
Typesetting BSI VDM with LATEX

Mario Wolczko
Dept. of Computer Science

The University
Manchester M13 9PL

U.K.
mario@cs.man.ac.uk, ...!uknet!man.cs!mario

09 June 1992
Version 3.01

Contents

1 Overview 2

2 Using vdm—General Points 3

3 Typesetting formulas 5
3.1 The formula Environment . 6
3.2 Constructions . 7

3.2.1 The formbox Environment 9
3.3 Other General Points about Formulas 9

4 Typesetting data types 11

5 How to Typeset Functions 13
5.1 Invariants . 14

6 How to Typeset Operations 14

7 Proofs 15

8 Customising the Style 17
8.1 Changing the Spacing . 17
8.2 Controlling Line and Paragraph Breaks 18
8.3 Unforeseen Changes . 19

9 Installing the vdm files 20

10 New vdm commands (introduced for the bsi version) 20

1

11 Acknowledgements 21

1 Overview

This document describes a style option, vdm, for use with LATEX. The purpose
of vdm is to make the typesetting of VDM specifications easy. Other goals are:

• To enable users of vdm to communicate their specifications to others, pos-
sibly in a variety of concrete syntaxes, without having to change their
source files

• To enable a user of vdm to concentrate on his1 specifications, and ignore
the detailed layout as much as possible. A side effect of this is that the
effort required to improve layout is concentrated in one place, within the
vdm macros.

(This version of the vdm style option uses the bsi concrete syntax. Any document
prepared using earlier versions is still accepted, but the way it is typeset will
match more closely the bsi standard concrete syntax. There are also a few
additional commands (summarised at the end). Note that this is not a complete
style file for all of bsi vdm.)

But enough evangelising. Let’s get to the the real meat. This document is
broken up into the following sections:

• General points about using vdm

• Typesetting formulas

• How to typeset data types

• How to typeset functions

• How to typeset operations

• How to typeset proofs

• How to tailor/extend the system for your own application.

You should definitely read the first two sections—then you’ll know roughly what
you’re in for, and whether you want to continue. The remaining sections can
be read as and when you need them.

In keeping with the best traditions of TEX documentation, paragraphs that contain
material that is not essential for novices, but vital if you want to parameterise or
extend the system, are in smaller type, like this one.

Just to give a preliminary example, here is some output from vdm, and the
corresponding input:

1Read ‘his/her’ for every occurence of ‘his’.

2

dec :Oop-set×Oop m−→ Object → Oop m−→ Object

dec(ptrs , om) �
if ptrs = { }
then om
else let gone = {p ∈ ptrs | RC (om(p)) = 1} in

let om ′ = gone −� om in
let om ′′ = om ′ † {p �→ μ(om ′(p),RC �→ RC − 1)

| p ∈ ptrs − gone} in
dec(

⋃{elemsBODY (om(p)) | p ∈ gone}, om ′′)

DESTROYPTR (Obj ,Ptr :Oop)

ext wr OM : Oop m−→ Basic Object
pre ptr ∈ elemsBODY (om(obj))

post om = ↼−om † {obj �→ μ(om(obj),BODY �→ BODY − {ptr})}

\begin{vdm}
\begin{fn}{dec}{ptrs,om} \\
\signature{

\setof{Oop} \x \mapof{Oop}{Object} \to \mapof{Oop}{Object}
}
\If ptrs = \emptyset
\Then om
\Else \Let gone = \set{p \in ptrs | RC(om(p)) = 1} \In

\Let om’ = gone \dsub om \In
\Let om’’ = om’ \owr

\map{p \mapsto \chg{om’(p)}{RC}{RC\minus 1}
| p \in ptrs \diff gone} \In

dec(\Union\set{\elems{BODY(om(p))} | p \in gone}, om’’)
\Fi
\end{fn}

\begin{op}[DESTROYPTR]
\args{ Obj, Ptr : Oop }
\ext{ \Wr OM : \mapof{Oop}{Basic_Object} }
\pre{ ptr \in \elems{BODY(om(obj))} }
\post{ om = ~{om} \owr \map{ obj \mapsto

\chg{om(obj)}{BODY}{BODY \diff \set{ptr}}}}
\end{op}
\end{vdm}

2 Using vdm—General Points

To get at vdm, include vdm as a document style option, e.g.:

3

\documentstyle[12pt,vdm]{report}

To the best of my knowledge, the use of vdm does not conflict with any of the other
document styles, except when something has been redefined. An attempt will be made
to document all such redefinitions.

Once vdm has been included, you can then use the vdm environment. For exam-
ple,

\begin{vdm}
....

