" LICENSE "

This work (i.e., all the files in the 1txkeys manifest) may be distributed and/or modified under the conditions of the XTEX Project Public
License (LPPL), either version 1.3 of this license or any later version. The LPPL maintenance status of this software is ‘author-maintained.’
This software is provided ‘as it is,” without warranty of any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. (© MMXII

" SUMMARY "

The 1txkeys package provides facilities for creating and managing keys in the manner of the keyval and xkeyval packages, but it is intended
to be more robust and faster than these earlier packages. Yet it comes with many new functions.

The 1txkeys Package™*
A robust key parser for KTEX

Ahmed Musa!

6th February 2012

Contents
1 Introduction 2 3.11 Defining all types of key with one command 18
1.1 Motivation 4 3.11.1 Defining keys of common type . . . 20
3.12 Need-valuekeys 20
2 Package options 4 3.13 Cross-familykeys 21
3 Defining keys 6 | 4 Setting keys 24
3.1 Defining only definable keys 6 4.1 Setting definedkeys 24
3.2 Ordinarykeys 6 4.2 Setting ‘remaining’ keys 25
3.2.1 Ordinary keys that share the same 4.3 Setting aliasedkeys 25
attributeso 7 4.4 Usingkeypointers 26
3.3 Listkeys (liskeys) 7 4.5 Accessing the saved value ofakey 28
34 Commandkeys 8 4.6 Pre-setting and post-setting keys 28
3.4.1 Command keys that share the 4.7 Initializingkeys 30
same attributes 8 4.8 Launchingkeys 30
35 Stylekeys 8 4.8.1 Noninitialize and nonlaunch keys . . 31
3.5.1 Style keys that share the same at- 4.9 Handling unknown keys and options 31
tributes 10 L . .
3.6 Booleankeys 10 5 Checking if a key Is defined 33
3.6.1 Boc?lean keys that share the same 6 Disabling families and keys 33
attributes 11} 61 Disabling families 33
3.6.2 Bibooleankeys 11 6.2 Disablingkeyso 34
3.7 Switchkeys 12
3.7.1 Switch keys that share the same at- 7 Option and non-option keys 34
tributeso 12
3.8 Choicekeys 13 | 8 Handled keys 35
3.8.1 C'h0|ce keys that share the same at- 9 Reserving and unreserving key path or bases 36
tributes 15
3.9 Everydefaultvalueofakey 16 | 10 Bad key names 36
3.10 Defining boolean and command keys with
onecommand 16 | 11 Declaring options 37

* The package is available at http://mirror.ctan.org/macros/latex/contrib/ltxkeys/.
* This user manual corresponds to version 0.0.3 of the package.
1 The University of Central Lancashire, Preston, UK. amusa22@gmail.com.

http://mirror.ctan.org/macros/latex/contrib/ltxkeys/
http://mirror.ctan.org/macros/latex/contrib/ltxkeys/
mailto:amusa22@gmail.com

The ltxkeys package 6th February 2012

11.1 Options that share the same attributes . . 38 19.2 Checkinguserinputs 69
11.2 Declaring all types of option with one com- 19.3 Does a test string exist in a string? 70
mand 39 19.4 Does a given pattern exist in the meaning
ofamacro? 70
12 Executing options 40 19.5 \ifcase for arbitrary strings 70
. . 19.6 Is the number of elements from a sublist
13 Processing options , , . 40 foundinacsvlist>n? 72
131 Hoc?ks for "before” and “after’ processing 19.7 Is the number of elements from a sublist
OptioNS . . . 40 foundinatsvlist>n? 72
14 Key commands and key environments M 19.8 Is the number of elements in a csv list > n
14.1 Final tokens of every environment 43 or < 1?? """ o 72
14.2 Examples of key command and environment 43 199 What s t.he numerical order of an element
inacsvlist? 73
15 Declaring variables 48 19.10 List normalization 73
19.11 Parsing arbitrary csvor kv list 73
16 The \1txkeys command 49 19.12 Expandable listparser 74
19.13 Remove one or all occurrences of elements
17 Pathkeys 50 fromacsvlist 75
17.1 Defining pathkeys of common type 57 19.14 Replace one or all occurrences of elements
17.2 Shortened pathkeys commands 58 inacsvlist. 76
17.3 Defaultand currentpaths 60 19.15 Stripping outer braces 76
17.4 Nested pathkeys 63
17.5 Pathkeys as class or package options . . . 64 | 20 To-do list 7
17.6 ‘Classes’ in pathkeys command 64 20.1 Patching key macros 77
20.2 Modifying the dependant keys of an exist-
18 Keys with argument patterns 66 ingstylekey, 7
20.3 Togglekeys 77
19 Some miscellaneous commands 68
19.1 Trimming leading and trailing spaces . . . 68 | 21 Version history 78

1 Introduction

mHE LTXKEYS PACKAGE provides facilities for creating and managing keys in the manner of the
keyval and xkeyval packages, but it is intended to be more robust, faster, and provide more
functionality than these earlier packages. Its robustness emanates from, inter alia, its ability to
preserve braces in key values throughout parsing. The need to preserve braces in key values without
expecting the user to double braces emerges often in parsing keys. This is the case in, e.g., the
xwatermark package, but consider also the possibility of passing all the following options to a
package at once, where ‘layout’ is a package or class option or key*!:

1 \pkgoptions{/

2 optl=vall,opt2=val2,
3 layout={left=3cm,right=3cm,top=2.5cm,bottom=2.5cm,include=true}
4 }

As a practical example, the 1txtools package has the command \loadmodules with the syntax

*1 Tt should be noted that if a value of the demonstrative option layout is expandable, then the option can’t be
passed by \documentclass without preloading a robust options parser like kvoptions-patch, xkvltxp, catoptions,
or ltxkeys package. In fact, IATEX’s native options processor can’t handle options with values. The ltxkeys
package, unlike the xkeyval package, can be loaded before \documentclass.

|PAGE 2 OF 78]

The ltxkeys package 6th February 2012

| Braced key values

o

\loadmodules{(base)}{(modules)?}

where (modules) is a comma-separated (key)=(value) list. Like the above ‘layout’ option, each
key of \loadmodules may have a value (representing module options) that is itself a comma-
separated (key)=(value) list.

WEell, the type of robustness described here isn’t actually difficult to implement within the xkeyval
package. This is indeed what the keyreader package does: it patches some commands of the
xkeyval package to achieve this robustness. That said, we have to indicate that the ltxkeys
package implements this robustness intrinsically and it has many more features than the xkeyval
and keyreader packages.

In some respects, depending on the task at hand, the 1txkeys package is faster*? than the xkeyval
package mainly because it avoids character-wise parsing of key values (which is called ‘selective
sanitization’ by the xkeyval package*?). Moreover, it is faster to normalize a comma-separated
or (key)=(value) list than trim leading and trailing spaces of each element of the list (as the
xkeyval package does), since not all the elements of the list will normally have leading and trailing
spaces. In fact, the chances are that only less than 50 percent of the elements of the list will have
such spaces. As another example of optimization, anyone familiar with the implementation of
the xkeyval package would have noticed that the macro \XKV@srstate, which (in order to allow
\setkeys to be re-entrant) pushes and pops the states of some important functions in the package,
loops over all the functions both when pushing and popping. In the ltxkeys package, pushing
and popping functions together involve looping over the functions only once. And, unlike in the
xkeyval package, higher order functions are undefined as soon as they are no longer needed, to
avoid clogging up the stack. No additional looping is required for this.

In setting keys, the 1txkeys package loops over not only families, as in the xkeyval package, but
also over key prefixes. The same strategy applies when the 1txkeys package tries to establish if a
key is defined or not.

Normally, in the keyval and xkeyval packages it isn’t directly possible to have key macros with
delimited and/or multiple parameters. So you couldn’t submit ‘x and y’ as a key value and expect
any of these packages to split this value into two arguments for the key macro and execute the
key’s callback. This could only be done indirectly by the key’s author, within the key’s callback.
For example, the following isn’t directly possible by those packages:

6 \define@key [KV]{fam}{textsize}[5cm and 10cm]{’
7 \textwidth=#1 \textheight=#2

8 }

9 \setkeys [KV]{fam}{textsize=2.5cm and 8cm}

The 1txkeys package can compactly define and set all types of key with delimited and multiple
parameters for key macros. See section 18.

*2 Because of the multitude of functions provided by the 1txkeys package, it may actually slow down when execut-
ing some tasks, depending on the task at hand. The package option tracingkeys, for example, does slow down
processing. And automatically initiating keys after definition, as done by the commands \1txkeys@definekeys and
\1ltxkeys@declarekeys, also affects processing speed; so does ‘launching keys,” which first presets absent keys with
their default values before setting the current keys (i. e., keys whose values are provided by the user at the moment
of setting keys that belong to a family). Then, as in the xkeyval package, there are the commands for presetting
and post-setting keys.

*3 See here for the problems of parsing key-value pairs within babel.

|PAGE 3 OF 78]

http://www.latex-project.org/cgi-bin/ltxbugs2html?pr=babel/3523

The ltxkeys package 6th February 2012

While some user interfaces of the 1txkeys package are similar to those of the xkeyval package,
there are important differences in several areas of syntax, semantics, and internal implementation.
The 1txkeys package also provides additional facilities (beyond the xkeyval package) for defining
and managing keys. Several types of key (including ordinary keys, command keys, style keys, choice
keys, list keys, boolean and biboolean keys) can be efficiently created and managed. In the 1txkeys
package, the notions of ‘pre-setting’ and ‘post-setting’ keys are similar to those of the xkeyval
package. But the 1txkeys package introduces additional concepts in this respect: ‘initialized” and
‘launched’ keys. The latter are special preset keys. The pointer system of the xkeyval package,
which was available only at key-setting time, is now available also at key definition time. One more
type of pointer (\needvalue) has been introduced to require users of ‘need-value keys’ to supply
values for those keys.

Rather than simply issue an error for undefined keys when setting keys, the ltxkeys package
provides the ‘undefined keys’ and ‘undefined options’ handlers, which are user-customizable. Other
new concepts include ‘definable keys’, ‘cross-family keys’, ‘option keys’, ‘non-option keys’, ‘handled
keys’, ‘pathkeys’, ‘key commands’, ‘key environments’, accessing the saved value of a key outside
\setkeys or similar commands, and declaring multiple keys and options (of all genre) using only
one command. The notion of pathkeys is particularly interesting and powerful. Users more in-
terested in this concept and its applications can skip many sections of this guide on their way to
section 17.

