
The xifthen package
Josselin Noirel∗

https://github.com/JosselinNoirel/xifthen

5th November 2015

Abstract
This package implements new commands that can be used within the first

argument of ifthen’s \ifthenelse to test whether a string is void or not, if a
command is defined or equivalent to another. It includes also the possibility to
make use of the complex expressions introduced by the package calc, together
with the ability of defining new commands to handle complex tests. This package
requires the ε-TEX features.

Contents
What’s new 1

ifthen’s interface 2
Declaring and setting booleans . 2
Executing conditional code . 2

New tests 3

Examples 4

What’s new
1.1 Now \cnttest and \dimtest accept <= and >=.

• I renamed \terminateswith in \endswith.

1.2 Corrected a bug related to a bad interaction between new tests and ifthen’s
replacement macro (credits go to MPG & P. Albarède).

1.3 Removed a spurious space (thanks to Ulrike Fisher).

1.4.0 Removed the reliance on the \etex package, following an exmail exchange with
David Carlisle and Maïeul Rouquette. (I also updated the documentation and
pushed the files on GitHub.)

∗This document corresponds to version v1.4.0 (2015/11/05) of xifthen.sty.

1

https://github.com/JosselinNoirel/xifthen

ifthen’s interface
Declaring and setting booleans
You can declare boolean (presumably in the preamble of your document) with

\newboolean{〈boolean〉}

where 〈boolean〉 is a name made up of alphanumeric characters. For instance,

\newboolean{appendix}
\first{appendix}

Then your boolean is ready to be set with

\setboolean{〈boolean〉}{〈truth value〉}

where 〈truth value〉 can be true or false.

Executing conditional code
The general syntax is inherited of that of the package ifthen:

\ifthenelse{〈test expression〉}{〈true code〉}{〈false code〉}

Evaluates the 〈test expression〉 and executes 〈true code〉 if the test turns out to be true
and 〈false code〉 otherwise. ifthen provides the tests explained in the next paragraphs.

Value of a boolean You can use the value of a boolean you declared, or the value of
a primitive boolean of TEX1

\boolean{〈boolean〉}

Tests on integers To test whether an integer is equal to, strictly less than, or strictly
greater than, you write the expression straightforwardly.

〈value1〉 = 〈value2〉

〈value1〉 < 〈value2〉

〈value1〉 > 〈value2〉

\isodd{〈number〉}

Tests on lengths There exist similar tests for the lengths, but you need in this case
to surround the whole expression with \lengthtest.

\lengthtest{〈dimen1〉 = 〈dimen2〉}

\lengthtest{〈dimen1〉 < 〈dimen2〉}

\lengthtest{〈dimen1〉 > 〈dimen2〉}

Tests on commands You can test if a command is undefined2.

\isundefined{〈command〉}
1 The primitive booleans include: mmode (Are we in math mode?), hmode (Are we in horizontal

mode?), vmode (Are we in vertical mode?), etc.
2 This test differs from \@ifundefined in that it takes a real command—and not a command name—as

argument, and also in that command which is let equal to \relax is not considered undefined.

2

Tests on character strings You want to know whether two character strings are
equal? Use:

\equal{〈string1〉}{〈string2〉}

Remark that the two arguments are fully expanded. In other words, it is the result of
the expansion of the macros that is compared. This behaviour also entails a moving
argument and you should protect fragile command to avoid bizarre errors3.

Building more elaborated expressions You can build more sophisticated expressing
using the \AND (conjunction), \OR (disjunction), and \NOT (negation) operators4.

〈expression1〉 \AND 〈expression2〉

〈expression1〉 \OR 〈expression2〉

\NOT 〈expression〉

The evaluation is lazy, meaning that if you write

〈expression1〉 \AND 〈expression2〉

then 〈expression2〉 won’t be evaluated if 〈expression1〉 is true5.
There is not precedence rules: the argument is read from left to right and \NOT

applies to the very next test. When the precedence must be changed you can use the
parentheses:

\(〈expression〉\)

New tests
After this brief review of ifthen’s principles, we introduce the new tests provided by
xifthen.

Tests on integers One of the drawback of TEX’s tests and of \ifthen’s as well, is
the impossibility to use calc’s syntax in it. The \numexpr primitive of ε-TEX somehow
allows to overcome this difficulty but it is not well documented and normal users are
certainly more familiar with the capabilities offered by calc. The xifthen package allows
to use calc-valid expressions via the new test \cnttest. The syntax is as follows:

\cnttest{〈counter expression1〉}{〈comparison〉}{〈counter expression2〉}

It evaluates the two counter expressions, compares them, and returns the value of the
test. The comparison can be one of the following sequences <, >, =, <=, or >=.

Tests on lengths The similar test has been designed for the lengths and dimensions:

\dimtest{〈dimen expression1〉}{〈comparison〉}{〈dimen expression2〉}

It evaluates the two dimension expressions, compares them, and returns the value of the
test. The comparison can be one of the following sequences <, >, =, <=, or >=.
3 Practically, the fact that the content is expanded, means that if the macro \bar is defined as

\baz{o}, and the command \baz is defined as f#1#1, then \equal{\bar}{foo} turns out to be true,
because \bar eventually expands into foo. This is usually the desired behaviour.

4 Lowercase versions of these commands also exist but we advise the user to stick to the uppercase
ones because \or is part of TEX’s syntax.