\end{vdm}

All specification material should be placed within the vdm environment. The
use of vdm only affects text within the vdm environment, except for the following
global changes (which are only relevant when in math or display math mode):

1. The mathcodes of a. . . z and A. . . Z have been changed. In plain English,
this means that when you type letters in math mode the inter-letter spac-
ing may be different than it would be had you not included vdm as an
option.2 This is because LATEX math mode is usually tuned for single let-
ter identifiers, as used by mathematicians for millenia. However, you and
I both know that most meaningful identifiers have more than one letter
in them, so vdm provides better spacing for them. As an example, if you
type $identifier$, LATEX would normally print identifier, whereas the
use of vdm will yield identifier .

If you really want to use the ‘normal’ inter-letter spacing, say \defaultMathcodes.

2. Underscore gives you an underscore, and not a subscript. If you want a
subscript use @, e.g., x0 is typed x@0, or use TEX’s \sb macro. An @ is
still an @ when not in math mode. Occasionally you may find that an @
in math mode doesn’t give you a subscript (particularly when used with
moving arguments). Should this happen, you are advised to use TEX’s
\sb macro, e.g., $x\sb{0}$.

If you don’t use underscores much, and you want to use _ for subscripts, you can
say \underscoreon (and \underscoreoff to make it revert to its usual meaning
in vdm).

3. - typesets a hyphen, and not a minus sign. VDM specifications usually
contain a lot more long-identifiers than subtractions, so on the whole this
alteration should save effort. If you really want to do a single subtraction
sign, use \minus. If you find the default is inappropriate, you can revert
to the original behaviour using \mathminus; \textminus is the inverse.
Example: a-b \ne\mathminus a-b gives a-b �= a − b.

2This is not the case if you are using PSLATEX, as that does not distinguish text italic from
math italic.

4

4. | gives you a |, and not a |. Do you see the difference? No? The for-
mer goes between things, e.g., {x | p(x)}, while the latter is a delimiter,
e.g., |x |. In VDM, most people use the former more than the latter, so
again this seems reasonable. If you really want a | (the second kind), say
\vert.

5. In TEX and LATEX ~ has always been a tie (a space between words at which
the line is never broken). Well in vdm it isn’t. ~x will give you a ↼−x . For

long identifiers, such as
↼−−
long , say ~{long}. Note that this only applies in

math mode; elsewhere a ~ is still a tie.

6. In math mode, the double quote character ’’ is actually a macro. Placing
text between pairs of double quotes causes that text to be set in the normal
text font. For example, $x="a variable"$ gives you x = a variable.

If you want to change the font used for text placed between quotes, redefine
the command \mathTextFont. By default it is defined to be \rm (\mathrm for
the New Font Selection Scheme).

7. The following macros have been altered in a non-trivial way: \forall,
\exists (see later).

When you typeset some VDM within the vdm environment, by default it is set in from
the left margin by an amount equal to \parindent, the indentation at the beginning
of each paragraph. If you want to change this, change the value of \VDMindent, e.g.:

\setlength{\VDMindent}{0cm}

will make your specs come out flush left. This document has been typeset with
\VDMindent equal to 3 × \parindent.

Similarly, the right hand margin is controlled by a parameter called \VDMrindent.
By default it is also set to \parindent.

You can have a particular line spacing in force within the vdm environment. The
spacing within a vdm environment is dictated by the \VDMbaselineskip command.
Note that this is not a length, but a command. By default it expands to \baselineskip

so that the line spacing is that of the surrounding text, whatever size that may be. To
make it smaller, you may want to say

\renewcommand{\VDMbaselineskip}{0.8\baselineskip}

for example.

3 Typesetting formulas

Most of the text you enter within vdm environments will be in TEX’s math mode,
but VDM does its best to conceal this fact from you, so that you should rarely,
if ever, have to type a dollar sign. However, several new features have been

5

provided for the typesetting of logical formulas. Firstly, operators with sensible
names have been provided: use \Iff, \Implies, \Or, \And and \Not for the
operators ⇔,⇒,∨,∧ and ¬ . (To retain compatibility with a previous version,
\iff, \implies, \and and \neg are still provided, but \or is not.)

A major change has come in the area of quantified expressions. In VDM,
they have very well-defined forms, so the LATEX sequences \forall and \exists
have been re-defined to take arguments. For example, to get

∃x ∈ S · p(x)

type

\exists{x \in S}{p(x)}

Note the separating dot that was put in automatically. If you want one of these
dots by itself, you can have one by saying \suchthat.

In addition, two new quantifiers, \unique and \nexists, have been added:

∃! x ∈ S · p(x)

� x ∈ S · p(x)

\unique{x \in S}{p(x)}
\nexists{x \in S}{p(x)}

Additionally, to complement \unique, there is \uniqueval. This is the
so-called “iota-function” that returns the unique value, if there is one:

ι x ∈ S · p(x)

\uniqueval{x \in S}{p(x)}

If you want to use the old versions of \forall and \exists they are available under
the pseudonyms of \Forall and \Exists.