Note 1.1 It is not advisable to alias the commands of the xkeyval package to the commands of
the 1txkeys package. There are many existing packages that rely on the xkeyval package and

aliasing commands that are used by other packages can cause confusion**.

1.1 Motivation

What are the raison d’etre and origins of the ltxkeys package? Well, I decided to write this
package as I grabbled with some practical problems of key parsing while developing version 1.5.0
of the xwatermark package. The tasks proved more challenging than I had initially thought and,
despite its commendable and widely deployed features, I found the xkeyval package inadequate
in some respects. As mentioned earlier, all the functions of the 1txkeys package can be employed
for general key management in I#TEX beyond the xwatermark package. Indeed, in many ways, the
ltxkeys package now goes far beyond the needs of xwatermark package. Many concepts and user
interfaces were introduced long after the requirements of the xwatermark package had been met.
The 1txkeys package can be used as a more robust and versatile replacement for the xkeyval
package, of course with modifications of names and some syntaxes. The xkeyval package has been
frozen since August 2008. Users familiar with pgfkeys package may also wish to explore what
ltxkeys package has to offer.

2 Package options

The package options are listed in Table 1. The package options can be passed via the commands
\documentclass*®, \RequirePackage or \usepackage as follows:

I Example: Package options I

10 \documentclass[tracingkeys,keyparser={|},pathkeys]{article}
11 or
12 \usepackage [tracingkeys,keyparser={|}] {1txkeys}

*4 A user of version 0.0.1 of the 1txkeys package had sought to do this.
*5 Passing 1txkeys package options via \documentclass implies that the package is loaded after \documentclass.
As mentioned elsewhere, the 1txkeys package can be loaded before or after \documentclass.

| PAGE 4 OF 78]

The ltxkeys package

6th February 2012

13

They can also be passed locally via the command \1ltxkeys@options:

| New macro: \ltxkeys@options |

\1ltxkeys@options{tracingkeys=false,keyparser={;3}}

Table 1: Package options. All the package options can also be changed
globally via \documentclass and locally through the control sequence

\1ltxkeys@options.

Option

tracingkeys

keyparser

keydepthlimit

reservenopath

allowemptypath

pathkeys

endcallbackline

Default

false

false

false

false

false

Meaning

The global boolean switch that determines if information
should be logged in the transcript file for some tasks in the
package.See note 1.1

The most user-relevant of the list parsers (i.e., item separat-
ors) used by internal loops in defining keys—mainly in the
macros \ltxkeys@definekeys, \ltxkeys@declarekeys and
\pathkeys.'?

This is used to guard against erroneous infinite re-entrance
of the package’s key-setting commands. The default value
of 4 means that neither of these commands can ordinarily be
nested beyond level 4.3

The ‘path’ (or roots or bases) of a key is the combination
of key prefix, key family and macro prefix, but when dealing
with ‘pathkeys’ (see section 17) the term excludes the macro
prefix. These can be reserved and unreserved by any user by
the tools of section 9. Subsequent users can, at their own
risk, override all previously reserved paths by enabling the
package’s boolean option reservenopath.

Allow the use of empty key prefix and family. This isn’t advis-
able but some pre-existing packages might have used empty
key prefixes and families.!*

Load the pathkeys package (see section 17).

At key-definition time, while in the callback of a key, implicitly
make \endlinechar equal to —1 (i.e., automatically insert
comment sign at each end of line). If enabled, this option
applies to all key-definition commands. The snag with this
is that, when enabled, the user has to remember to manually
provide explicit spaces that he/she might require at end of
lines.

Table 1 notes

1.1 The speed of compilation may be affected by this option, but it is recommended at the pre-production
stages of developing keys. The option provide some trace functionality and enables the user to, among
other things, follow the progress of the X TEX run and to see if a key has been defined and/or set/executed
more than once in the current run. The starred (x) variants of the commands \1txkeys@definekeys and
\1ltxkeys@declarekeys will always flag an error if a key is being defined twice, irrespective of the state
of the package option tracingkeys. The \ltxkeys@xxxkey variants (unlike the \ltxkeys@newxxxkey
variants) of key-defining commands don’t have this facility, and it may be desirable to know if and when
an existing key is being redefined.

1.2 Wherever the semicolon ‘;’ is indicated as a list parser in this guide, it can be replaced by any user-
specified one character parser via the package option keyparser. To avoid confusing the user-supplied
parser with internal parsers, it is advisable to enclose the chosen character in curly braces when submitting
it as a package option. The braces will be stripped off internally. Please note that some of the characters
that may be passed as a list parser may indeed be active; be careful to make them innocent before using

|PAGE 5 OF 78]

The ltxkeys package 6th February 2012

them as a list/key parser. My advice is that the user sticks with the semicolon ¢;’ as the key parser: the
chances of it being made active by any package is minimal. If you have the chosen parser as literals in
the callbacks of your keys, they have to be enclosed in curly braces.

1.3 The key-setting commands are \1txkeys@setkeys, \ltxkeys@setrmkeys and \ltxkeys@setaliaskey.
If you must nest these commands beyond level 4, you have to raise the keydepthlimit as a package
option. The option keystacklimit is an alias for keydepthlimit.

1.4 The use of an empty prefix will normally result from explicitly declaring the prefix as [1, rather than
leaving it undeclared. Undeclared prefixes assume the default value of KV. An empty family will result
from submitting the family as empty balanced curly braces {}. If keys lack prefix and/or family, there
is a strong risk of confusing key macros/functions. For example, without a prefix and/or family, a key
named width will have a key macro defined as \width, which portents sufficient danger.

3 Defining keys

3.1 Defining only definable keys

If the package option tracingkeys is enabled (i.e., turned true), the user can see in the transcript
file the existing keys that he has redefined with the \1txkeys@xxxkey variants of the key-defining
commands, which redefine existing keys without any default warning or error. The log file messages
being referred to here will be highlighted with the warning sign (!!). This is always desirable in
the preproduction stages of your project. However, instead of looking for these warning messages
in the log file, the user can use the \1txkeys@newxxxkey variants of the key-defining commands
to bar himself from redefining existing keys.

Subsequently we will mention the \1txkeys@newxxxkey variants of key-defining commands without
necessarily explaining what they mean, since their meaning is henceforth clear.

In the following, syntactic quantities in square brackets (e.g., [yyy]l) and those in parenthesis
(e.g., (yyy)) are optional arguments.

3.2 Ordinary keys

| New macros: \ltxkeys@ordkey, \ltxkeys@newordkey

1| \1txkeys@ordkey [(pref)]{(fam)}{(key)} [(dft)]{(cbk)}
15 \1ltxkeys@newordkey [(pref)]{(fam)}{(key)} [(dft)]{({cbk)}

These define a macro of the form \(pref)@(fam)@(key) of one parameter that holds the key func-
tion/callback (cbk). The default value for the ‘key prefix’ (pref) is always KV, as in the xkeyval
package. When (key) is used in a \1ltxkeys@setkeys command (see section 4) containing (key)=
(value), the macro \(pref)@(fam)@(key) takes the value as its argument and is then executed.
The given argument or key value can be accessed in the key’s callback (cbk) by using #1 inside
the function. The optional default value (dft), if available, will be used by \(pref)@(fam)@(key)
when the user hasn’t provided a value for the key at \1txkeys@setkeys. If (dft) was absent at
key definition and the key user hasn’t provided a value for the key, an error message is flagged*®.

Run the following example and do \show\cmdb and \show\cmdd:

| Example: \ltxkeys@ordkey |

16 \1ltxkeys@ordkey [KV]{fam}{keya} [\def\cmda#1{aa#1}]{\def\cmdb##1{#1bb##1}}
17 \1ltxkeys@ordkey [KV]{fam}{keyb} [\def\cmdc##1{cc##1}]{\def\cmdd##1{#1dd##1}}
18 \1ltxkeys@setkeys [KV] {fam}{keya,keyb}

*6 The commands \1txkeys@key and \ltxkeys@newkey aren’t user commands.

|PAGE 6 OF 78]

The ltxkeys package 6th February 2012

3.2.1 Ordinary keys that share the same attributes

The commands \1ltxkeys@ordkey and \ltxkeys@newordkey can be used to introduce ordinary
keys (keys) that share the same path*7 (key prefix, key family, and macro prefix) and callback
(cbk). All that is needed is to replace (key) in these commands with the comma-separated list
(keys). Because some users might prefer to see these commands in their plural forms when defining
several keys with the same callback, we have provided the following aliases. The internal coding
remains the same and no efficiency has been lost in generalization.

| New macros: \ltxkeys@ordkeys, \ltxkeys@newordkeys |

19 \1ltxkeys@ordkeys [(pref)]{(fam)}{(keys)} [(dft)]1{(cbk)}
20 \1ltxkeys@newordkeys [(pref)]{(fam)}{(keys)} [(dft)]{(cbk)}

3.3 List keys (liskeys)

| New macros: \ltxkeys@liskey, \ltxkeys@newliskey, etc.

21 \1ltxkeys@liskey [(pref)]{(fam)}{(key)} [(dft)]{(cbk)}

22 \1ltxkeys@newliskey [(pref)]{(fam)}{(key)} [(dft)]{(cbk)}

23 \1ltxkeys@liskeys [(pref)]{(fam)}{(keys)} [(dft)]{(cbk)}

24 \1ltxkeys@newliskeys [(pref)]{(fam)}{(keys)} [(dft)]{(cbk)}

List keys (or liskeys) are ordinary keys that accept a parser-separated list as a user input and
process each element of the list. The key’s callback (cbk) is then a list processor, but the key
author doesn’t have to design and suggest his own looping system. All he has to do is to pass
the parameter #1, representing the individual items of the list, to the key’s callback. The key will
internally do the loop and process the list (i.e., the user input).

Each item will be processed by the key’s callback. A liskey does accept any arbitrary list separator.
When the list separator differs from comma *,’; it has to be provided in the key’s callback as the
argument of the undefined command \listsep. And at key-setting time, user inputs that are
comma-separated should be enclosed in curly braces, otherwise they won’t be parsed properly and
errors will arise. An example follows. When setting the key, the user must then use the same list
separator. \1ltxkeys@lisnr gives the numerical order of each item in the list. The default value
and user input of a liskey should take cognizance of the list separator. Both the default value and
the user input of a liskey can be just one item, rather than a list; in which case the current input
is assumed to have just one item. Spurious leading and trailing spaces (i.e., unprotected spaces)
in the list are trimmed before the list is parsed by the key’s callback. Reminder: #1 in the key’s
callback refers to the individual item of the list, and not the entire list itself.

