
url.sty version 3.4

Donald Arseneau∗

2013-09-16

The package defines a form of \verb command that allows linebreaks at certain
characters or combinations of characters, accepts reconfiguration, and can usually
be used in the argument to another command. It is intended for formatting email
addresses, hypertext links, directories/paths, etc., which normally have no spaces.
The font used may be selected using the \urlstyle command, and new url-like
commands may be defined using \urldef. This package does not make hyper-links!
For that purpose, see the hyperref package (or some other deprecated ones).

Usage Conditions

\url{ } The argument must not contain unbalanced braces. If
used in the argument to another command, the \url
argument cannot contain any “%”, “#”, or “^^”, or end
with “\”.

\url| | where “|” is any character not used in the argument
and not “{” or a space. The same restrictions ap-
ply as above except that the argument may contain
unbalanced braces.

\xyz for the defined-url “\xyz”; such a command can be
used anywhere, no matter what characters it contains.

The “\url” command is fragile, and its argument is likely to be very fragile, but a
defined-url is robust.

1 Package options

Package Option: obeyspaces

Ordinarily, all spaces are ignored in the url-text. The “[obeyspaces]” option
allows spaces, but may introduce spurious spaces when a url containing “\” charac-
ters is given in the argument to another command. So if you need to obey spaces

∗Thanks to Robin Fairbairns for documentation conversion!

1

you can say “\usepackage[obeyspaces]{url}”, and if you need both spaces and
backslashes, use a defined-url.

Package Option: hyphens

Ordinarily, breaks are not allowed after “-” characters because this leads to
confusion. (Is the “-” part of the address or just a hyphen?) The package option
“[hyphens]” allows breaks after explicit hyphen characters. The \url command
will never ever hyphenate words.

Package Option: spaces

Likewise, given the “[obeyspaces]” option, breaks are not usually allowed
after the spaces, but if you give the options “[obeyspaces,spaces]”, \url will
allow breaks at those spaces.

Note that it seems logical to allow the sole option “[spaces]” to let
input spaces indicate break points, but not to display them in the
output. This would be easy to implement, but is left out to avoid(?)
confusion.

Package Option: lowtilde

Normal treatment of the ~ character is to use the font’s “\textasciitilde”
character, if it has one (or claims to). Otherwise, the character is faked using a
mathematical “\sim”. The “[lowtilde]” option causes a faked character to be
used always (and a bit lower than usual).

Package Option: allowmove

This option suppresses the test for \url being used in a so-called moving
argument (check “fragile command”). Using it will enable \url to function in more
contexts, but when it does fail, the error message may be incomprehensible.

2 Defining a defined-url

Take for example the email address “myself%node@gateway.net" which could not
be given (using “\url” or “\verb”) in a caption or parbox due to the percent sign.
This address can be predefined with

\urldef{\myself}\url{myself%node@gateway.net} or
\urldef{\myself}\url|myself%node@gateway.net|

and then you may use “\myself” instead of “\url{myself%node@gateway.net}”
in an argument, and even in a moving argument like a caption because a defined-url
is robust.

2

3 Style

You can switch the style of printing using “\urlstyle{xx}”, where “xx” can be
any defined style. The pre-defined styles are “tt”, “rm”, “sf” and “same” which all
allow the same linebreaks but use different fonts — the first three select a specific
font and the “same” style uses the current text font. You can define your own
styles with different fonts and/or line-breaking by following the explanations below.
The “\url” command follows whatever the currently-set style dictates.

4 Alternate commands

It may be desireable to have different things treated differently, each in a predefined
style; e.g., if you want directory paths to always be in typewriter and email addresses
to be roman, then you would define new url-like commands as follows:

\DeclareUrlCommand〈command〉{〈settings〉}
\DeclareUrlCommand\email{\urlstyle{rm}}
\DeclareUrlCommand\directory{\urlstyle{tt}}.

In fact, this \directory example is exactly the \path definition which might be
pre-defined by the package. Furthermore, basic \url is defined with

\DeclareUrlCommand\url{},

without any settings, so it uses whatever \urlstyle and other settings are already
in effect.

You can make a defined-url for these other styles, using the usual \urldef
command as in this example:

\urldef{\myself}{\email}{myself%node.domain@gateway.net}

which makes \myself act like \email{myself%node.domain@gateway.net}, if
the \email command is defined as above. The \myself command would then be
robust.

5 Defining styles

Before describing how to customize the printing style, it is best to mention some-
thing about the unusual implementation of \url. Although the material is textual
in nature, and the font specification required is a text-font command, the text is
actually typeset in math mode. This allows the context-sensitive linebreaking, but

3

also accounts for the default behavior of ignoring spaces. (Maybe that underlying
design will eventually change.) Now on to defining styles.

To change the font or the list of characters that allow linebreaks, you could
redefine the commands \UrlFont, \UrlBreaks, \UrlSpecials, etc., directly in
the document, but it is better to define a new ‘url-style’ (following the exam-
ple of \url@ttstyle and \url@rmstyle) which defines all of \UrlBigbreaks,
\UrlNoBreaks, \UrlBreaks, \UrlSpecials, and \UrlFont.