If you find that the body of the quantified expression is too long to fit
comfortably on a line, there are *-forms of the above commands that place the
body of the quantified expression on a new line, slightly indented. For example,

∃x ∈ S ·
p(x) ∧ q(x) ∨ ¬ p(x) ⇒ r(x) ∧ S (x)

can be obtained with

\exists*{x \in S}{p(x) \And q(x) \Or \Not p(x)
\Implies r(x) \And S(x)}

If you need “Strachey” brackets, e.g., M [[e]], place the material to appear
within the brackets within \term{ ... }, thus: $M\term{e}$.

A special control sequence, \const, is available for constants. To get, for
example, Yes | No, type \const{Yes}|\const{No}.

If you don’t like the font that constants are set in, you can change them by redefining
the command \constantFont. By default it expands to \sc.

3.1 The formula Environment

Occasionally you may want a formula on its own, between paragraphs of text,
say. Normally, the provided environments and commands suffice, but sometimes

6

they don’t. If you need an odd equation to stand on its own, use the formula
environment:

\begin{formula}
x = 10
\Or \forall{i \in \Nat}{i \ne 10 \Implies i \ne x}
\end{formula}

The formula environment is similar to displayed math mode, except: formulas
are indented by \VDMindent, not \mathindent, and line breaks can be made
using \\. Also, within the formula environment everything appears flush left,
as opposed to being centred.

3.2 Constructions

A particularly nice feature of vdm is that you can typeset multi-line constructions
such as those in the earlier example without having to worry about, say, lining up
“thens” and “elses” with “ifs”. In the following definitions, whenever you see the
term 〈math-mode-expression〉, you should type an expression as if in math mode,
but you needn’t put dollar signs in. All of the constructions described below
can be used where a 〈math-mode-expression〉 is required. Each construction is
shown by example; the output on the left results from the input on the right.
Also note that each macro name begins with an upper-case letter. TEX and
LATEX frequently use the lower-case variants for completely unrelated things.
Naturally, chaos will ensue if you mix the names up.

Typesetting an if is done using \If 〈math-mode-expression〉\Then 〈math-
mode-expression〉\Else 〈math-mode-expression〉\Fi.

if x ∈ S
then S − x
else { }

\If x\in S
\Then S \diff x
\Else \emptyset
\Fi
\end{verbatim}

If you nest \Ifs then you must enclose inner \Ifs within braces:

if . . .
then if . . .

then . . .
else . . .

else

\If ...
\Then{

\If ...
\Then ...
\Else ...
\Fi

}\Else
\Fi

You are advised to place the extra braces exactly as above; don’t let extra-
neous spaces intervene between the keywords and the braces.

The \If macro always starts a new line for the then and else parts. If you
want TEX to try to choose line breaks, use \SIf instead:

7

if a = b then c = d + e
else p = q + r + s + t + u

\SIf a=b
\Then c=d+e
\Else p=q+r+s+t+u
\Fi

let. . . in constructions are done in a similar way: \Let 〈math-mode-
expression〉 \In 〈math-mode-expression〉, and \SLet 〈math-mode-expression〉
\In 〈math-mode-expression〉.

let x = f (y, z) in
g(x) + h(x)

\Let x=f(y,z) \In
g(x)+h(x)

let x = f (y, z) in x 2

\SLet x=f(y,z) \In{x^2}

Notice that \SLet takes a second argument, which is part of the same ‘para-
graph’, where \Let does not.

The typesetting of a cases clause is more complicated. It takes the form:

\Cases{ 〈math-mode-expression〉}
from-〈math-mode-expression〉& to-〈math-mode-expression〉\\
from-〈math-mode-expression〉& to-〈math-mode-expression〉\\
. . .
\Otherwise{ 〈math-mode-expression〉}
\Endcases

The \Otherwise field is optional. This construction follows a general pattern
that is common in vdm input: lists of things are separated by \\s, and subfields
are separated by &s or :s.

In reality, there is another, optional argument, after the \Endcases. If you were to
try typesetting something like

(... var = \Cases ...

\Endcases)

you’d find the closing right parenthesis in an unexpected place (on the same line as
the =, in fact). To get text to the right of the \Endcases you can place an optional
argument within brackets after it:

(... var = \Cases ...

\Endcases[)]

Admittedly, this looks a little strange, but it does work.