It is possible to call the command \ltxkeysbreak in the key’s callback (cbk) to break out
of the list processing prematurely. The unprocessed items will be handled by the command
\1ltsdoremainder, which can be redefined by the user. By default, it has the same meaning
as the IMTEX kernel’s \@gobble, meaning that it simply throws away the list remainder.

| Examples: \ltxkeys@liskey |
25 \1ltxkeys@liskey [KV]{fam}{keya}[aaa, bbbl{%

26 % ‘#1° here refers to the current item of the list:

27 \csndef{ww@\romannumeral\ltxkeys@lisnr}{#1}%

28 }

29 % User inputs that are comma-separated should be wrapped in braces:

*7 The key path is also called the key bases.

|PAGE 7 OF 78]

The ltxkeys package 6th February 2012

30 \1ltxkeys@setkeys [KV] {fam}{keya={vall, val2, val3}}

31 \1ltxkeys@liskey [KV]{fam}{keyb} [aaa; bbbl{Y%

32 \listsep{;}%

33 \ifnum\ltxkeys@lisnr>2\relax

34 \1ltxkeysbreak

35 \else

36 \csn@def{ww@\romannumeral\ltxkeys@lisnr}{#1}%
37 \fi

38 }

39 \1ltxkeys@setkeys [KV]{fam}{keyb=vall; val2; val3; val4}
10 \1ltxkeys@setkeys [KV]{fam}{keyb=val5}

3.4 Command keys

| New macros: \ltxkeys@cmdkey, \ltxkeys@newcmdkey |

2 \1ltxkeys@cmdkey [(pref)]{(fam)} [{(mp)]{(key)} [(dft)]{(cbk)}
a2 \1ltxkeys@newcmdkey [(pref)]{(fam)} [{(mp)]{(key)} [(dft)I{(cbk)}

Here, the optional quantity (mp) is the ‘macro prefix’. If (mp) is given, the command \(mp)(key)
will hold the current user input at key setting time; otherwise (i. e., if (mp) is absent) the user input
will be available in the macro \cmd(pref)@(fam)@(key). The command \(pref)@(fam)@(key) is the
‘key macro’ and will hold the callback (cbk). This type of key is traditionally called ‘command
key’ (a name that most likely emanated from the xkeyval package) because it gives rise to the
macro \(mp)(key), but in the 1txkeys package even boolean, style and choice keys are associated
with this type of macro.

3.4.1 Command keys that share the same attributes

The commands \1txkeys@cmdkey and \ltxkeys@newcmdkey can be used to introduce command
keys (keys) that share the same path or bases (key prefix, key family, and macro prefix) and
callback (cbk). Simply replace (key) in these commands with the comma-separated list (keys).
Some users might prefer to see these commands in their plural forms when defining several keys
with the same callback. We have therefore provided the following aliases:

| New macros: \ltxkeys@cmdkeys, \ltxkeys@newcmdkeys |

a3 \1ltxkeys@cmdkeys [(pref)]{(fam)} [(mp)]{(keys)} [(dft)]{(cbk)}
a1 \1ltxkeys@newcmdkeys [(pref)]{(fam)} [(mp)] {(keys)} [(dft)]{(cbk)}

3.5 Style keys

Style keys are keys with dependants (i.e., keys that are processed when the master is set). They
have the following syntaxes:

| New macros: \ltxkeys@stylekey, \ltxkeysOnewstylekey |

a5 \1ltxkeys@stylekey [(pref)]{(fam)} [(mp)]{(key)} [(dft)] ({(deps)){(cbk)}

46 \1txkeys@stylekey* [(pref)]{(fam)} [(mp)]{(key)} [(dft)] ({(deps)) {(cbk)}

a7 \1ltxkeys@newstylekey [(pref)]{(fam)} [(mp)]{(key)} [(dft)] ({(deps)){(cbk)}
18 \1ltxkeys@newstylekey* [(pref)]{(fam)} [(mp)]l{(key)} [(dft)] ({(deps)){(cbk)}

| PAGE 8 OF 78]

The ltxkeys package 6th February 2012

The dependants (deps) have the syntax:

| Dependant keys syntax

49 (
50 (keytype)/(keyname)/(dft)/(cbk);
51 another set of dependant; etc.
52)

The default value (dft) and the callback (cbk) can be absent in the syntax of style keys. (keytype)
can be ‘ord’ (ordinary key), ‘cmd’ (command key), ‘bool’ (boolean key), or ‘choice’ (choice key).

Dependant keys always share the same key prefix (pref), family (fam), and macro prefix (mp) with
the parent key.

If (mp) is given, the command \(mp)(key) will hold the current user input for the parent key; other-
wise the user input will be available in \style(pref)@(fam)@(key). The macro \(pref)@(fam)@(key)
will always hold the callback (cbk).

If the starred (x) variant is used, all undefined dependants will be defined and set on the fly as the
parent is being set. If the starred (*) variant isn’t used and undefined dependants occur, then an
error message will be flagged at the time the parent is being set.

Most of the time it is possible to access the parent key’s current value with \parentval. Within
(dft) and (cbk) of (deps), it is possible to refer to the parent key’s callback with its full macro
name (i.e., \(pref)@(fam)@(key)). \parentval is always available for use as the default value of
dependant keys, but it may be lost in the callbacks of dependant keys, because a dependant key,
once defined, may be set independent of, and long after, the parent key has been executed. It is,
therefore, more reliable to refer to the macro \(pref)@(fam)@(key)@value, which is recorded for
only the parent key of style keys and which holds the current user input for the parent key. The
macro \(pref)@(fam)@(key)@value is recorded only if it appears at least once in the attributes or
callbacks of dependant keys. The macro \(pref)@(fam)@(key)@value has a more unique name than
\(mp) (key) but they always contain the same value of a style key. As mentioned above, if (mp) is
not given, the user input for a style key will be available in the macro \style(pref)@(fam)@(key),
instead of \(mp)(key).

Note 3.1 The parameter ‘#1’ in the callback of parent key refers to the current value of the parent
key, while ‘#1’ in the callback of any dependant key refers to the current value of that dependant
key. Here is an example that defines and sets all undefined dependants on the fly:

| Examples: \ltxkeys@stylekey |

53 \1ltxkeys@stylekey* [KV]{fam} [mp@]{keyal} [{left}] (%

54 % ‘#1° here refers to the value of the DEPENDANT key

55 % at the time it is being set. Use \parentkey and \parentval

56 % here to access the parent key name and its current value:

57 ord/keyb/{right}/\def\y##1{#1##1};

58 % The default of ‘keyc’ is the current value of parent ‘keya’:
59 cmd/keyc/\parentval;

60 % Because \KV@fam@keya@value appears below, it will be saved

61 % when the parent key ‘keya’ is being set, otherwise it would be
62 % unavailable:

63 bool/keyd/true/\ifmp@keyd\edef \x##1{##1\KVefam@keya®value}\fi
64){%

65 % ‘#1° here refers to the value of the PARENT key at the time
66 % it is being set:

o7 \def\x##1{##1xx#1xx}

|PAGE 9 OF 78]

The ltxkeys package 6th February 2012

68 % Check the value of parent key:

69 \1ltxkeys@checkchoice[,] (\userinput\order){#1}{left,right,center}{}{%
70 \@latex@error{Invalid input ‘#1’}\@ehd

7 Y

72 }

In this example, \userinput corresponds to #1, and \order is the numerical order of the user input
in the nominations {left | right | center}. More about the commands \1txkeys@checkchoice
and \CheckUserInput can be found in subsection 19.2.

You can try setting keya as follows to see what happens to keys keyb, keyc and keyd:

| Example: \ltxkeys@setkeys |
73 \1ltxkeys@setkeys [KV]{fam}{keya=right}

The following will flag an error because {right} isn’t in the list of nominations {left | right |
center}:

| Example: \ltxkeys@setkeys |
74 \1ltxkeys@setkeys [KV]{fam}{keya={right}}

The braces in the key values above are just to exemplify the fact that braces in key values are
preserved throughout key parsing. As mentioned earlier, this is essential for some packages and
class files.

3.5.1 Style keys that share the same attributes

The commands \1txkeys@stylekey and \ltxkeys@newstylekey can be used to introduce style
keys (keys) that share the same path or bases (key prefix, key family, and macro prefix) and
callback (cbk). Just replace (key) in these commands with the comma-separated list (keys).
However, some users might prefer to see these commands in their plural forms when defining
several keys with the same callback. Hence, we also provide the following aliases:

| New macros: \ltxkeys@stylekeys, \ltxkeys@newstylekeys |

75 \1ltxkeys@stylekeys[(pref)]{(fam)} [(mp)]{(keys)} [(dft)] ((deps)){(cbk)}

76 \1ltxkeys@stylekeys* [(pref)]{(fam)} [{(mp)]{(keys)} [(dft)] ({(deps)){({cbk)}

™ \1ltxkeys@newstylekeys[(pref)]{(fam)} [(mp)]{(keys)} [(dft)] ((deps)){(cbk)}
78 \1ltxkeys@newstylekeys* [(pref)]{(fam)} [(mp)]{(keys)} [(dft)] ((deps)){(cbk)}

3.6 Boolean keys

| New macros: \ltxkeys@boolkey, \ltxkeys@newboolkey |

70 \1txkeys@boolkey [(pref)]{(fam)} [(mp)]{(key)} [(dft)]{(cbk)}

80 \1ltxkeys@boolkey+[(pref)]{(fam)} [(mp)]l{(key)} [(dft)]{(cbk)}{(fn)}

81 \1ltxkeys@newboolkey [(pref)]{(fam)} [(mp)]{(key)} [(dft)]{(cbk)}

52 \1ltxkeys@newboolkey+ [(pref)]{(fam)} [(mp)]{(key)} [(dft)]{(cbk)}{(fn)}

In these commands, if (mp) is given, the command \{mp) (key) will hold the current user input for the
key at key setting time; otherwise the user input will be available in \bool(pref)@(fam)@(key)*®.