5 The devil is in the details, however: ifthen works by reading its argument twice. The tests are
evaluated on the second pass, but the expansion is performed on the first one, regardless of the
truth value.

3

Tests on commands We define a companion of \isundefined that uses a command
name rather than a command6.

\[1,syntax]isnamedefinedcommand name

Returns true if the command \〈command name〉 is defined7.
Sometimes, you need to compare two macros \foo and \bar and test whether they

are actually the same macro.

\isequivalentto{〈command1〉}{〈command2〉}

Corresponds to the \ifx test: it returns true when the two commands are exactly
equivalent (same definition, same number of arguments, same prefixes, etc., otherwise
false is returned).

Tests on character strings Very often, we see people using \[2]equal#1 in their
command definitions (for instance, to test whether an optional argument had been passed
to their macro). A more efficient test can be used:

\isempty{〈content〉}

Returns true if 〈content〉 is empty. It is essentially equivalent to \equal{〈content〉}{}
except that the argument of \isempty isn’t expanded and therefore isn’t affected by
fragile commands8.

It is possible to test whether a substring appears within another string9.

\isin{〈substring〉}{〈string〉}

Sometimes, you need to check whether a string ends with a particular substring. This
can be achieved using10:

\endswith{〈string〉}{〈substring〉}

Building more elaborated expressions It is then possible to create new tests with:

\newtest{〈command〉}[n]{〈test expression〉}

Surprisingly, a simple \newcommand would not work. The \newtest macro defines a
command 〈command〉 taking n arguments (no optional argument is allowed11 consisting of
the test as specified by 〈test expression〉 that can be used in the argument of \ifthenelse.

Examples
Let’s illustrate the most important features of xifthen with the following problem: if we
want to test whether a rectangle having dimensions l and L meets the two following
conditions: S = l × L > 100 and P = 2(l + L) < 6012:
6 If you are stuck with the distinction between ‘command’ and ‘command name’, let me explain it

further with an example: the command name of the command \foo is foo. This is sometimes more
convenient to use the command name than the name. Still, this functionality is probably intended
more for experienced programmers who want to use the niceties of ifthen and xifthen.

7 Uses \ifcsname...\endcsname internally and not \@ifundefined.
8 Internally, it uses \unexpanded and ifmtarg.
9 Uses \in@ and \ifin@ internally.
10 For compatibility reasons, there exist a command unfortunately called \terminateswith that

performs the same test but it is deprecated.
11 No optional argument is allowed because the macro needs to be expanded in the first pass and that

optional arguments avoid that.
12 Note that, because within the arguments of \cnttest the calc is used, you must use real parentheses

(and) and not \(and \).

4

\newtest{\condition}[2]{%
\cnttest{(#1)*(#2)}>{100}%
\AND
\cnttest{((#1)+(#2))*2}<{60}%

}

Then \ifthenelse{\condition{14}{7}}{TRUE}{FALSE} returns FALSE because 14 ×
7 = 98 and 2 × (14 + 7) = 42, while \ifthenelse{\condition{11}{11}}{TRUE}{FALSE}
returns TRUE because 11 × 11 = 121 and 2 × (11 + 11) = 44.

Now a list of typical uses of xifthen’s capabilities:
4 − 1 < 4: true 4 < 4: false 4 + 1 < 4: false
4 − 1 ≤ 4: true 4 ≤ 4: true 4 + 1 ≤ 4: false
4 − 1 = 4: false 4 = 4: true 4 + 1 = 4: false
4 − 1 ≥ 4: false 4 ≥ 4: true 4 + 1 ≥ 4: true
4 − 1 > 4: false 4 > 4: false 4 + 1 > 4: true

4 pt − 1 pt < 4 pt: true 4 pt < 4 pt: false 4 pt + 1 pt < 4 pt: false
4 pt − 1 pt ≤ 4 pt: true 4 pt ≤ 4 pt: true 4 pt + 1 pt ≤ 4 pt: false
4 pt − 1 pt = 4 pt: false 4 pt = 4 pt: true 4 pt + 1 pt = 4 pt: false
4 pt − 1 pt ≥ 4 pt: false 4 pt ≥ 4 pt: true 4 pt + 1 pt ≥ 4 pt: true
4 pt − 1 pt > 4 pt: false 4 pt > 4 pt: false 4 pt + 1 pt > 4 pt: true

\ifthenelse{\isempty{}}{true}{false} true
\ifthenelse{\isempty{ }}{true}{false} true
\ifthenelse{\isempty{ foo }}{true}{false} false

\ifthenelse{\endswith{foo.}{.}}{true}{false} true
\ifthenelse{\endswith{foo!}{.}}{true}{false} false

\ifthenelse{\isin{foo}{foobar}}{true}{false} true
\ifthenelse{\isin{Foo}{foobar}}{true}{false} false

\ifthenelse{\cnttest{10 * 10 + 1}>{100}}{true}{false} true
\ifthenelse{\cnttest{10 * 10 + 1}>{100 * 100}}{true}{false} false

\ifthenelse{\isequivalentto{\usepackage}{\RequirePackage}}{true}{false} true
\ifthenelse{\isequivalentto{\usepackage}{\textit}}{true}{false} false

\ifthenelse{\isnamedefined{@foo}}{true}{false} false
\ifthenelse{\isnamedefined{@for}}{true}{false} true

5

	What's new
	ifthen's interface
	Declaring and setting booleans
	Executing conditional code

	New tests
	Examples