Here is an example of \Cases in action:
cases select(x) of

nil→ {}
mk -Lst(hd , tl)→ {hd} ∪ elems tl
others x
end

8

\Cases{ select(x) }
\nil & \emptyset \\
mk-Lst(hd,tl) & \set{hd} \union \elems{tl}
\Otherwise{ x }
\Endcases

Note the \\ is a separator and not a terminator—you don’t need one after
the last item. Also, the \Otherwise can appear anywhere between the \Cases{}
and the \Endcases, but it will always be typeset last.

Some people prefer the selectors to appear lined up on the left, some on the right. If
you want them to appear on the left, say \leftCases; if you want them on the right,
say \rightCases. The scope of the \leftCases and \rightCases commands is the
current group. By default, you get \rightCases.

3.2.1 The formbox Environment

Occasionally you might find that you want to put a line break in a place that
can’t handle \\. For example, if you have a \Cases command and the rhs of
a particular case is too big, you can’t use \\ to break the line directly, as it
will be interpreted as the separator between cases. Then you must the formbox
environment. It is similar to the formula environment in that you can put all
sorts of things in it, but it can be used within other constructions, unlike the
formula environment, which can only be used at the outermost level.

This example should convey the general idea:

\Cases{ f(x) }
mk-Very_long_constructor(foo,bar) &

{\begin{formbox}
long_predicate_with(foo) \\
\And long_predicate_with(bar)

\end{formbox}}
...

cases f (x) of
mk -Very long constructor(foo, bar)→ long predicate with(foo)

∧ long predicate with(bar). . .
end

Note the extras braces around the formbox; these are required to “hide” the \\
from the \Cases.

3.3 Other General Points about Formulas

\\ will3 always start a new line. Sometimes this is done in addition to some
other function (as in the \Cases macro, where it delimits a particular case), but

3For ‘will’ read ‘should’.

9

you should be able to use \\ almost anywhere to force a line break. Indeed,
sooner or later you’ll want to typeset a long formula and TEX will not be able
to break the line sensibly, or will choose an unpleasant break. In this case you’ll
have to use \\.

Frequently you need to indent things within multi-line formulas. To help
you do this, a command is provided which breaks a line, and indents the next
line by an amount which you can supply (in units of ems). The \T command
takes a single argument that controls how much the next line will be indented:

a ∧ b
⇒ b ∧ a

∨ d ∧ e

a \And b \T2
\Implies b \And a \T1
\Or d \And e

Along similar lines is the \R command. This does a line break, like \\, but
then pushes the formula on the next line as far to the right as it can:

(a ∧ b ⇒ b ∧ a)
∨ d ∧ e

(a \And b \Implies b \And a) \R
\Or d \And e

Beware: it may end up pushing it further to the right than you expected!
This is A Bug, and Will Not Be Fixed, so you’ll have to work around it.

The \If, \Let, etc., constructions are all unusual in that it’s impossible to
typeset something sensibly to the right of them. For example, if you try

\exists{x \in S}{
\If x=0 \Then S=Q \Else S=P \Fi}

\Or S=\emptyset

then you’ll get
∃x ∈ S · if x = 0

then S = Q
else S = P

∨ S = { }

which is unlikely to be what you wanted.
You should also remember that where vdm wants a 〈math-mode-expression〉,

TEX will be placed in math mode. This is usually the right thing to do, but
occasionally you might want a natural language comment to appear there. In
this case you’ll have to insert an \mbox or a \parbox depending on whether
your comment might span one or more lines:

if the condition is true
then do the true part
else do the false part

\If \mbox{the condition is true}
\Then \mbox{do the true part}
\Else "do the false part"
\Fi

The else-part illustrates how quotes can be used an an abbreviation for
\mbox{...} within math mode.

Finally, all the constructions above will not break at a page boundary. This
means that you’re in big trouble if you want to typeset a three-page \Cases. The
only statement I can make to mitigate this is: you shouldn’t have expressions

10

that complicated in the first place—who do you expect to read them? Remem-
ber: “truth is beauty”, so if your formulas are not beautiful, then chances are
they’re not true either.

4 Typesetting data types

The following table lists the primitive types and values available:

{0, 1, . . .} N \Nat
{1, 2, . . .} N1 \Natone,\Nati
{. . . ,−1, 0, 1, . . .} Z \Int
Rationals Q \Rat
Real numbers R \Real
{true, false} B \Bool
Truth true \true,\True
Falsehood false \false,\False
Nil nil \nil

If you need a new keyword, you can create one easily. For example, if your
favourite brand of logic has “maybe” as a value, you can say

\makeNewKeyword{\maybe}{maybe}

and henceforth \maybe is a valid control sequence that produces the text
maybe. The text of the second argument to \makeNewKeyword can be any-
thing; it doesn’t have to match your control sequence name.

If you don’t like the font that keywords are set in, you can change it by redefining
the command \keywordFontBeginSequence. By default it expands to \sf.

