\setboxz@h

\bold
\scr

\germ

The mathscinet package

American Mathematical Society

Version 2.01, 2004,/06,/30

1 Introduction

The mathscinet packages provides definitions for certain commands that oc-
casionally occur in bibliographic data exported from MathSciNet and that are
not provided by ETEX.

Warning: Although the macros provided in this package are probably ac-
ceptable if all you need to do is format an entry downloaded from MathSciNet,
they should probably not be used for other purposes. In general, if you are
trying to typeset material in any languages that require these characters, you
are better off using specialized fonts and encodings for those languages.

All Unicode character references are taken from The Unicode Standard, Ver-
sion 3.0 (Addison-Wesley, 2000).

2 Implementation

Standard declaration of package name and date.

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{mathscinet}[2002/04/17 v1.05]
\RequirePackage{textcmds}\relax

A useful abbreviation borrowed from amsgen.
\providecommand\setboxz@h{\setbox\z@\hbox}

2.1 Math font commands

These are simple aliases of core ITEX commands.

\providecommand{\bold}{\mathbf}
\providecommand{\scr}{\mathcal}

Since this doesn’t correspond to a core BTEX command, we generate an error
if no appropriate definition is available.

\AtBeginDocument{%
\@ifundefined{mathfrak}{’
\providecommand{\germ}{/
\PackageError{mathscinet}{To use the \string\germ\space
command, please load the amsfonts package}\Qehc

Yh

\romsup
\asup

\hslash

\rasp

\lasp

\Dbar

\dbar

2 THE MATHSCINET PACKAGE

H%
\providecommand{\germ}{\mathfrak}’
Yh
}
The \tsup command comes from the textcmds package.

\providecommand{\romsup}{\tsup}
\providecommand{\asup}{\tsup}

Planck’s constant over 2m: i (U+210F).

If the amssymb package isn’t loaded, we just want this to be an alias for
\hbar, which is defined in the XTEX kernel (and then redefined by the amssymb
package). If the amssymb package is loaded, we want to use its definition
of \hslash. To prevent problems if amsrefs is loaded before amssymb, we
defer our definition of \hslash until after all packages have been loaded.

\AtBeginDocument{\providecommand{\hslash}{\hbar}}

2.2 Arabic transliteration
Transliteration of the Arabic letter hamza (U+0621): > (U+02BE).
\ProvideTextCommandDefault{\rasp}{\leavevmode\raise.45ex\hbox{ρok}}

Transliteration of the Arabic letter ain (U+0639): ¢ (U+02BF).
\ProvideTextCommandDefault{\lasp}{\leavevmode\raise.45ex\hbox{$\1lhook$}}

2.3 Latin Extended-A (latini) characters

These are based on Barbara Beeton’s definitions from amsclass.dtx.

Latin capital letter D with stroke: D (U+0110). In the T1 encoding, we just use
\DJ; otherwise we fake it.

\ProvideTextCommand{\Dbar}{T1}{\DJ}

\ProvideTextCommandDefault{\Dbar}{%
\leavevmode\lower.5ex\rlap{\hskip-.07em\accent"16}D}
}

Latin lower letter d with stroke: d (U+0111). In the T1 encoding, we just use
\dj; otherwise we fake it.

\ProvideTextCommand{\dbar}{T1}{\dj}
If it looks like this is a small-caps font, we adjust the spacing appropriately.

\ProvideTextCommandDefault{\dbar}{%
\begingroup

\edef\@tempa{\scdefault}’,

\ifx\@tempa\f@shape
\dimen@-.75ex
\dimen@i-.08em

\else
\dimen@.02ex

\cprime

\cdprime

\bud

\cydot

\save@sf

\restore@sf

\@underaccent

2. IMPLEMENTATION 3

\dimen@i.lem
\fi
\leavevmode\raise\dimen®@\rlap{\hskip\dimen@i\char"163}d/
\endgroup
}

2.4 Cyrillic transliteration
Transliteration of the Cyrillic letter soft sign (U+042C): '.
\ProvideTextCommandDefault{\cprime}{\tprime}

