
The qrcode package:

Quick Response code

generation in LATEX
∗

Anders Hendrickson
St. Norbert College, De Pere, WI, USA

anders.hendrickson@snc.edu

January 8, 2015

1 Introduction

The proliferation of smartphones and tablets has led to the widespread use of
Quick Response (QR) codes, which encode numeric, alphanumeric, kanji, or bi-
nary information into a square matrix of black and white pixels called modules.
Although QR codes can encode any information up to almost three kilobytes, their
most common use is as physical hyperlinks: a mobile device scans a printed QR
code, decodes a URL, and automatically points a browser to that location.

It is natural to want to include QR codes in certain LATEX documents; for
example, one may want to direct the reader of a printed page to related in-
teractive content online. Before now, the only LATEX package for producing
QR codes was the immensely flexible pst-barcode. As that package relies on
pstricks, however, it can be difficult to integrate with a pdfLATEX workflow,1

and a pdfLATEX user may not want the extra overhead just to produce a QR
code. If one wants to avoid pstricks, a LuaTEX solution was proposed at
http://tex.stackexchange.com/questions/89649/, and a plainTEX solution
can be found at http://ktiml.mff.cuni.cz/~maj/QRcode.TeX, but until now
no LATEX package had been available that did not call on outside machinery.

The qrcode package, in contrast, implements the QR code algorithm using only
TEX and LATEX commands, so it should work with any LATEX workflow. Because
it draws the squares constituting a QR code using the TEX primitive \rule, there

∗This document corresponds to qrcode v1.51, dated 2015/01/08.
1 The auto-pst-pdf or pstool packages can make this possible by automatically running

LATEX → dvips → ps2pdf → pdfcrop for each barcode generated in pstricks, so long as the
user is able and willing to enable \write18 in pdflatex and install Perl. Judging by questions
on tex.stackexchange.com and latexcommunity.org, this is a significant hurdle for some users.
Moreover, according to http://tex.stackexchange.com/questions/72876/ this workflow may
have trouble if the QR code is in a header.

1

http://ctan.org/pkg/qrcode

is no need to load any graphics package whatsoever. For a user who merely wants
a QR code, this is the simplest solution.

2 Usage

The package provides just one command, \qrcode, with the following syntax:\qrcode

\qrcode[〈options〉]{〈text to be encoded〉}

For example, \qrcode[hyperlink,height=0.5in]{http://www.ctan.org} pro-
duces

Although the most common use of QR codes is as URLs, the 〈text to be encoded〉
can be almost any typed text. The few exceptions to this are described in section
2.3.

2.1 Package Options

When the hyperref package is loaded, by default \qrcode assumes its argumentnolinks

is a URL and makes the QR code produced a hyperlink to that URL. This default
behavior may be changed by invoking the nolinks package option. For example,
most of the QR codes in this document are not in fact URLs, so this documentation
was typeset with \usepackage[nolinks]{qrcode}. The hyperlinks option is an
antonym to nolinks and is the default. These options have no effect if hyperref
is not loaded.

Creating QR codes for short URLs takes relatively little time.2 Because TEXdraft

final was designed for typesetting, not for extensive computations, however, if many
small QR codes or a single large one are required, the time spent can be quite
noticeable. To save compilation time while working on a large document, calling
the draft option causes the package not to compute QR codes, but merely to
insert placeholder symbols with no data. The final option is an antonym to
draft and is the default.

\documentclass{article}

\usepackage[draft]{qrcode}

\begin{document}

\qrcode[version=15]{Dummy code}

\end{document}

The placeholder symbol produced in draft mode will have the same size and
dimensions as the actual QR code.

2On this author’s laptop, even a 60-character URL (version 4, level M) adds only about 0.7
seconds of compilation time.

2

http://www.ctan.org

To conserve processing time, when \qrcode computes the binary matrix rep-
resenting a QR code, it saves that binary data as a string of 1’s and 0’s both in a
macro and in the .aux file. Thus if the same QR code is desired later in the docu-
ment, or upon the next run of LATEX, the QR symbol can be redrawn immediately
from the saved binary data.

There may be times when this is not desired; testing of this package is the chiefforget

example, but one might also have reason to believe that the .aux file contains bad
data. Invoking the forget package option causes \qrcode to calculate every QR
code anew, even if a QR code for that 〈text to be encoded〉, level, and version was
read from the .aux file or was already computed earlier in the document.

2.2 Options

Several options affect the appearance and encoding of the QR code; qrcode uses\qrset

the xkeyval package to handle the setting and processing of key-value pairs. The
following options may either be given as optional arguments to \qrcode or changed
within a TEX-grouping using the macro \qrset.

\qrcode{ABCD}

{\qrset{height=1cm}%

\qrcode{EFGH}}

\qrcode{IJKL}

The height=〈dimen〉 key sets the printed height (and width) of the QR code.height

The default value is 2cm.