The following type-related commands are provided:

Output Input
x -set \setof{x} set type constructor
{a, b, c} \set{a,b,c} set enumeration
{ } \emptyset the empty set
x ∗ \seqof{x} seq. type constructor
[a, b, a, c] \seq{a,b,a,c} seq. enumeration
[] \emptyseq the empty sequence
x m−→ y \mapof{x}{y} map type constructor
x m←→ y \mapinto{x}{y} one-one map type
{p �→ x} \map{p\mapsto x} map enumeration
{ } \emptymap the empty map

Here are the relevant operators:

11

∈ \in † \owr � \sconc

/∈ \notin � \dres len l \len{l}

⊂ \subset � \rres hd l \hd{l}

⊆ \subseteq −� \dsub tl l \tl{l}

∩ \inter,\intersection; −� \rsub elems l \elems{l}
T

\Inter,\Intersection; dom m \dom{m} inds l \inds{l}

∪ \union rng m \rng{m} dconc l \Conc{l}
S

\Union min s \Min{s} cons(h, t) \cons{h,t}

− \diff,\difference; max s \Max{s}

card s \card{s}

If you invent a new monadic keyword operator (like dom , etc.), then you can have
vdm define for you a control sequence which switches font, and puts the right spacing
in. For example,

\newMonadicOperator{\inv}{inv}

will define the \inv control sequence to print inv. Henceforth you can say, e.g.,
\inv{Foo}. All such sequences take one argument (they are monadic, after all).

You can define a new type using \type{type-name}{type}:

Complex = R× R

\type{Complex}{\Real\x \Real}

Composites types can be typeset using the composite environment:

compose Datec of
day : {1, . . . , 366},
year : {1583, . . . , 2599}

end

\begin{composite}{Datec}
day :\set{1,\ldots,366}, \\
year:\set{1583,\ldots,2599}

\end{composite}

There is also a composite* environment (and an equivalent \scompose con-
trol sequence) that places the entire composite type on a single line:

compose Celsius of R end

\begin{composite*}{Celsius}
\Real

\end{composite*}

compose Celsius of R end

\scompose{Celsius}{\Real}

‘Records’ can be defined using the record environment:

\begin{record}{record-type-name}
field-name : field-type \\
. . .
\end{record}

The colons are used as sub-field separators.

PERSON :: NM : Char∗

FEM : B

\begin{record}{PERSON}
NM : \seqof{Char} \\
FEM : \Bool

\end{record}
If the definition is short, you may prefer to use a short form:

12

\defrecord{PERSON}{
NM : \seqof{Char} \\
FEM : \Bool

}

Some people prefer the field names to appear lined up on the left, some on the right.
If you want them to appear on the left, say \leftRecord; if you want them on the
right, say \rightRecord. The scope of the \leftRecord and \rightRecord commands
are the current group. By default, you get \rightRecord.

Updating fields of composites using the μ-function can be specified using
\chg:

μ(p,FEM �→ ¬man(q))

\chg{p}{FEM}{\Not man(q)}

Notice that the μ, parentheses, comma and �→ were inserted automatically.

5 How to Typeset Functions

Typesetting λ-expressions is easy:

λx , y · x 2 + y2

\LambdaFn{x,y}{x^2+y^2}

As with \forall, \exists and \unique, \LamdbaFn has a *-form that places
the body of the function below and to the right:

λx , y, z ·
(x 2 + y2 + z 2)

1
2

\LambdaFn*{x,y,z}{
(x^2+y^2+z^2)^{\frac12}}

There is also a fn (function) environment for defining named functions. It
has the following structure:

\begin{fn}{name-of-function}{ argument-list }
\signature{signature-of-function}
〈optional precondition〉
〈optional postcondition〉
body of function (a 〈math-mode-expression〉)
\end{fn}

See the third page for an example. The \signature is optional and can be
placed anywhere within the body—it will always be typeset before the body.
Useful macros within the \signature are: \x and \to, which yield × and
→. Note that you can also enter functions defined implicitly with pre- and
post-conditions; see the next section on how to enter them.

All of the material in the section on formulas is relevant within the body of
the function.

If you frequently intersperse your function definitions with text (and
you should), you can save some typing by using the vdmfn environment.

13

\begin{vdmfn} . . . \end{vdmfn} is equivalent to \begin{vdm}\begin{fn}
. . .\end{fn}\end{vdm}.

The fn environment also has a *-form that does not insert parentheses
around the argument list. For example:

MP [[p]]ρσ � . . .

\begin{fn*}{MP}{
\term{p}\rho\sigma}

...
\end{fn*}

If you require the � symbol by itself, then you can get it by saying \DEF.