*8 This differs from the system in the xkeyval package.

|PAGE 10 oF 78]

The ltxkeys package 6th February 2012

If (mp) is specified, a boolean of the form \if (mp)(key) will be created at key definition, which will
be set by \1txkeys@setkeys according to the user input. If (mp) is not specified, a boolean of the
form \ifbool(pref)@(fam)@(key) will instead be created.

The user input for boolean keys must be in the set {true | false}. The callback (cbk) is held in
the command \(pref)@(fam)@(key), which is executed if the user input is valid.

The plus (+) variant of \1txkeys@boolkey and \1ltxkeys@newboolkey will execute (fn) in place
of (cbk) if the user input isn’t in {true | false}; the plain form will issue an error in this case.

3.6.1 Boolean keys that share the same attributes

The commands \1txkeys@boolkey and \ltxkeys@newboolkey can be used to introduce boolean
keys (keys) that share the same path or bases (key prefix, key family, and macro prefix) and
callback (cbk). Just replace (key) in these commands with the comma-separated list (keys).
Because some users might prefer to see these commands in their plural forms when defining several
keys with the same callback, we have provided the following aliases:

| New macros: \ltxkeys@boolkeys, \ltxkeys@newboolkeys |

83 \1ltxkeys@boolkeys[(pref)]{(fam)} [(mp)]{(keys)} [(dft)I{(cbk)}

84 \1ltxkeys@boolkeys+[(pref)]{(fam)} [(mp)]l{(keys)} [(dft)]1{(cbk)}{(fn)}

85 \1ltxkeys@newboolkeys [(pref)]{(fam)} [(mp)]{(keys)} [(aft)]{(cbk)}

86 \1ltxkeys@newboolkeys+[(pref)]{(fam)} [(mp)]{(keys)} [(dft)]{(cbk)}{(fn)}

3.6.2 Biboolean keys

New macros: \ltxkeys@biboolkeys, \ltxkeys@newbiboolkeys

s7 | \ltxkeys@biboolkeys [(pref)]{(fam)}[(mp)]{(bl1),(b12)} [(dft)]{(cbkl)}{(cbk2)}

ss | \ltxkeys@biboolkeys+[(pref)]{(fam)} [(mp)]{(b11),(b12)} [(dft)]{(cbk1)}{(cbk2)}{(fn)}
89 \1ltxkeys@newbiboolkeys [(pref)]{(fam)} [(mp)]1{(bl1),(b12)} [(dft)]{(cbkl)}{(cbk2)}

90 \1ltxkeys@newbiboolkeys+

01 [(pref)]{(fam)} [(mp)]{(b11), (b12)} [(dft)]{(cbkl)}{(cbk2)} {(fn)}

Biboolean keys always assume opposite states: when one is true, the other is automatically toggled
to false; and vice versa. Think of the options draft and final in a document class, but note that
traditional document classes don’t currently use biboolean keys. The callback (cbk1) belongs to
the boolean key (bl1), while (cbk2) is of (b12).

The plus (+) variant of \1txkeys@biboolkeys will execute (fn) in place of (cbk1) or (cbk2) if the
input is not in {true | false}; the plain form will issue an error in this case.

Biboolean keys have equal symmetry (i.e., they can call each other with equal propensity) and
they won’t bomb out in an infinite reentrance. They normally would know if and when they call
each other, or if they're being called by some other keys.

| Examples: \ltxkeys@biboolkeys |

92 \1ltxkeys@biboolkeys+[KV]{fam} [mp@] {keya,keyb} [truel {%

o5 \ifmpQkeya\def\x##1{##1x#1x##1}\fi

94 H%

95 \ifmp@keyb\def \y##1{##1y#1y##1}\fi

96 H%

o7 \@latex@error{Invalid value ‘#1’ for key ‘\CurrentKey’}\@ehc
98 }

|PAacE 11 oF 78]

The ltxkeys package 6th February 2012

3.7 Switch keys

Switch keys look like boolean keys and they expect the same value set as boolean keys, namely,
{true | false}, but they are cheaper. Internally the value set of a switch key is {00 | 01}. So,
while the user input for a switch key must lie in the set {true | false}, the input is internally
converted to {00 | 01}. This allows the values of switch keys to be tested with TEX’s \if. While
each new boolean results in the creation of three commands, every new switch requires only one
command.

| New macros: \ltxkeys@switchkey, \ltxkeys@newswitchkey |

99 \1ltxkeys@switchkey [(pref)]{(fam)} [(mp)] {(key)} [(dft)]{({cbk)}
100 \1ltxkeys@switchkey+ [(pref)]{(fam)} [(mp)]{(key)} [(dft)]1{(cbk)}{(fn)}
101 \1ltxkeys@newswitchkey [(pref)]{(fam)} [(mp)]{(key)} [(aft)]{(cbk)}
102 \1ltxkeys@newswitchkey+[(pref)]{(fam)} [(mp)]{(key)} [(dft)]{(cbk)}{(fn)}

In these commands, if (mp) is given, the command \(mp)(key) will hold the current user input for the
key at key setting time; otherwise the user input will be available in \switch(pref)@(fam)@(key).
If (mp) is specified, a switch of the form \(mp)(key) will be created at key definition, which will
be set by \ltxkeys@setkeys according to the user input. If (mp) is not specified, a switch of the
form \switch(pref)@(fam)@(key) will instead be created.

The callback (cbk) is held in the command \(pref)@(fam)@(key), which is executed if the user
input is valid, ie, in the set {true | false}.

The plus (+) variant of \1ltxkeys@switchkey and \ltxkeys@newswitchkey will execute (fn) in
place of (cbk) if the user input isn’t in {true | false}; the plain form will issue an error in this
case.

103 \1ltxkeys@switchkey [KV]{fam}{keyal} [truel{/

104 \if\switchKV@fam@keya

105 \def \x##1{##1x#1*##1},

106 \fi

107 }

108 \1ltxkeys@switchkey+[KV]{fam} [mp@]{keyb} [truel {%
109 \if\mp@keyb

110 \def\y##1{##1x#1x##1}]

111 \fi

112 }{

113 \@latex@error{Invalid value ‘#1’ for key ‘keyb’}\@ehc
114 }

115 \1ltxkeys@setkeys [KV] {fam}{keya=true,keyb=false}

3.7.1 Switch keys that share the same attributes

The commands \ltxkeys@switchkey and \ltxkeys@newswitchkey can be used to introduce
switch keys (keys) that share the same meta (key prefix, key family, macro prefix, and callback
(cbk)). Just replace (key) in these commands with the comma-separated list (keys). Because
some users might prefer to see these commands in their plural forms when defining several keys
with the same callback, we have provided the following aliases:

|PAGE 12 OF 78]

The ltxkeys package 6th February 2012

| New macros: \ltxkeys@switchkeys, \ltxkeysOnewswitchkeys |

116 \1ltxkeys@switchkeys [(pref)]{(fam)} [(mp)]{(keys)} [(dft)]{(cbk)}

117 \1ltxkeys@switchkeys+[(pref)]{(fam)} [(mp)]{(keys)} [(dft)]{(cbk)}{(fn)}

118 \1ltxkeys@newswitchkeys [(pref)]{(fam)} [(mp)]{(keys)} [(dft)I{(cbk)}

119 \1ltxkeys@newswitchkeys+[(pref)]{(fam)} [{(mp)]{(keys)} [(dft)]{(cbk)}{(fn)}

120 \1ltxkeys@switchkeys+[KV]{fam} [mp@] {keya, keyb,keyc} [truel{%

121 \if\@nameuse{mp@\CurrentKeyl}’

122 \def\x##1{value of key ‘\CurrentKey’ = #1 ***x arg = ##1}},
123 \fi

124 H

125 \@latex@error{Invalid value ‘#1’ for key ‘\CurrentKey’}\@ehc
126 }

127 \1ltxkeys@setkeys [KV]{fam}{keya=true,keyb=false,keyc=true}

3.8 Choice keys

The choice keys of the 1txkeys package differ from those of the xkeyval package in at least two
respects; namely, the presence of the macro prefix for choice keys in the 1txkeys package and the
introduction of the optional ‘!’ prefix.

| New macros: \ltxkeys@choicekey, \ltxkeys@newchoicekey |

128 \1ltxkeys@choicekey[(pref)]{(fam)} [(mp)]{(key)} [(bin)]{(alt)} [(dft)]{(cbk)}

120 \1ltxkeys@choicekey* [(pref)]{(fam)} [(mp)]{(key)} [(bin)]{(alt)} [(aft)]{(cbk)}

130 \1txkeys@choicekey*+[(pref)]{(fam)} [(mp)]{(key)} [(bin)]{(alt)} [(dft)]{(cbk)}{(fn)}
131 \1ltxkeys@choicekey*+! [(pref)]{(fam)} [(mp)]{(key)} [(bin)]{(alt)} [(dft)]1{(cbk)}{(fn)}

132 \1ltxkeys@newchoicekey [(pref)]{(fam)} [(mp)]{(key)} [(bin)]{(alt)} [{dft)]{(cbk)}
133 \1ltxkeys@newchoicekey* [(pref)]{(fam)} [(mp)]{(key)} [(bin)]{(alt)} [(dft)]{(cbk)}
134 \1ltxkeys@newchoicekey*+

185 [(pref)]{(fam)} [(mp)]{(key)} [(bin)]1{(alt)} [(dft)]{(cbk)}{(fn)}
136 \1ltxkeys@newchoicekey*+!
137 [(pref)]{(fam)} [(mp)] {(key)} [(bin)]{(alt)} [(dft)]{(cbk)}{(fn)}

Choice keys check the user input against the nominations (alt) suggested by the author of a key.
The comma-separated list (alt) is the list of admissible values of the key. The starred (x) variant
will convert user input to lowercase before checking it against the list of nominations in (alt). In
all the above variants, if the input is valid, then the callback (cbk) will be executed. If the user
input isn’t valid, the non-plus variants will flag an error, while the plus (+) variants will execute
(fn). The ! variants will fully expand the user input before checking it against the nominations in
(alt). The ! variant arises from the fact that sometimes macros are passed as the values of choice
keys. If (mp) is absent, then \1txkeys@choicekey uses \chc(pref)@(fam)@(key) to hold the user
input.

