The Environment
outline The outline environment itself has a very simple definition. It has a single optional

argument. The default value of the argument is fairly arbitrary, so long as it isn’t
new.
42 \newenvironment{outline}[1][keep]%

To start the environment, we must simply test to see if the counters should be
reset or not.
43 {\def\@tempa{#1} \def\@tempb{new}
44 \ifx\@tempa\@tempb
45 \outl@reset
46 \fi
47 \penalty\predisplaypenalty\vspace{\aboveoutlskip}}%

To finish an outlined section of a document, we include a \par (to make sure the
\leftskip functions correctly), close the last outline group and let it be known
that we are no longer in an outline.
48 {\par\endgroup\global\outl@groupfalse%
49 \penalty\postdisplaypenalty\vspace{\belowoutlskip}}

The macro to reset the outline counters is about as straightforward as possible.
50 \newcommand{\outl@reset}{%
51 \setcounter{outli} {0}
52 \setcounter{outlii} {0}
53 \setcounter{outliii}{0}
54 \setcounter{outliv} {0}
55 \setcounter{outlv} {0}
56 \setcounter{outlvi} {0}
57 \setcounter{outlvii}{0}}

2.3 Outline Styles
\outlstyle Outline styles are implemented as a macro call to the desired style just before

the text of the outline entry is typeset. i.e., in abstract terms, the \ol or \outl
macros will have 〈label〉〈style-macro〉Text text text. . . The styles are macros
named \ols@〈style〉. Thus, the \outlstyle macro shecks to see if the style is
defined. If not, it emits a warning and selects the plain style.
58 \newcommand{\outlstyle}[1]{%
59 \@ifundefined{ols@#1}
60 {\PackageWarning{cjwoutl}{Outline style ‘#1’ is undefined. Using
61 style ‘plain’ instead}%
62 \def\outl@style{\ols@plain}}

If the requested style exists, we point the macro \outl@style towards it. (Note:
if anyone can think of a better way to write this, let me know. I wanted to do it
as a \let, but couldn’t figure out the correct sequence of \expandafters to get
it to evaluate correctly.)
63 {\def\outl@style{\csname ols@#1\endcsname}}}

Now we define the two basic styles, plain and firstpar.
64 \def\ols@plain{\@empty}

6

The firstpar style simply takes the first paragraph of the entry as an argument
and sets it in \firstparfont.
65 \def\ols@firstpar#1\par{%
66 \bgroup\firstparfont #1\par\egroup}
67
68 \DeclareOldFontCommand{\firstparfont}{\normalfont\itshape}{\relax}

Lastly, we select plain as the default style.
69 \outlstyle{plain}

2.4 The Entries
\ol The \ol macro first takes care of the outline groupings and then processes the

〈level〉 argument given by the user.
70 \newcommand{\ol}[2]{%
71 \outl@checkgroups \outl@processlvl{#1}%

We do some minor error handling—like disallowing negative numbers. If a numer-
ical argument is given, the \outl@processlvl macro decrements it by one—thus,
the actual outl@indsize is not the level number that the user enters, but rather
the number of \outlindents for the requested level, and the first entry occurs at
zero indents, i.e., on the left margin. Thus zero, and not one, is the minimum
value which can be assigned to \outl@indsize.
72 \ifnum \c@outl@indsize < 1\relax%
73 \setcounter{outl@indsize}{0}%
74 \leftskip = 0pt%
75 \else%
76 \leftskip = \c@outl@indsize\outlindent%
77 \fi%

We specify that the first paragraph of an entry should not be indented and we
make the label.
78 \noindent\theoutlabel{#2}%

The \ignorespaces macro allows the user to enter \outl{1} Text instead of the
slightly less readable \outl{1}Text in the source file without the extra spaces
showing up in the document. Anyway, then we call \outl@style which has been
defined to be the selected style macro.
79 \ignorespaces\outl@style}

The \npp and \unpp macros are straightforward derivatives of the \ol macro.
80 \newcommand{\npp}[1]{\ol{#1}{\null}\null\indent}
81 \newcommand{\unpp}[1]{\ol{#1}{\null}}