5.1 Invariants

To typeset an invariant on a composite object, use the following structure:

D :: day : Day
year : Year

where
inv -D(mk -D(d , y)) �

is-leapyr(y) ∨ d ≤ 365

\begin{record}{D}
day : Day \\
year : Year

\end{record}
\where
\begin{fn}{inv-D}{mk-D(d,y)}
is-leapyr(y) \Or d \le 365

\end{fn}

6 How to Typeset Operations

Operations are typeset within the op environment. The general structure is:

\begin{op}[〈name-of-operation〉]
\args{〈list-of-arguments〉}
\res{〈result(s)〉}
\ext{〈list-of-externals〉}
〈pre-condition〉
〈post-condition〉
\end{op}

The order of the various parts within the op environment is not important;
they will always be printed in a canonical style (see page 3 for an example).

Any of \args, \res, \ext, 〈pre-condition〉 or 〈post-condition〉 may be
omitted. \begin{vdmop} is an abbreviation for \begin{vdm}\begin{op};
\end{vdmop} is an abbreviation for \end{op}\end{vdm}.

The 〈name-of-operation〉 can be any one-line expression; it is typeset in math
mode. An alternative way of specifying the name of the operation is to omit the
optional argument (within []), and use \opname{〈name-of-operation〉}, any-
where within the body of the op environment.

The 〈list-of-arguments〉 is a 〈math-mode-expression〉 that can span multiple
lines; force a newline with \\. If present it is placed within parentheses.

The 〈result(s)〉 is also any 〈math-mode-expression〉. It is typeset to the right
of any arguments.

14

The 〈list-of-externals〉 takes the following form:

\ext{
〈optional \Rd or \Wr〉 〈external-name(s)〉 : 〈external-types〉 \\
〈optional \Rd or \Wr〉 〈external-name(s)〉 : 〈external-types〉 \\

. . .
}

Alternatively, if the list of externals is long (say, more than five lines) the
externals environmment can be used:

\begin{externals}
〈optional \Rd or \Wr〉 〈external-name(s)〉 : 〈external-types〉 \\
〈optional \Rd or \Wr〉 〈external-name(s)〉 : 〈external-types〉 \\

. . .
\end{externals}

Some people prefer the externals identifiers to appear lined up on the left, some
on the right. If you want them to appear on the left, say \leftExternals; if you
want them on the right, say \rightExternals. The scope of the \leftExternals

and \rightExternals commands are the current group. By default, you get
\leftExternals.

The 〈pre-condition〉 and 〈post-condition〉 take similar forms:

\pre{〈math-mode-expression〉}
or

\begin{precond}
〈math-mode-expression〉
\end{precond}

and

\post{〈math-mode-expression〉}
or

\begin{postcond}
〈math-mode-expression〉
\end{postcond}

Use the \begin. . . \end style if the 〈math-mode-expression〉 is longer than a few
lines. All of the constructs mentioned in the section on formulas can be used
within pre- and post-conditions.

7 Proofs

Here’s an example of typesetting proofs in the “natural deduction” style.

15

from E1 ∨ E2

1 from E1

infer E2 ∨ E1 ∨-I(h1)
2 from E2

infer E2 ∨ E1 ∨-I(h2)
infer E2 ∨ E1 ∨-E(h,1,2)

\begin{proof}
\From E@1 \Or E@2 \\

1 \From E@1 \\
\Infer E@2 \Or E@1 \by \vee-I(h1) \\

2 \From E@2 \\
\Infer E@2 \Or E@1 \by \vee-I(h2) \\

\Infer E@2 \Or E@1 \by \vee-E(h,1,2) \\
\end{proof}

Proofs are embedded within the proof environment. (A proof does not have
to be within a vdm environment.) Each line of the proof ends with \\. Lines
that begin a subproof have \From after the equation number. Lines that end a
subproof have \Infer after the equation number. Other lines have \& after the
equation number (see next example). If you don’t need an equation number,
just omit it, but you must have one of either \From, \Infer or \& on each proof
line. If you want to include a justification of a particular proof line at the right
hand end of the line, type it after a \by. \by is optional; you needn’t include it
if you don’t need a justification.

Points worth bearing in mind:

• You are automatically placed in math mode after the \From, \Infer or
\&; the math mode ends at the next \by or \\.

• You cannot break a line in the middle simply by using \\ before \by; you
must use separate proof lines to split a formula.

• You are within a tabbing environment within a proof, so you can use all
the usual tabbing commands (\=, \>, etc.) to line things up across proof
lines. Note that you will explicitly have to enter math mode again after
any of these commands though.