When (alt) has no literal form ‘/.do’ or forward slash ‘/’ in it, then it is expected to be of the
familiar xkeyval package syntax:

| Syntax of ‘nominations’ for choice keys |

138 {choicel,choice2,etc.}

|PAGE 13 oF 78]

The ltxkeys package 6th February 2012

If (alt) has ‘/.do’ or ‘/’ in it, then it is expected to have one of the following syntaxes:

| Syntaxes of ‘nominations’ for choice keys |

139 {%
140 choicel/.do=callbackl(keyparser)
141 choice2/.do=callback2(keyparser)
142 etc.
143 }
144 or
145 {%
146 choicel/callbackl(keyparser)
147 choice2/callback2(keyparser)
148 etc.
149 }
If the parser is semicolon ‘;’, then we would have

| Syntaxes of ‘nominations’ for choice keys

150 {choicel/.do=callbackl; choice2/.do=callback2; etc.}

151 or

152 {choicel/callbackl; choice2/callback2; etc.}

This means that if you have ‘/.do’ or ¢/’ in any of the callbacks, it has to be enclosed in curly
braces! Please recall that the default value of (keyparser) is semicolon ‘;’. keyparser is a package
option. This syntax also implies that if you have the (keyparser) in (defn), it has to be wrapped
in curly braces.

Note 3.2 The (keyparser) in these syntaxes of ‘nominations’ for choice keys could also be
comma ‘,’, without the need to declare the package option keyparser as comma ‘,’. Here is
the rule for parsing the (alt) list. First the package checks if the declared key parser (i.e.,
(keyparser)) is in the (alt) list. If the parser exists in (alt), then the list is parsed using this
parser. Otherwise the list is parsed using comma ‘,’ as the parser. Moreover, the package checks
if . do’ separates (choice) from the callback (cbk). If no ‘.do’ is found, then ‘/’ is assumed to be
the separator. But note that when there is no (cbk) for a nomination, then neither ‘.do’ nor ‘/’ is

necessary.
It is possible to refer to the current value of (key) as #1 in (alt).

The starred (x) variant of \ltxkeys@choicekey will convert the user input to lowercase before
checking (alt) and executing the callbacks. The plus (+) variant will execute (fn) in place of (cbk)
if the user input isn’t in (alt).

(bin) has, e.g., the syntax [\userinput\order], where \userinput will hold the user input (in
lowercase if the starred (x) variant of \ltxkeys@choicekey is called), and \order will hold the
serial number of the value in the list of nominations (alt), starting from 0. If the input isn’t valid,
\userinput will still hold the user input, but \order will be —1.

| Examples: \ltxkeys@choicekey nominations |

158 \ltxkeys@choicekey [KV]{fam}{keya}{%
154 % There are no callbacks for these simple nominations:

|PAGE 14 oF 78]

The ltxkeys package 6th February 2012

156

157

159

160

161

163

164

165

167

168

169

170

172

173

174

175

center,right,left,justified
}[center]{) <- default value

\def \x##1##2{==##1++#1++H##2==17,
}

\1ltxkeys@choicekey*+[KV] {fam} [mp@] {keya} [\userinput\order]{/,
center,right,left, justified
}lcenter]{%
\def \x##1##2{==##t1++#1++##2==}),
H%
\@latex@error{Inadmissible value ‘\detokenize{#1}’ for keyal}\@ehc
}

\ltxkeys@choicekey*+[KV]{fam} [mp@] {keyb} [\userinput\order] {/%
% There are callbacks for these nominations:
land/.do=\def \x##1{x##1x#1x##1};
air/.do=\edef\z{\expandcsonce\ltxkeys@tval};
sea/.do=\edef\myinput{\ltstrimspaces{#1}};
space/.do=\letcsntocs{#1@earth}\relax

}lcenter]{%
\def \z##1##2{==##1++#1++##2==17,

o
\@latex@error{Inadmissible value ‘\detokenize{#1}’ for keyal}\@ehc

}

\1ltxkeys@choicekey [KV]{fam} [mp@] {keyb} [\userinput\order]{/
% The callbacks can also take the following form:
center/\ltxkeys@cmdkey [KV]{fam} [mp@] {keyd}{\def \x#### 1 {#### 1 x## 1 x##H##1}],
right/\let\align\flushright,
left/\let\align\flushleft\edef\userinput{\1ltstrimspaces{#1}},
justified/\let\align\relax

}[center]{%
\def \z##1##2{==##1++#1++##2==17,

}

\1ltxkeys@choicekeys [KV]{fam} [mp@]{keya,\savevalue\needvalue{keyb}}%

[\vallorder]{%
center/\1ltxkeys@cmdkey [KV]{fam} [mp@] {keyd} [\usevalue{keyb}]

{\def \x####1 {#att L ## 1 ####1))

right/\def\y##1{##1++#1++##1},
left/\edef\userinput{\1ltstrimspaces{#1}},
justified/\letcsntocs{#1@align}\relax

}[center]{%
\def \z##1##2{==##1++#1++##2==1,

}

\1ltxkeys@setkeys [KV]{fam}{keyb=center,keyd}

The representations \savevalue, \usevalue and \needvalue are pointers (see subsection 4.4).

3.8.1 Choice keys that share the same attributes

The commands \ltxkeys@choicekey and \ltxkeys@newchoicekey can be used to introduce

|PAGE 15 OF 78]

The ltxkeys package 6th February 2012

choice keys (keys) that share the same path or bases (key prefix, key family, and macro pre-
fix) and callback (cbk). All the user has to do is to replace (key) in these commands with the
comma-separated list (keys). Some users might prefer to see these commands in their plural forms
when defining several keys with the same attributes. We have therefore provided the following
aliases without modifying the internal coding:

| New macros: \ltxkeys@choicekeys, \ltxkeys@newchoicekeys |
197 \1ltxkeys@choicekeys [(pref)]{(fam)} [(mp)]{(keys)} [(bin)]{(alt)} [(dft)]{(
108 \1ltxkeys@choicekeys* [(pref)]{(fam)} [(mp)]{(keys)} [(bin)]{(alt)} [(dft)]{
199 \1ltxkeys@choicekeys*+

cbk)}
(cbk)}

200 [(pref)]{(fam)} [(mp)]{(keys)} [(bin)]1{(alt)} [(dft)]{(cbk)}{(fn)}
201 \1ltxkeys@choicekeys*+!
202 [(pref)l1{(fam)} [(mp)]{(keys)} [(bin)]{(alt)} [(dft)]{(cbk)}{(fn)}

203 \1ltxkeys@newchoicekeys [(pref)]{(fam)} [(mp)] {(keys)} [(bin)]1{(alt)} [{(dft)]{(cbk)}
204 \1ltxkeys@newchoicekeys*[(pref)]{(fam)} [(mp)]{(keys)} [(bin)]{(alt)} [(dft)]{(cbk)}
205 \1ltxkeys@newchoicekeys*+

206 [(pref)l1{(fam)} [(mp)]{(keys)} [(bin)]{(alt)} [(dft)]{(cbk)}{(fn)}
207 \1ltxkeys@newchoicekeys*+!
208 [(pref)]{(fam)} [(mp)] {(keys)} [(bin)]{(alt)} [(dft)]{(cbk)}{(fn)}

3.9 Every default value of a key

The command \1ltxkeys@everykeydefault can be used to take some action (such as writing to
the log file the default values assigned to keys without values) at key-setting time. The command
will be invoked only if it has been initialized by the user and if the current key has no user value.
It is initialized by the following syntax:

| New macros: \ltxkeys@everykeydefault
200 \1ltxkeys@everykeydefault [(prefs)]{(fams)}{#1#2#3#4}

Here, (prefs) and (fams) are the key prefixes and families that will have the defined key-default
handler. (prefs) is optional; it has the default value of KV. The parameters #1,#2,#3,#4 can be
used by the caller to access the current key prefix, key family, key name, and key value, respectively.

The following example defines key-default handler for two key prefixes and two families.

| Example: \ltxkeysQ@everykeydefault
210 \1ltxkeys@everykeydefault [KV1,KV2]{faml,fam2}{}

211 \wlog{Prefix: #1/ Family: #2/ Key name: #3/ Default value: \unexpanded{#41}}%
212 }

3.10 Defining boolean and command keys with one command

In my personal experience, boolean and command keys have been the most widely used types of
key in the context of xkeyval package. More than one boolean and command keys can be defined
simultaneously by the following command:

| New macro: \ltxkeys@definekeys |
213 \1ltxkeys@definekeys [(pref)]{(fam)} [(mp)]{%

214 (key)=(dft)/(cbk);

215 another set of key attributes; etc.

| PAGE 16 OF 78]

The ltxkeys package 6th February 2012

216 }

217 \1ltxkeys@definekeys* [(pref)]{(fam)} [(mp)]{%
218 <key>=<dft>/<cbk> ;

219 another set of key attributes; etc.

220 }

The default value (dft) can be absent in the case of command keys, and the callback (cbk) can be
absent for the two types of key. Boolean keys must, however, have default values {true | false},
to be distinguishable from command keys. The equality sign (=) that separates the key name
from the default value can be replaced with forward slash (/). That is, the following syntax is also

permitted:
| New macro: \ltxkeys@definekeys |

221 \1ltxkeys@definekeys [(pref)]{(fam)} [(mp)]{%
222 (key)/(dft)/(cbk);
223 another set of key attributes; etc.
224 }
225 \1ltxkeys@definekeys* [(pref)]{(fam)} [(mp)]{%
226 <key>/<dft>/<Cbk> ;
227 another set of key attributes; etc.
228 }

You can use the command \CheckUserInput in (cbk) to indirectly introduce choice keys as com-
mand keys (see example below).

Ordinary keys and conventional choice keys can’t be introduced directly by this command (use the
command \1ltxkeys@declarekeys instead).

The starred (x) variant of \1txkeys@definekeys can be used to define non-existing boolean and
command keys in the sense of \newcommand.