Transliteration of the Cyrillic letter hard sign (U+0424): ”.
\ProvideTextCommandDefault{\cdprime}{\tprime\tprime}

Ditto.
\ProvideTextCommandDefault{\bud}{\cdprime}

Vertically centered dot.
\ProvideTextCommandDefault{\cydot}{\leavevmode\raise.4ex\hbox{.}}

2.5 Miscellaneous diacritics (aka Frankenstein’s
diacritics)
When putting together an accented character from bits and pieces, the
\spacefactor of the base character often gets lost in the shuffle. We use essen-
tialy the same technique as \add®@accent to save and restore the spacefactor,
but we wrap in in a pair of macros for convenience.
\def\save@sf{%

\ifmmode\else\global\mathchardef\accent@spacefactor\spacefactor\fi
}

And here’s the corresponding restore.

\def\restore@sf{\ifmmode\else\spacefactor\accent@spacefactor\fi}

This is perhaps the most interesting macro in this package (which admittedly
isn’t saying much). It attempts to convert a character (usually one of the stan-
dard above-letter diacritics like ”) into an underhanging diacritic (like). This
is similar in spirit to the way that the 0T1 \b command converts a macron into
a bar-under accent, or the way that \d converts a period into an underhanging
dot. However, the technique used here is a little more complicated and, hope-
fully, a little more general, in the sense of requiring fewer ad-hoc parameters.
It only contains one magic constant (.2 ex), which seems to provide reasonable
results for all of the Computer Modern fonts.
The basic algorithm is as follows:

1. Create a box B containing the base character at its natural height, depth,
and width.

2. Create a box d consisting of the diacritic centered in a space equal to the
width of B.

\utilde

\uarc

\1fhook

\dudot

4 THE MATHSCINET PACKAGE

3. Lower box d by the sum of its height (to bring the top of d down to the
baseline) plus the depth of B (to bring the top of d down to the bottom
of B) plus .2ex (to provide the spacing between the bottom of the letter
and the top of the diacritic). Call the new box d’.

4. Create a new box C' by superimposing boxes B and d’.

5. If the height of d was greater than 1ex, reset the depth of box C' to the
sum of the depth of B and 1 ex less than the height of d. (See the appendix
for a discussion of this step.)

\def\Qunderaccent#1#2#3{%
\leavevmode
\begingroup
\ifmmode\let\@mathtoggle$\else\let\@mathtoggle\relax\fi
\setboxz@h{\@mathtoggle#3\save@sf\Cmathtogglely,
\setbox\@ne\hbext@\wd\ze{%
\hss\fontshape\updefault\rmfamily#1\char#2\hss
Yk
\dimen®@\ht\@ne
\advance\dimen@\dp\z@
\advance\dimen@.2ex
\setboxz@h{\lower\dimen®@\rlap{\copy\@ne}\unhbox\z@}/
\ifdim\ht\@ne>1lex
\advance\dimen@-1.2ex
\dp\z@\dimen@
\fi
\box\z@
\restore@sf
\endgroup
}

Tilde below (U+0330):
\utilde{E} E U+1E1A \utilde{e} e U+1E1B
\utilde{I} I U+1E2C \utilde{i} i U+1E2D
\utilde{U} U U+1E74 \utilde{u} u U+1E75
\DeclareTextCommandDefault{\utilde}{\@underaccent\@empty{‘\~}}

Breve below (U+032E):
\uarc{H} H U+1E24A \uarc{h} h U+1E2B
\DeclareTextCommandDefault{\uarc}{\Qunderaccent\@empty{’025}}

Comma below (U+0326):
\1fhook{S} § U+0218 \1lfhook{s} s U+0219
\1lfhook{T} T U+0214 \1fhook{t} t U+021B
\DeclareTextCommandDefault{\1fhook}{\@underaccent\supsize{‘\,}}

Diaeresis below (U+0324):
\dudot{U} U U+1E72 \dudot{u} u U+1E73
\DeclareTextCommandDefault{\dudot}{\@underaccent\@empty{’177}}