Here’s another example:

16

from ∀x ∈ X · E (x); s ∈ X
1 ¬∃x ∈ X · ¬E (x) ∀-defn(h)
2 ¬¬E (s/x) ¬∃-E(1,h)

infer E (s/x)

\begin{proof}
\From \forall{x\in X}{E(x); s\in X} \\

1 \& \Not\exists{x\in X}{\Not E(x)} \by \Forall-defn(h)\\
2 \& \Not\Not E(s/x) \by $\Not\Exists$-E(1,h)\\
\Infer E(s/x) \\

\end{proof}

The amount of space used by the proof number can be changed by changing the
length \ProofNumberWidth. The distance from the left margin to the proof number is
dictated by \ProofIndent.

8 Customising the Style

Some people are never satisfied. We all know that it’s true. In order to cater
for those who aren’t satisfied with the output from vdm, some attempt has been
made to allow a limited degree of customisation by the user. In particular,
you can alter some of the internal spacing chosen by vdm, and even have your
own macros called at chosen places within vdm’s macros. Naturally, you are not
advised to try this unless you feel you have some idea of what you want, and
what you are doing. In this section we list the things that you can change, in
order of increasing difficulty.

8.1 Changing the Spacing

In several places, essentially arbitrary spacings have been chosen by the author.
The dimensions of these spaces are given by rubber lengths.4 If you want to
change any of them, use LATEX’s \setlength or \addtolength commands. For
example,

\setlength{\postHeaderSkip}{13.33pt plus 2pt minus 1pt}

The plus and minus parts of a length let you say how much that length can grow or
shrink by. For example, 12pt plus 2pt minus 1pt means that the length will be in
the range 11–14pt, with 12pt as its “natural” length.

The spaces in question all appear around vdm items such as operations, and
in between major parts of such items. The names of the lengths should convey

4See the LATEX book for an explanation of rubber lengths

17

where they apply. The following table lists all the lengths, and their default
settings. Note that an ex is about the height of an “x” in the current font, and
an em is about the width of an “M” in the current font.

Length Default size Used within
\preOperationSkip 2ex + 0.5ex − 0.2ex op env
\postOperationSkip 2ex + 0.5ex − 0.2ex
\postHeaderSkip .5ex + .2ex − .2ex
\postExternalsSkip .5ex + .2ex − .2ex
\postPreConditionSkip .5ex + .2ex − .2ex
\preFunctionSkip 2ex + .5ex − .2ex fn env
\postFunctionSkip 2ex + .5ex − .2ex
\betweenSignatureAndBodySkip 1.2ex + .3ex − .2ex
\betweenFunctionAndPreSkip 1.2ex + .3ex − .2ex
\preTypeSkip 1.2ex + .5ex − .3ex type command
\postTypeSkip 1.2ex + .5ex − .3ex
\preCompositeSkip 1.2ex + .5ex − .3ex composite env
\postCompositeSkip 1.2ex + .5ex − .3ex
\preRecordSkip .75ex + .3ex − .2ex record env
\postRecordSkip .75ex + .3ex − .2ex
\preFormulaSkip 1.2ex + .5ex − .3ex formula env
\postFormulaSkip 1.2ex + .5ex − .3ex
\preProofSkip .75ex + .3ex − .2ex proof env
\postProofSkip .75ex + .3ex − .2ex

8.2 Controlling Line and Paragraph Breaks

TEX uses the notion of penalties to decide where line and page breaks go. Various
values of penalty are used at places within vdm to control breaks. To fully
understand how to choose breaks, read The TEXbook. However, put simply,
penalties are whole numbers in the range −10000 to 10000. A value of 10000
means “never break here,” and a value of −10000 means “always break here.”
Values in between penalise or encourage breaking proportionally, so that, e.g., a
value of −500 encourages a break, but by no means forces it. A value of zero is
neutral.

To assign to a penalty \p, write \p=1000, for example. The table below list
the penalties used by vdm, and their default values.

18

Penalty Name Default Value Where Used
\preOperationPenalty 0 op env
\preExternalPenalty 2000
\prePreConditionPenalty 800
\prePostConditionPenalty 500
\postOperationPenalty -500
\preFunctionPenalty 0 fn env
\betweenSignatureAndBodyPenalty 500
\betweenFunctionAndPrePenalty 1000
\postFunctionPenalty -500
\preRecordPenalty 0 record env
\postRecordPenalty -100
\preProofPenalty -100 proof env
\postProofPenalty 0
\preFormulaPenalty -100 formula env
\postFormulaPenalty 0

8.3 Unforeseen Changes

It is a truism that no matter how good the designer of a piece of software is,
he can never foresee all of its uses. In this case, the author is quite certain
that people will use vdm for all sorts of things apart from typesetting VDM
specifications. To cater for those who find that vdm does almost, but not quite,
what they want, a number of hooks have been left in place. These hooks are
macros, which at the moment do little or nothing, but which can be redefined
by users to change the basic operation of vdm(see the vdmindex style for one
such use). Needless to say, anyone wishing to redefine a hook should already
be competent in the ways of LATEX at least, and probably TEX as well. Rather
than trying to explain what the hooks do, and where they do it, the user should
look through the commented version of vdm (usually stored as vdm.doc) and
figure it out for himself. Below are listed all the provided hooks, their default
definitions, and where they are used.