Note 3.3 Keys defined by \1txkeys@definekeys are automatically set/initialized instantly, to
provide default values for immediate use. Boolean keys are preset with value ‘false’; so that they
aren’t turned ‘true’ prematurely. There is a potential problem with this manner of presetting keys.
Consider the following example, in which keya builds a list:

| Example: \ltxkeys@definekeys |

229 \def\alist{}
230 \1ltxkeys@definekeys [pref]{fam} [mp]{%

231 keya/defaulta/\edef\alist{\ifx\alist\Q@empty\else\alist,\fi#1};
232 keyb/defaultb/\def\callback##1{##1x#1}7
233 }

If, as is done by the command \1txkeys@definekeys, keya is automatically preset at definition,
the building of the list \alist would then have started, which is most likely not what the user
of the key requires. The 1txkeys package therefore provides an internal boolean \ifltxkeys@dec
that is set true within the commands \ltxkeys@definekeys and \ltxkeys@declarekeys and
toggled false outside these commands. The boolean has other uses within these commands. It can
be used as follows:

| Example: \ltxkeys@definekeys |

234 \def\alist{}
235 \1ltxkeys@definekeys [pref]{fam} [mp]{%

|PAGE 17 OF 78]

The ltxkeys package 6th February 2012

236 keya/defaulta/

237 \ifltxkeys@dec\else

238 % Don’t execute this when defining the key:

239 \edef\alist{\ifx\alist\Qempty\else\alist,\fi#13}%
240 \fi;

241 keyb/defaultb/\def\callback##1{##1x#13}},

242 }

So here the building of the list by keya wouldn’t start until the key has been defined (i. e., outside
\1ltxkeys@definekeys). .

Note 3.4 In \ltxkeys@definekeys and \ltxkeys@declarekeys, if endcallbackline is true,
every line is assumed to end with a comment sign. This is to be specially noted if a space is desired
at the end of line. You can insert such a space with a comment sign, or, if appropriate, use \space.

| Examples: \ltxkeys@definekeys |

243 % The starred (%) variant defines new keys:

244 \1ltxkeys@definekeys* [KV]{fam} [mp@] {%

245 % Command key with callback:

246 keya={keepbraced}/\def \x##1{##1x#1x##1};

247 % Boolean key:

248 keyb=true/\def\y##1{##1yyy#1};

249 % Command key with no callback:

250 keyc=xxx;

251 % Choice-like command key:

252 keyd=center/\CheckUserInput{#1}{left,right,center}
253 \ifinputvalid

254 \edef\myval{\expandcsonce\userinput}

255 \edef\numberinlist{\number\order}

256 \edef\mychoices{\expandcsonce\nominations}
257 \else

258 \@latex@error{Input ‘#1’ not valid}\@ehd
259 \fi M

260 % Boolean key with no callback:

261 keye=false;

262 }

In this example, \userinput corresponds to #1; \order is the numerical order of the user input in
\nominations; the list of valid values suggested at key definition time ({left | right | center}
in this example). The boolean inputvalid is associated with the command \CheckUserInput and
is available to the user. It is set true when the user input is valid, and false otherwise. The
command \CheckUserInput expects two arguments: the user input and the list of nominations.
It doesn’t expect two branches (see subsection 19.2).

3.11 Defining all types of key with one command

| New macro: \ltxkeys@declarekeys |
263 \1ltxkeys@declarekeys [(pref)]{(fam)} [(mp)]{%

264 (keytype)/(keyname)/(dft)/(cbk);
265 another set of key attributes;
266 etc.

| PAGE 18 oF 78]

The ltxkeys package 6th February 2012

267 }

268 \1ltxkeys@declarekeys*[(pref)]{(fam)} [(mp)]1{%
269 (keytype)/(keyname)/(dft)/(cbk);

270 another set of key attributes;

271 etc.

272 }

Here, the default value (dft) and the callback (cbk) can be absent in all cases. (keytype) must
be any one of {ord, cmd, sty, sty*, bool, choice, switch}. The star (x) in ‘sty*’ has the
same meaning as in \ltxkeys@stylekey above, namely, undefined dependants will be defined on
the fly when the parent key is set. The optional quantity (mp) is the macro prefix, as in, e.g.,
subsections 3.10 and 3.4.

Choice keys must have their names associated with their admissible (alt) values in the format
(keyname).{(alt)} (see example below).

The starred (x) variant of \1txkeys@declarekeys can be used to define new keys (in the sense of
\newcommand).

Note 3.5 Keys defined by \ltxkeys@declarekeys are automatically set instantly with their
default values, to provide default functions for immediate use. Boolean keys are always initial-
ized in this sense with ‘false’, so that they aren’t turned ‘true’ prematurely. See note 3.3 for
a potential snag and its solution when keys are automatically preset as done by the command

\1ltxkeys@declarekeys
| Examples: \ltxkeys@declarekeys |

273 \1ltxkeys@declarekeys* [KV]{fam} [mp@]{%
274 % Ordinary key with callback:
275 ord/keya/.1\paperwidth/\leftmargin=#1\relax;
276 % Command key with callback. ‘.do=’ is allowed before callback:
277 cmd/keyb/10mm/ . do=\rightmargin=#1\def \x##1{##1x#1x##1};
278 % Boolean key without callback:
279 bool/keyc/true;
280 % Boolean key with callback:
281 bool/keyd/true/\ifmp@keyd\@tempswatrue\else\Qtempswafalse\fij;
282 % Style key with callback but no dependants:
283 sty/keye/aaa/.do=\def\y##1{##1yyy#1};
284 % Style key with callback and dependants ‘keyg’ and ‘keyh’:
285 sty*/keyf/blue/\def\y##1{##1#1}/
286 cmd>keyg>\parentval>\def \z##t## 1 {#### 1 +## 1 +####1},
287 ord>keyh>\KV@fam@keyf@value;
288 % Choice key with simple nominations and callback. The function
289 % \order is generated internally:
290 choice/keyi.{left,right,center}/center/
201 \edef\shoot{\ifcase\order O\or 1\or 2\fi};
202 % Choice key with complex nominations:
203 choice/keyj.{
204 center/.do=\def\mp@textalign{center},
2905 left/.do=\def\mpQtextalign{flushleft},
296 % ¢.do=’ can be omitted:
207 right/\def\mp@textalign{flushright},
208 justified/\let\mpQ@textalign\relax
299 }
300 /center/\def\yy##1{##1yy#1};

|PAGE 19 OF 78]

The ltxkeys package 6th February 2012

301 ord/keyk/\letcstocsn\func{as-defined-by-user};
302 switch/keyl/true/\if\mpQ@keyl\def \y##1{##1+#1+##1}\fi;
303 }

Notice the notation >...> used for the attributes of the dependant keys keyg, keyh of style key
‘keyf’. Dependent keys are the last attributes of a style key, and they (dependant keys) are
separated by comma ‘,’. The default value of the dependant key ‘keyg’ will in this example be
whatever is submitted for ‘keyf’. As indicated in subsection 3.5, the function \KV@fam@keyf@value
has a longer lifespan than \parentval. Notice also the syntax (keyi).{(left,right,center)} for
the choice keys keyi, keyj. It says that the alternate admissible values for ‘keyi’ are ‘left’, ‘right’,

‘center’ and ‘justified’; similarly for key ‘key;j’.

3.11.1 Defining keys of common type with \1txkeys@declarekeys

If you have to define keys of the same type with the command \1txkeys@declarekeys, then the
following syntax allows you to avoid entering the key types repeatedly:

| Macro: \ltxkeys@declarekeys |
304 \1ltxkeys@declarekeys ((keytype)) [(pref)]{(fam)} [(mp)]{%

305 (keyname)/(dft)/(cbk);

306 another set of key; etc.

307 }

308 \1ltxkeys@declarekeys* ((keytype)) [(pref)]{(fam)} [(mp)]{%
309 (keyname)/(dft)/(cbk);

310 another set of key; etc.

311 }

| Examples: \ltxkeys@declarekeys
312 \1ltxkeys@declarekeys(bool) [KV]{fam} [mp@] {%

313 keya/true/\def \x##1{##1x#1x##1};

314 keyb/true;

315 keyc/true/\def\y##1{##1yyy#1}

316 }

317 \1ltxkeys@declarekeys*(sty*) [KV]{fam} [mp@]{%

318 keyd/xxx/\def\y##1{##1yyy#1};

319 % keyf is a dependant of keye:

320 keye/blue/\def\y##1{##1#1}/cmd>keyf>\parentval>\def \z#### 1 {#### 1 +##1+####1}
321 }

3.12 Need-value keys

Sometimes you may want to create keys for which the user must always supply his/her own values,
even if the keys originally have default values. The default values of keys may not always be
suitable. Take, for example, the height and width of a graphics image. For functions that are
meant to handle generic images, it would certainly be inappropriate to relieve the user of the need
to call picture height and width without corresponding values.

To make a key a need-value key, simply attach the pointer \needvalue to the key at definition
time. This pointer can be used only when defining keys, and not when setting keys.

| PAGE 20 OF 78]

The ltxkeys package 6th February 2012

| Need-value keys |
322 \1ltxkeys@cmdkey [KV] {fam} [mp@] {\needvalue{keyal}} [bluel{’,

323 \def\x##1{##1x#t1x##1}),

324 }

325 \1ltxkeys@setkeys [KV]{fam}{keyal}

326 % —> Error: the author of ‘keya’ designed it to require a user value.

See more about key pointers in subsection 4.4.

3.18 Cross-family keys

There are times when it is required to use the same, or nearly the same, set of keys for different
functions and purposes, and thus for different key families and prefixes. We call such keys ‘cross-
family keys’ or ‘xfamily keys’. Such keys bear the same names across key families and key prefixes.
For example, the xwatermark package defines three functions (\xwmminipage, \xwmboxedminipage
and \xwmcolorbox) using nearly the same set of keys. In each of the three families, the keys bear
the same or similar names and they have similar callbacks. The management of cross-family keys
can be simplified by using the tools of this section. Even if not all the cross-family keys are needed
in all the families to which they may belong, there are still advantages in using this type of keys
when some of the keys cut across families.

Cross-family keys are automatically initialized after being defined—as we saw in the case of the
commands \1ltxkeys@definekeys and \ltxkeys@declarekeys.

| New macros: \ltxkeys@savexfamilykeys, \ltxkeys@definexfamilykeys |

a27 \1ltxkeys@savexfamilykeys<(id)>{(keylist)}
azs \1ltxkeys@savexfamilykeys*<(id)>(keylistcmd)

329 \1ltxkeys@savexfamilykeys<(id)>((keytype)){(keylist)}
330 \1ltxkeys@savexfamilykeys*<(id)> ({keytype)) (keylistcmd)

331 \ltxkeys@definexfamilykeys<({id)>[{pref)]{(fam)} [(mp)]{(na)}
332 \1ltxkeys@definexfamilykeys*<(id)>[(pref)]{(fam)} [(mp)]{(na)}

Here, (id) is the mandatory identifier of the key list (keylist), (pref) is the key prefix, (fam)
the key family, (mp) is the macro prefix, and (na) is the list of keys belonging to (keylist) that
shouldn’t be presently defined and initialized. The (na) can be empty, but it must always be there
as a mandatory argument. So, where you put the key list in the commands \1txkeys@definekeys
and \ltxkeys@declarekeys is where you now have to locate (na). For any use of the command
\1ltxkeys@definexfamilykeys we expect the (na) to be far less than the remaining keys. The
starred (x) variant of \1txkeys@savexfamilykeys will expand (keylistcmd) once before saving
the xfamily keys. The starred (x) variant of \1txkeys@definexfamilykeys will define only defin-
able keys, in the sense of \newcommand.