5.1 Changing font

The \UrlFont command selects the font. The definition of \UrlFont done by the
pre-defined styles varies to cope with a variety of LATEX font selection schemes,
but it could be as simple as \def\UrlFont{\tt}. Depending on the font selected,
some characters may need to be defined in the \UrlSpecials list because many
fonts don’t contain all the standard input characters.

5.2 Changing linebreaks

The list of characters after which line-breaks are permitted is given by the two com-
mands (list macros) \UrlBreaks and \UrlBigBreaks. They consist of repeating
\do\c for each relevant character c.

The differences are that ‘BigBreaks’ typically have a lower penalty (more easily
chosen) and do not break within a repeating sequence (e.g., “DEC::NODE”). (For
gurus: ‘BigBreaks’ are treated as mathrels while ‘Breaks’ are mathbins; see The
TeXbook, p. 170.) The result is that a series of consecutive ‘BigBreak’ characters
will break at the end and only at the end; a series of ‘Break’ characters will break
after the first and after every following pair ; there will be no break between a
‘Break’ character and a following ‘BigBreak’ char; breaks are permitted when
a ‘BigBreak’ character is followed by ‘Break’ or any other char. In the case of
http:// it doesn’t matter whether : is a ‘Break’ or ‘BigBreak’ — the breaks
are the same in either case; but for (now ancient) DECnet addresses using :: it
was important to prevent breaks between the colons, and that is why colons are
‘BigBreaks’. (The only other ‘BigBreak’ character is, optionally, the hyphen; slashes
are regular ‘Break’s.)

It is possible for characters to prevent breaks after the next following character
(this is used for parentheses). Specify these in \UrlNoBreaks.

You can allow some spacing around the breakable characters by assigning

\Urlmuskip = 0mu plus 1mu

(with mu units because of math mode). You can change the penalties used for
BigBreaks and Breaks by assigning

4

\mathchardef\UrlBreakPenalty=100
\mathchardef\UrlBigBreakPenalty=100

The default penalties are \binoppenalty and \relpenalty. These have such odd
non-LATEX syntax because I don’t expect people to need to change them often.
(The \mathchardef does not relate to math mode; it is only a way to store a
number without consuming registers.)

5.2.1 Arbitrary character actions

You can do arbitrarily complex things with characters by specifying their defi-
nition(s) in \UrlSpecials. This makes them ‘active’ in math mode (mathcode
"8000). The format for setting each special character c is: \do\c{〈definition〉},
but other definitions not following this style can also be included.

Here is an example to make “!” inside \url force a line break instead of being
treated verbatim (it uses LATEX’s \g@addto@macro):

\makeatletter \g@addto@macro\UrlSpecials{\do\!{\newline}}

Here is another overly-complicated example to put extra flexible muglue around
each “/” character, except when followed by another “/”, as in “http://”, where
extra spacing looks poor.

% what we’ll insert before and after each (lone) slash:
\newmuskip\Urlslashmuskip
\Urlslashmuskip=2mu plus2mu minus2mu

% change what / does:
\g@addto@macro\UrlSpecials{\do\/{\Urlspaceyslash}}

% need to look ahead:
\def\Urlspaceyslash{\futurelet\Urlssnext\finishUrlspaceyslash}

\def\finishUrlspaceyslash{%
\mskip\Urlslashmuskip % extra space before
\mathchar8239 % "202f, i.e., binary op, \fam, / char
% if we see //, eliminate the extra space to taste:
\ifx\Urlssnext/\mskip-\Urlslashmuskip
\else\mskip\Urlslashmuskip \fi

}

If this sounds confusing . . . well, it is! But I hope you won’t need to redefine
breakpoints — the default assignments seem to work well for a wide variety of
applications. If you do need to make changes, you can test for breakpoints using
regular math mode and the characters “+=(a”.

5

6 Yet more flexibility

You can also customize the presentation of verbatim text by defining \UrlRight
and/or \UrlLeft. An example for ISO formatting of urls surrounded by < > is

\DeclareUrlCommand\url{\def\UrlLeft{<url:\ }\def\UrlRight{>}%
\urlstyle{tt}}

The meanings of \UrlLeft and \UrlRight are not reproduced verbatim. This lets
you use formatting commands there, but you must be careful not to use TEX’s
special characters (\^_%~#$&{} etc.) improperly. You can also define \UrlLeft to
reprocess the verbatim text, but the format of the definition is special:

\def\UrlLeft#1\UrlRight{ . . . do things with #1 . . . }

Yes, that is #1 followed by \UrlRight then the definition (a TEX macro with
delimited arguments). For example, to produce a hyperTEX hypertext link:

\def\UrlLeft#1\UrlRight{%
\special{html:}#1\special{html:}}

Using this technique, url.sty can provide a convenient interface for performing
various operations on verbatim text. You don’t even need to print out the argument!
For greatest efficiency in such obscure applications, you can define a null url-style
where all the lists like \UrlBreaks are empty.

Please note that this method is not how the hyperref package manages urls for
its \url command, even though it makes use of url.sty. Instead, hyperref’s \url
reads its argument in a less-verbatim manner than described above, produces its
hyperlink, and invokes \nolinkurl to format the text. \nolinkurl is the \url
command descibed herein.

6