2. IMPLEMENTATION

\udot Dot below (U+0323): There are two options for implementing this: either map to
the standard \d accent or define using \@underaccent. If we choose the former,
we have two problems: (a) when applied to capital letters, the standard T1 and
0T1 implementations of \d produce \spacefactors of 1000 instead of 999, and
(b) the underspacing of the \udot accent will differ from that of the \dudot
accent: xx. On the other hand, if we choose the latter, course, \d and \udot
will differ: xx. Neither solution appeals, but it’s easier to stick with \d, so that’s

\polhk

\msc@ogonek

what I'll do.
\DeclareTextCommandDefault{\udot}{\d}

Ogonek (Polish hook) (u+0328):

\polhk{A} A U+0104 \polhk{a} a U+0105
\polhk{E} E U+0118 \polhk{e} ¢ TU+0119
\polhk{I} 1 TU+012E \polhk{i} i U+012F
\polhk{U} U U+0172 \polhk{u} u U+0173
\polhk{0} O U+01EA \polhk{o} o U+01EB

The T1 and 0T4 encodings implement the \k accent, so we just use it for

most characters, although we will supplement them later with

\DeclareTextCommand{\polhk}{0T4}{\k}
\DeclareTextCommand{\polhk}{T1}{\k}

\DeclareTextCommand{\polhk}{0T1} [1] {\TextSymbolUnavailable{\k{#1}}#1}

\DeclareTextCompositeCommand{\polhk}{0T1}{a}{\msc@ogonek {.63}{.
\DeclareTextCompositeCommand{\polhk}{0T1}{A}{\msc@ogonek {.6}{.
\DeclareTextCompositeCommand{\polhk}{0T1}{e}{\msc@ogonek 0 {.
\DeclareTextCompositeCommand{\polhk}{0T1}{E}{ \msc@ogonek{.35}{.
\DeclareTextCompositeCommand{\polhk}{0T1}{i}{\msc@ogonek {.2}{.
\DeclareTextCompositeCommand{\polhk}{0T1}{I}{\msc@ogonek {.2}{.
\DeclareTextCompositeCommand{\polhk}{0T1}{u}{\msc@ogonek {.63}{.
\DeclareTextCompositeCommand{\polhk}{0T1}{U}{\msc@ogonek 0 {.
.07}
.05}

\DeclareTextCompositeCommand{\polhk}{0T1}{o}{\msc@ogonek 0 {
\DeclareTextCompositeCommand{\polhk}{0T1}{0}{\msc@ogonek 0 {
\DeclareTextCompositeCommand{\polhk}{T1}{i}{\msc@ogonek®a
\DeclareTextCompositeCommand{\polhk}{T1}{I}{\msc@ogonek®a
\DeclareTextCompositeCommand{\polhk}{T1}{u}{\msc@ogonek@a {.
\DeclareTextCompositeCommand{\polhk}{T1}{U}{\msc@ogonek@a
\DeclareTextCompositeCommand{\polhk}{T1}{o}{\msc@ogoneka
\DeclareTextCompositeCommand{\polhk}{T1}{0}{\msc@ogonek@a

\DeclareTextCompositeCommand{\polhk}{0T4}{i}{\msc@ogonek
\DeclareTextCompositeCommand{\polhk}{0T4}{I}{\msc@ogonek
\DeclareTextCompositeCommand{\polhk}{0T4}{u}{\msc@ogonek
\DeclareTextCompositeCommand{\polhk}{0T4}{U}{\msc@ogonek
\DeclareTextCompositeCommand{\polhk}{0T4}{o}{\msc@ogonek
\DeclareTextCompositeCommand{\polhk}{0T4}{0}{\msc@ogonek

N
Y'Yy O OO o OO

A
N
N s

O O oo

\def\msc@ogonek#1#2#3{%

07}
07}
06}
07}
07}
07}
07}
05}

i}
I}
u}
U}
o}
0}

.07}
.07}
.07}
.05}
.07}
.05}

at
A}
e}
E}
i}
I}
u}
U}
o}
0}

i}
I}
u}
U}
o}
0}

6 THE MATHSCINET PACKAGE

\begingroup
\setboxz@h{#3\save@sf}%
\dimen@\wd\z@
\ooalign{%
\unhbox\z@\crcr
\hidewidth
\setboxz@h{\kern#1\dimen@\supsize\lhook}%
\dimen@\ht\z@
\advance\dimen@-#2ex\relax
\lower\dimen@\box\z@
\hidewidth
Y
\restore@sf
\endgroup