(keylist) and (keylistcmd) have the same syntax as the last arguments of \1txkeys@definekeys
and \ltxkeys@declarekeys:

| Syntax of keylist |

333 (keytype)/(keyname)/(dft)/(cbk);
334 another set of key attributes;
335 etc.

| PAGE 21 OF 78]

The ltxkeys package

336

337

339

340

360

361

362

363

365

366

367

368

Here too (keytype) must be a member of the set {ord, cmd, sty, sty*, bool, choice}, (keyname)
is obviously the name of the key, (dft) is the default value of the key, and (cbk) is the callback of
the key. If the key is a style key, you can add the attributes of the dependants after (cbk) (see the
syntaxes of the commands \1txkeys@definekeys and \ltxkeys@declarekeys).

The mandatory identifier (id) for each list must be unique, not withstanding the fact that the
identifiers have their separate namespace.

If the xfamily keys are all of the same type (i.e., only one of the types {ord, cmd, sty, sty*,
bool, choicel}), you can specify (keytype) as an optional argument in parenthesis to the command
\1ltxkeys@savexfamilykeys. The parenthesis can’t appear with an empty content.

| Examples: xfamily keys |

\1ltxkeys@savexfamilykeys<x1>{%
ord/keya/\paperwidth/\mylength=#1;
cmd/keyb/black/\def\y##1{##1};
choice/keyc.{left,right,center}/center/\def\z##1{##1};
bool/keyd/true

}

% Now define the keys previously stored with the id no. x1.
% For now don’t define keys keyb and keyc:
\1ltxkeys@definexfamilykeys<x1>[KV]{fam} [mp@]{keyb,keyc}

% Once defined the keys can be executed separately:
\1ltxkeys@setkeys [KV]{fam}{keya=.5\hsize,keyd=false}
\show\ifmp@keyd

% Now define the keys previously stored with the id no. x1 for
% another family. This time we don’t want to define key keyb:
\1ltxkeys@definexfamilykeys<x1>[KVA]{fama} [mpa@] {keyb}

% You can save and define xfamily keys of only one key type,
% command keys in the following example:
\1ltxkeys@savexfamilykeys<x1>(cmd){%

keya/\paperwidth;

keyb/blue/\def\x##1{#1x##1};
}
% Define the saved keys and ignore none of them:
\1ltxkeys@definexfamilykeys*<x1>[KV]{fam} [mp@] {}
\1ltxkeys@setkeys [KV]{fam}{keya=.5\hsize,keyb=red}

| Examples: xfamily keys |

% ‘keya’ and ‘keyd’ are starred style keys but ‘keyd’ has no dependants:
\1ltxkeys@savexfamilykeys<al>(sty*){
keya/center/.do=\def \xx##1{##1xx#1}/
ord>\needvalue{keyb}>\parentval>\edef\yy##1{##1lyy\unexpanded{#13}},
% The braces around ‘center’ (the default value of ‘keyc’)
% will be preserved in parsing:
cmd>keyc>{center};
% The braces around the callback of ‘keyd’ will be preserved:
keyd/red/.do={\def\x{\color{#1}print aaa}l};

}

| PAGE 22 OF 78]

6th February 2012

The ltxkeys package 6th February 2012

370 % Ignore ‘keyd’ in defining keys saved in ‘al’:

ar1 \1ltxkeys@definexfamilykeys*<al>[KV]{fam} [mp@]{keyd}

372 % On setting ‘keya’, ‘keyb’ and ‘keyc’ will be defined and initialized:
373 \1ltxkeys@setkeys [KV]{fam}{keya=left}

Here is a real-life example that mimics some of the macros of the xwatermark package:

| Examples: xfamily keys |

374 \1ltxkeys@savexfamilykeys<al>{J,

375 cmd/width/\textwidth;

376 cmd/textcolor/black;

377 cmd/framecolor/black;

378 cmd/framesep/3\pQ;

379 cmd/framerule/0.4\p@;

380 choice/textalign.{%

381 center/.do=\def\mp@textalign{center},
382 left/.do=\def\mp@textalign{flushleft},
383 right/.do=\def\mpQtextalign{flushright}
384 }/center;

385 bool/framebox/true;

386 ord/junkkey/throwaway;

387 }

388 % Ignore keys ‘framebox’ and ‘junkkey’ when defining family ‘ltxframebox’:

389 \1ltxkeys@definexfamilykeys*<al>[KV]{ltxframebox} [mp@]{framebox, junkkey}
390 % Ignore key ‘junkkey’ when defining family ‘ltxminipage’:

391 \1ltxkeys@definexfamilykeys<al>[KV]{ltxminipagel} [mp@]{junkkey}

392 % No key is ignored when defining ‘junkfamily’:

393 \1ltxkeys@definexfamilykeys<al>[KVX]{junkfamily} [mp@]{}

394 \newcommand*\1ltxframebox [2] []{%

395 \1ltxkeys@setkeys [KV]{ltxframebox}{#1}%

396 \begingroup

397 \fboxsep\mp@framesep\fboxrule\mp@framerule

398 \1ltsdimdef\mp@boxwidth{\mp@width-2\fboxsep-2\fboxrulel}’
399 \color{\mp@framecolorl}

400 \noindent

401 \fbox{’

102 \removelastskip

103 \parbox{\mp@boxwidth}{%

104 \begin\mpQ@textalign

105 \textcolor{\mp@textcolor}{#2}J,

406 \end\mpQ@textalign

107 /A

108 o

409 \endgroup

410 }

411 \newcommand*\1ltxminipage [2] []{%

412 \1ltxkeys@setkeys [KV]{ltxminipage}{#1}%

413 \begingroup

414 \fboxsep\mp@framesep

115 \fboxrule\ifmp@framebox\mp@framerule\else\z0\fi
416 \1ltsdimdef\mp@boxwidth{\mp@width-2\fboxsep-2\fboxrulely,

| PAGE 23 oF 78]

The ltxkeys package

6th February 2012

428

429

430

431

432

433

443

445

446

\noindent\begin{lrbox}\@tempboxa
\begin{minipage}[c] [\height] [s] \mp@boxwidth
\@killglue
\begin\mp@textalign
\textcolor{\mp@textcolor}{#21}/
\end\mp@textalign
\end{minipagel}’
\end{1lrbox}%
\@killglue
\color{\mp@framecolor}
\ifmp@framebox\fbox{\fi\usebox\@tempboxa\ifmp@framebox}\fi
\endgroup

}

\begin{document}
\1ltxframebox [
framecolor=blue,textcolor=purple,textalign=left
%
Test text\endgraf ...\endgraf test text
}
\medskip
\1ltxminipage[
framecolor=blue,textcolor=purple,framebox=true,textalign=right
%
Test text\endgraf ...\endgraf test text
¥
\end{document}

4 Setting keys

In the 1txkeys package there are many functions for setting keys. Keys can be set by the following

utilities.

4.1 Setting defined keys

| New macros: \ltxkeys@setkeys |

\1ltxkeys@setkeys [(pref)]{(fam)} [(na)]{(keyval)}
\1ltxkeys@setkeys* [(pref)]{(fam)} [(na)]{(keyval)}
\1ltxkeys@setkeys+[(prefs)]{(fams)} [(na)]{(keyval)}
\1ltxkeys@setkeys*+[(prefs)]{(fams)} [(na)]{(keyval)}

Here, (prefs), (fams) and (keyval) are comma-separated list of key prefixes, families and (key)=
(value) pairs, respectively. Keys listed in the comma-separated list*” (na) are ignored. The
starred (x) variant will save all undefined keys with prefix (pref) and in family (fam) in the macro
\(pref)@(fam)@(rmkeys), to be set later, perhaps with \1txkeys@setrmkeys. The plus (+) variant

*9 Key values with unbraced commas in them will need to be enclosed in curly braces when they are submitted to
\1ltxkeys@setkeys, whether or not the argument pattern is simple (only one argument) or weird (more than one

argument and with delimiters).

| PAGE 24 oF 78]

The ltxkeys package 6th February 2012

will search in all the prefixes in (prefs) and all families in (fams) for a key before logging the key
in \(pref)@(fam)@(rmkeys) (if the x+ variant is used) or reporting it as undefined.

To avoid infinite re-entrance of \1txkeys@setkeys and the consequent bombing out of the com-
mand, the package option keydepthlimit is introduced. Its default value is 4, meaning that
\1ltxkeys@setkeys can’t ordinarily be nested beyond level 4. If you must nest \1txkeys@setkeys
beyond this level, an unlikely need, you can raise the keydepthlimit as a package option via
\usepackage or, if catoptions package is loaded before \documentclass, via \documentclass.
For example,

| Setting keydepthlimit |

447 \usepackage [keydepthlimit=6] {1txkeys}

The more appropriate name keystacklimit is an alias for keydepthlimit.

4.2 Setting ‘remaining’ keys

The command \1ltxkeys@setrmkeys, which has both star (x) and plus (+) variants, is the coun-
terpart of \setrmkeys of the xkeyval package:

| New macro: \ltxkeys@setrmkeys |

148 \1ltxkeys@setrmkeys [(pref)]{(fam)} [(na)]

449 \1ltxkeys@setrmkeys* [(pref)]{(fam)} [(na)]

450 \1ltxkeys@setrmkeys+[(prefs)]{(fams)} [(na)]
151 \1ltxkeys@setrmkeys*+[(prefs)]{(fams)} [(na)]

The command \1ltxkeys@setrmkeys sets in the given prefixes and families the ‘remaining keys’
saved when calling the starred (x) variant of \ltxkeys@setkeys or \ltxkeys@setrmkeys. (na)
is again the list of keys that should be ignored, i.e., not executed and not saved. The unstarred
variant of \1txkeys@setrmkeys will report an error if a key is undefined. The starred (x) variant
of the macro \1txkeys@setrmkeys, like the starred (x) variant of \1txkeys@setkeys, ignores keys
that it cannot find and saves them on the list saved for a future call to \1txkeys@setrmkeys. Keys
listed in (na) will be ignored fully and will not be appended to the saved list of remaining keys.