19

Name of hook Default definition
op environment

\preOperationHook \penalty\preOperationPenalty�

\betweenHeaderAndExternalsHook \penalty\preExternalPenalty�

\betweenExternalsAndPreConditionHook \penalty\prePreConditionPenalty�

\betweenPreAndPostConditionHook \penalty\prePostConditionPenalty�

\postOperationHook \penalty\postOperationPenalty�

fn environment
\preFunctionHook \penalty\preFunctionPenalty�

\betweenSignatureAndBodyHook \penalty\betweenSignatureAndBodyPenalty�

\betweenFunctionAndPreHook \vskip-\lastskip�

\vskip\betweenFunctionAndPreSkip

\penalty\betweenSignatureAndBodyPenalty�

\postFunctionHook \penalty\postFunctionPenalty�

record environment
\preRecordHook \penalty\preRecordPenalty�

\postRecordHook \penalty\postRecordPenalty�

proof environment
\preProofHook \penalty\preProofPenalty�

\postProofHook \penalty\postProofPenalty�

formula environment
\preFormulaHook \penalty\preFormulaPenalty�

\postFormulaHook \penalty\postFormulaPenalty�

9 Installing the vdm files

Place the file vdm.sty in your standard directory for LATEX style files (your
system administrator will know where this is). If you have the AMS fonts,
change the appropriate line in vdm.sty (see instructions at the head of the file).

10 New vdm commands (introduced for the bsi

version)

• There is a new keyword, \rem.

• Operations can also have an error condition part, typeset after the post-
condition. The error condition is placed in an errcond environment. An
alternative short form, \err, is also available, which works in the same
way as \pre and \post.

In support of this new part, there is a hook,
\betweenPostAndErrConditionHook, defined to be \penalty
\preErrConditionPenalty (the default penalty is 500). The pre-
ceding white space is defined by \preErrConditionSkip (default .5ex +
.2ex − .2ex).

• \Others is an alias for \Otherwise.

• Sequents are supported using the sequent command, thus:

20

A � B
Truth,Beauty, eq-intr �

Truth = Beauty

\sequent{A}{B}
\sequent*{Truth,Beauty,eq-intr}
{Truth=Beauty}

• Optional items can be typeset using \Opt, thus:

[
fred

]
\Opt{fred}

• There are two new monadic operators, \abs and \merge.

• A non-empty sequence type can be defined using \neseqof, thus:

N+

\neseqof{\Nat}

• Restricted types (those with invariants) can be typeset, with or without
initialisation, using \ritype and \rtype, thus:

Partition = (N-set)-set
inv inv -Partition(p)

Dict = B×(Letter m−→ Dict)
inv true
init (true, { })

\rtype{Partition}
{\setof{(\setof{\Nat})}}
{inv-Partition(p)}

\ritype{Dict}
{\Bool \x (\mapof{Letter}{Dict})}
{\true}
{(\true,\emptymap)}

Accompanying these commands are \betweenTypeAndInvSkip (default
.5ex + .3ex − .2ex) and \betweenInvAndInitSkip (same default).

• Record types may also have invariants and initial states attached, using
the \inv and \init commands within the record environment, thus:

D :: day : Day
year : Year

inv (mk -D(d , y))�
is-leapyr(y) ∨ d ≤ 365

init day = 40∧ year = 1962

\begin{record}{D}
day : Day \\
year : Year

\inv{(mk-D(d,y)) \DEF
is-leapyr(y) \Or d \le 365}

\init{day=40 \And year=1962}
\end{record}

To go with these are \betweenRecordAndInvHook,
\betweenInvAndInitHook, \betweenRecordAndInvSkip (default .5ex +
.2ex − .1ex), and \betweenInvAndInitSkip (same default).

11 Acknowledgements

Many people have passed on useful suggestions and comments about vdm and
this documentation; many thanks to all of them. In particular I would like

21

to acknowledge the extensive testing done by Lynn Marshall while preparing
her thesis, and her helpful comments and ideas, and the numerous worthwhile
discussions with Cliff Jones. Cliff, in particular, deserves the highest commen-
dation for bravery, in actually using these macros in his book. Thanks to David
Carlisle for helping with the conversion to TEX 3.

22