\msc@ogonek@a

\def\msc@ogonekQa#1#2{%
\begingroup
\ooalign{¥
#2\save@sf\crcr
\hidewidth
\raise0.02ex\hbox{\kern#iex\char’014}}
\hidewidth
§ YA
\restore@sf
\endgroup
}

\soft Polish ‘soft’ letters T, D, L:
\soft{T} T uU+0164 \soft{t} t U+0165
\soft{D} D U+010E \soft{d} d uU+o010f
\soft{L} I U+013B \soft{1} 1 U+013C
\DeclareTextCommand{\soft}{0T4}{\v}

\DeclareTextCommand{\soft}{T1}{\v}
\DeclareTextCommand{\soft}{0T1}{\v}

\DeclareTextCompositeCommand{\soft}{0T1}{t}{\msc@soft{t}\@ne{.5ex}}
\DeclareTextCompositeCommand{\soft}{0T1}{d}{\msc@soft{d}{.925}{.95ex}}
\DeclareTextCompositeCommand{\soft}{0T1}{1}{\msc@soft{1}{.95}{.4ex}}
\DeclareTextCompositeCommand{\soft}{0T1}{L}{\msc@soft{L}{.975}{.8ex}}

\DeclareTextCompositeCommand{\soft}{0T4}{t}{\msc@soft{t}\@ne{.5ex}}
\DeclareTextCompositeCommand{\soft}{0T4}{d}{\msc@soft{d}{.925}{.95ex}}
\DeclareTextCompositeCommand{\soft}{0T4}{1}{\msc@soft{1}{.95}{.4ex}}
\DeclareTextCompositeCommand{\soft}{0T4}{L}{\msc@soft{L}{.975}{.8ex}}

\msc@soft
\def\msc@soft#1#2#3{%

2. IMPLEMENTATION 7

\leavevmode
\begingroup
\setboxz@h{#11}/,
\raise#2\ht\z0\rlap{\kern#3\supsize, }\unhbox\z@
\endgroup

Appendix: Plumbing the depths of
underhanging diacritics: Notes on the magic
constant 0.2 ex and an exegesis of certain
obscure corners of the \@underaccent macro

TEX assumes that a combining accent can be superimposed directly on top of
any character whose height is 1ex. If the actual height of the base character
differs from 1ex, the accent is shifted up or down to maintain the same vertical
separation. Put another way, subtracting 1ex from the height of a combining
accent tells us how much a character’s height is increased when that accent is
added. Call this distance 9.

This distance can be analyzed into two pieces: § = o + 1, where o is the
separation between the top of the base character and the bottom of the accent,
and 7 is the height of the bounding box of the accent.

If we now consider moving the accent to the bottom of a character, we have
a new relation 0’ = o’ 4+ 7, where ¢’ is the distance between the bottom of the
base and the top of the accent, and ¢’ is the amount by which the depth of the
base character is increased.

If the placement of the underhanging version of an accent were strictly sym-
metrical with the overhanging version, then we would have ¢/ = ¢ and thus
0" = 4. However, the placement is not symmetric since for aesthetic reasons we
have chosen to set ¢’ = .2ex, which seems in general to be a little less than
the corresponding o. Unfortunately, this means we can’t calculate §’ accurately
since there is no way to deduce 7 (or, equivalently, o) from the font metric
information available to us within TEX.!

This leaves us in a bit of a bind, since it means there is no way to calculate
the depth accurately. In despair, I've decided just to pretend that §' = § for
now.

Finis
The usual \endinput to ensure that random garbage at the end of the file
doesn’t get copied by docstrip.

\endinput

1By exploiting symmetries present in some fonts, one can calculate 7 for some of the accents
in those fonts, but this doesn’t help us much since both ¢ and n vary between accents.