\qrcode{ABCD}

\qrcode[height=1cm]{ABCD}

The QR code specification (ISO 18004:2006) includes four levels of encoding:level

Low, Medium, Quality, and High, in increasing order of error-correction capabail-
ity. In general, for a given text a higher error-correction level requires more bits of
information in the QR code. The key level=〈level specification〉 selects the mini-
mum acceptable level. The 〈level specification〉 may be L, M, Q, or H; the default is
M. It may happen that the smallest QR code able to encode the specified text at
the desired level is in fact large enough to provide a higher level of error-correction.
If so, qrcode automatically upgrades to the higher error-correction level, and a
message is printed in the log file.

QR codes range in size from 21×21 modules (“version 1”) to 177×177 modulesversion

(“version 40”), in steps of 4 modules. The package automatically selects the
smallest version large enough to encode the specified text at the desired error-
correction level. Nevertheless, there might be occasions when a specific version is
required; for example, perhaps a set of QR codes should have the same dimensions
for aesthetic reasons, even though some encode shorter texts than others. For

3

this reason, the key version=〈version specification〉 allows the user to specify a
minimum version number, from 1 through 40, for the QR code. Setting version=0

means “as small as possible”; this is the default. If the desired version is not
large enough to encode the text, the version will automatically be increased to
accommodate the text, and a message will be placed in the log file.

\qrcode{ABCD}

\qrcode[version=5]{ABCD}

\medskip \\

\qrcode[version=10]{ABCD}

\qrcode[version=20]{ABCD}

The QR specification states that a QR code should be surrounded by white-tight

padding space of a width equal to that of four modules. In many applications, a document
author is likely to provide sufficient spacing anyway (e.g., by placing the QR
code in a center environment, header, or \marginpar), so by default the qrcode

package adds no spacing. If the option padding is specified, however, the QR code
will automatically be surrounded with 4 modules’ worth of whitespace. The key
tight is an antonym of padding; the default is tight.

As described above, if the hyperref package is loaded, then the QR codeslink

nolink

\qrcode*

produced in a PDF document can be made into hyperlinks to their text. The
default behavior can be controlled with the options nolinks and hyperlinks, but
this default can be overridden for individual QR codes by invoking the options link
or nolink. Moreover, the starred version of the macro, \qrcode*, is a shorthand
equivalent to \qrcode[nolink].

\qrset{link, height=1.5cm}

\qrcode{http://www.ctan.org}

\qrcode[nolink]{This is not a URL.}

\qrcode*{Neither is this.}

2.3 Special characters

Many URLs can be processed by TEX with no hiccups, but not infrequently a
URL may contain the symbols %, #, ~, _, and &. Moreover, QR codes need not
just contain URL’s, so a user may wish to encode text containing ^, $, or spaces.
The qrcode package offers two ways of coping with these special characters.

First, the \qrcode command itself processes its 〈text to be encoded〉 in a limited
verbatim mode. The following characters will be encoded into the QR code as
typed:

$ & ^ _ ~ %

4

http://www.ctan.org

and line breaks as well.3 Conspicuously absent from this list are \, {, and }. This
is intentional, so that macros may be used within \qrcode to generate the 〈text to
be encoded〉 automatically. If these characters are desired, they may be obtained
by “escaping” them with an extra backslash.

\qrset{height=1.5cm}%

\qrcode{We can include #$&^_~%.}

\def\foo{bar}%

\qrcode{Set the \foo\ high.}

\qrcode{We must escape \\emph\{this\}.}

As with all verbatim modes, however, because TEX irrevocably sets catcodes
when it first encounters characters, this will not work if the \qrcode macro is
contained in another macro. If you call \qrcode inside an \fbox or a \marginpar,
for example, and if your URL contains one of those special characters, you will
either encounter error messages or (worse, because it is undetectable to the naked
eye) have the wrong QR code typeset. In this scenario, you can still include any
of the characters #$&^_~% \{} by escaping them with an extra backslash; so long
as they eventually pass unexpanded to \qrcode, they will produce the correct QR
code. A line break may be obtained with \?.

\fbox{qrcode[height=1cm]{\#\$\&\^_\~\?\%\ \\\{\}}}

3 Limitations and Cautions

• The QR specification includes modes for encoding numeric, alphanumeric, or
Kanji data more efficiently. This package does not (yet) offer those options.

• The QR specification offers ways to string lengthy data across multiple QR
codes. This package does not implement that possibility.

3Technically, when the input character ^^M (CR, charcode 13) is encountered, the character
^^J (LF, charcode 10) is placed into the QR code.

5

	Introduction
	Usage
	Package Options
	Options
	Special characters

	Limitations and Cautions

