Chapter one

The First Chapter

Exercise 1	Compute	the deriva	tive of the	following f	unction:	
		f(x) = si	$\ln((\sin x)^2)$			

The solution of this exercise is on page 4.

Exercise 2	Compute the derivative of the following function:
	$f(x) = \sin((\sin x)^2)$

The solution of this exercise is on page 4.

Chapter two

The Second Chapter

Exercise 3	Compute	e the derivat	tive of the fo	ollowing fun	ction:
	Ī				
		$f(x) = (x^2)$	$(+1)\sqrt{x^4+1}$	1	

The solution of this exercise is on page 4.

2.1 Solutions of the Exercices

Solutions to the Exercises of Chapter two

Solution	1	T	he	der	ivat	ive	is:											
	f'	(x)	= (\sin	((si)	(n x)	$^{2}))$	′ =	\cos	((si	n x	$)^{2})$	$\cdot 2s$	$\sin x$	c co	s x		

Exercise 1 is on page 1.

Solution	2	Т	he	der	ivat	ive	is:											
	f'	(x)	= (\sin	((si)	n x)	$^{2}))$	′ =	\cos	((si	n x	$)^{2})$	$\cdot 2 s$	$\sin x$	c co	s x		

Exercise 2 is on page 1.

Solutions to the Exercises of Chapter two

Sol	uti	on	3	Т	he	der	ivat	ive	is:												
		f'	(x)	=	$((x^2$	2+	$1)_{\mathbf{N}}$	$\sqrt{x^4}$	+	$\overline{1})'$	= 2	x	$\sqrt{x^4}$	+ 1	+	$2x^3$	$\frac{(x^2}{\sqrt{x^4}}$	+	1)		
																V	<i>x</i> ⁺	+ 1			

Exercise 3 is on page 3.