\outl The \outl macro is more or less identical to \ol above.
82 \newcommand{\outl}[1]{%
83 \outl@checkgroups \outl@processlvl{#1}%
84 \ifnum \c@outl@indsize < 1\relax%
85 \setcounter{outl@indsize}{0}%
86 \leftskip = 0pt%
87 \else%
88 \leftskip = \c@outl@indsize\outlindent%
89 \fi%

7

The difference is in calling the \outl@label macro which takes care of the auto-
matic labels.
90 \noindent\outl@label{\c@outl@indsize}%
91 \ignorespaces\outl@style}

\outl@checkgroups Now we define the macro that balances the outline groupings. If we are already
in a group, provide a \par to get the \leftskip right, then close the group and
change the group flag.
92 \newcommand{\outl@checkgroups}{%
93 \ifoutl@group
94 \par\endgroup\global\outl@groupfalse
95 \smallbreak
96 \fi

Since we have just finished an outline group, we can set outl@lastind, then
provide appropriate space (encouraging breaks between enries) and start a new
group.
97 \setcounter{outl@lastind}{\c@outl@indsize}
98 \smallbreak
99 \begingroup

100 \global\outl@grouptrue}

\outl@processlvl The 〈level〉 argument can be a number or one of +, - and =. The check is imple-
mented as a set of nested \if statements.

101 \newcommand{\outl@processlvl}[1]{%
102 \def\@tempa{+}\def\@tempb{-}\def\@tempc{=}
103 \def\@tempd{#1}
104 \ifx\@tempa\@tempd
105 \addtocounter{outl@indsize}{1}
106 \else\ifx\@tempb\@tempd
107 \addtocounter{outl@indsize}{-1}
108 \else\ifx\@tempc\@tempd
109 % Nothing---stay at same level.
110 \else
111 \setcounter{outl@indsize}{\@tempd}

If we are setting to a new level number, we decrement by one, as mentioned in the
definition of \ol, in order to convert the level number to an indentation size.

112 \addtocounter{outl@indsize}{-1}
113 \fi
114 \fi
115 \fi}

2.5 Labels
\outl@label The \outl@label macro, called by \outl with the outl@indsize as an argument,

simply decides which level to make by way of an \ifcase statement.
116 \newcommand{\outl@label}[1]{%
117 \ifcase #1
118 \@dolabeli\or\@dolabelii\or\@dolabeliii%
119 \or\@dolabeliv\or\@dolabelv\or\@dolabelvi%
120 \or\@dolabelvii\else\@dolabeldef%
121 \fi}

8

The labels are set in \labelfont. I have a set of personal macros that define a
\labelfont for other uses, so the declaration is surrounded by a test.

122 \@ifundefined{labelfont}
123 {\DeclareOldFontCommand{\labelfont}%
124 {\normalfont\bfseries\mathversion{bold}}{\mathbf}}
125 {} % Do nothing---|\labelfont| is already defined

The generic form of the outline labels is given by \theoutlabel.
126 \newcommand{\theoutlabel}[1]{%
127 \llap{\hbox{\labelfont#1\enskip}}}

Finally we define the macros which are called for the auto-numbering and label
creation for the \outl macro.

128 \newcommand{\@dolabeli}{%
129 \refstepcounter{outli}\theoutlabel{\labeloutli}}
130 \newcommand{\@dolabelii}{%
131 \refstepcounter{outlii}\theoutlabel{\labeloutlii}}
132 \newcommand{\@dolabeliii}{%
133 \refstepcounter{outliii}\theoutlabel{\labeloutliii}}
134 \newcommand{\@dolabeliv}{%
135 \refstepcounter{outliv}\theoutlabel{\labeloutliv}}
136 \newcommand{\@dolabelv}{%
137 \refstepcounter{outlv}\theoutlabel{\labeloutlv}}
138 \newcommand{\@dolabelvi}{%
139 \refstepcounter{outlvi}\theoutlabel{\labeloutlvi}}
140 \newcommand{\@dolabelvii}{%
141 \refstepcounter{outlvii}\theoutlabel{\labeloutlvii}}
142 \newcommand{\@dolabeldef}{%
143 \refstepcounter{outldef}\theoutlabel{\labeloutldef}}

And with that, we are finished.

9