4.3 Setting aliased keys

Aliased keys differ from style keys of subsection 3.5. Two keys may be aliased to each other, such
that when one is set, the alias is automatically set with the same or a different value. The concept
is similar to, but not identical with, that of style keys. The two aliases must all be in the same
family and have the same key and macro prefixes. Moreover, aliased keys must be called within
the callbacks of each other, so that they can share metadata. Two aliased keys can’t both call
each other: only one can call the other; so the relationship isn’t symmetrical. These restrictions
not withstanding, aliased keys can be quite powerful in application'".

| New macro: \ltxkeys@setaliaskey |
152 \1ltxkeys@setaliaskey{(key)}[(value)]

Here, (value) is optional; if it is not given, (key) will be set with the current value of its alias.
The command \setaliaskey is a shortened variant of \1txkeys@setaliaskey.

t1 The restrictions have been deliberately imposed to shorten and simplify the use syntax of aliased keys. They
could otherwise be easily lifted.

| PAGE 25 OF 78]

The ltxkeys package 6th February 2012

| Examples: \ltxkeys@setaliaskey |

453 \1ltxkeys@definekeys* [KV]{fam} [mp@]{%

454 printsign=true;

455 printmark=true/\ltxkeys@setaliaskey{printsign}[false];
456 keya=$+++§;

457 keyb=star/\ltxkeys@setaliaskey{keya} [$***$]

458 }

450 \1ltxkeys@definekeys* [KV]{fam} [mp@] {%

460 keya=sun/\CheckUserInput{#1}{star,sun,moon}

461 \ifinputvalid

162 \edef\givenval{\userinput}

463 \edef\found{\ifcase\order star@\or sun®@\or moon@\fi}
464 \else

165 \@latex@error{Input ‘#1’ not valid}\@ehd

466 \fi 5

467 keyb=star/\ltxkeys@setaliaskey{keyal};

468 }

The boolean \ifinputvalid associated with the command \CheckUserInput is described in syn-
tax line 253 (see also subsection 19.2).

The example involving printsign, printmark is similar, but not equivalent, to the notion of
biboolean keys. Biboolean keys have equal symmetry (i.e., they can call each other with equal
propensity) and they won’t bomb out in an infinite reentrance. This is not the case with aliased
keys: only slave/alias can set or call master/main key. If they both call each other, the user will
be alerted to the fact that there is an infinite reentrance of keys. The notion of ’slave’ and 'master’
used in the 1txkeys package may be counterintuitive but in reality it is quite logical.

Schemes like the following are disallowed, to avoid back-linking of \1txkeys@setaliaskey. The
package will flag an error if something like the following occurs:

| Examples: Illegal nested \ltxkeys@setaliaskey |

1469 \1ltxkeys@ordkey [KV]{fam}{keya} [true]{\setaliaskey{keyb}}
470 \1ltxkeys@ordkey [KV]{fam}{keyb} [true] {\setaliaskey{keya}}
a1 \1ltxkeys@setkeys [KV]{fam}{keya}

4.4 Using key pointers

The \savevalue and \usevalue pointers of the xkeyval package are still available at key set-
ting time, but with increased robustness and optimization. Curly braces in values are preserved
throughout, and instead of saving the value of each key tagged with \savevalue in a separate
macro, we save all such keys and their values in only one macro (for each combination of (pref)
and (fam)) and use a fast search technique to find the values when they are later needed (by any
key tagged with \usevalue).

The pointer \needvalue is a new type. It can be used by any key author to prompt the user of the
key to always supply a value for the key. The pointers \savevalue, \usevalue and \needvalue
can all be called when defining keys. The pointer \usevalue will, however, be ignored when
defining keys, i.e., if present, it’s simply dropped. If required at setting keys, it has to be explicitly
indicated there. The pointers \savevalue and \usevalue can both be used when setting keys, but
not the pointer \needvalue. The presence of the pointer \needvalue when setting keys prompts
an error.

| PAGE 26 OF 78]

The ltxkeys package 6th February 2012

Here is an interesting example and proof of concept of pointers:

72 \1ltxkeys@stylekeys+ [KV]{fam}{%

473 \needvalue{keyal},\savevalue\needvalue{keyb}, \needvalue\savevalue{keyc}
474 Y{1left} (%

475 % ‘#1’ here refers to the value of the dependant key at the

476 % time it is being set.

a77 ord/\savevalue{keyb}/\parentval/\edef \y##1{##1xx\unexpanded{#1}};
478 cmd/keyc/{center}

479 Y{%

480 % ‘#1° here refers to the value of the parent key at the time

181 % it is being set.

182 \def\x##1{##1xx#1}

483 }

484 \1ltxkeys@setkeys [KV]{fam}{/

185 \savevalue{keyal}={\def\y##1{##1}},

186 \savevalue{keyb}=\usevalue{keyal},

487 keyc=\usevalue{keyb}

488 }

If you have to save the values of many keys, then the above scheme of placing \savevalue on keys
at key setting time can be avoided by using the following commands:

| New macros: \ltxkeys@savevaluekeys, \ltxkeys@addsavevaluekeys, etc. | R

189 \1ltxkeys@savevaluekeys [(pref)]{(fam)}{(1list)}

490 \1ltxkeys@addsavevaluekeys [(pref)]{(fam)}{(list)}

101 \1ltxkeys@removesavevaluekeys [(pref)]{(fam)}{(1list)}
102 \1ltxkeys@undefsavevaluekeys [(pref)]{(fam)}

103 \1ltxkeys@undefsavevaluekeys! [(pref)]{(fam)}

194 \1ltxkeys@emptifysavevaluekeys [(pref)]{(fam)}

195 \1ltxkeys@emptifysavevaluekeys! [(pref)]{(fam)}

The command \ltxkeys@savevaluekeys will create, for the given key family and prefix, a list
of keys whose values should be saved at key-setting time, if those keys don’t already exist in the
list. The command \1ltxkeys@addsavevaluekeys will add to the list those keys that don’t already
exist in the list; \1txkeys@removesavevaluekeys remove those save-keys that it can find in the
list; while the command \1txkeys@undefsavevaluekeys will undefine the entire list of save-keys
of the given key family and prefix. The command \1txkeys@emptifysavevaluekeys will simplify
emptify the content of the save-key list. The ! variant of the commands

Macros

496 \1ltxkeys@undefsavevaluekeys
407 \1ltxkeys@emptifysavevaluekeys

will undefine or emptify the existing save-key list globally.

| Examples: \ltxkeys@savevaluekeys

108 \1ltxkeys@definekeys [KV]{fam} [mp@]{%
1499 ord/keya/2cm/\def \x##1{#1xx##1};

| PAGE 27 OF 78]

The ltxkeys package 6th February 2012

500 cmd/keyb/John;

501 bool/keyc/true/\ifmp@keyc\def \y##1{##1yy#1}\f1i;

502 choice/keyd.{left,right,center}/

503 \ifcase\order\def\shoot{0}\or\def\shoot{1}\or\def\shoot{2}\fi
504 }

505 \1ltxkeys@savevaluekeys [KV]{fam}{keya,keyb,keyc}
506 \1ltxkeys@addsavevaluekeys [KV]{fam}{keyd}

507 \1ltxkeys@removesavevaluekeys [KV]{fam}{keya, keyb}
508 \1ltxkeys@undefsavevaluekeys [KV]{fam}

509 \1ltxkeys@setkeys [KV]{fam}{keya=\usevalue{keyc},keyb=\usevalue{keya}}

4.5 Accessing the saved value of a key

As mentioned earlier, the pointers \savevalue and \usevalue are available for saving and using the
values of keys within the command \1ltxkeys@setkeys. But suppose you have used \savevalue
within \1txkeys@setkeys to set the value of a key, how do you access that value outside of
\1ltxkeys@setkeys? You can do this by using the following \1ltxkeys@storevalue command:

| New macro: \ltxkeys@storevalue |

510 \1ltxkeys@storevalue [(pref)]{(fam)}{(key)}(cs)
511 \1ltxkeys@storevalue+[(pref)]{(fam)}{(key)}(cs)(fallback)

Here, (cs) is the macro (defined or undefined) that will receive the saved value of (key). The plain
variant of this command will raise an error message if the value of the key wasn’t previously saved,
while the plus (+) variant will resort to the user-supplied function (fallback). Only saved key
values can be recovered by this command.

| Examples: \ltxkeys@storevalue |

512 \1ltxkeys@cmdkey [KV] {fam}{\needvalue{keya}} [{left}]1{%

513 \def\x##1{##1xx#1}

514 }

515 \1ltxkeys@setkeys [KV]{fam}{\savevalue{keya}t={\def\y##1{##1}}}
516 \1ltxkeys@storevalue [KV] {fam}{keya}\tempa

517 \1ltxkeys@storevalue+ [KV]{fam}{keyal}\tempb{’

518 \@latex@error{No value saved for key ‘keya’l}\@ehc

519 }

4.6 Pre-setting and post-setting keys

New macros: \ltxkeys@presetkeys, \ltxkeys@postsetkeys, etc.

520 \1ltxkeys@presetkeys [(pref)]{(fam)}{(keyvals)}

521 \1ltxkeys@presetkeys! [(pref)]{(fam)}{(keyvals)}

522 \1ltxkeys@addpresetkeys [(pref)]{(fam)}{(keyvals)}

523 \1ltxkeys@addpresetkeys! [(pref)]{(fam)}{(keyvals)}

524 \1ltxkeys@removepresetkeys [(pref)]{(fam)}{(keyvals)}
525 \1ltxkeys@removepresetkeys! [(pref)]{(fam)}{(keyvals)}
526 \1ltxkeys@undefpresetkeys [(pref)]{(fam)}

527 \1ltxkeys@undefpresetkeys! [(pref)]{(fam)}

| PAGE 28 OF 78]

The ltxkeys package 6th February 2012

528 \1ltxkeys@postsetkeys [(pref)]{(fam)}{(keyvals)}

529 \1ltxkeys@postsetkeys! [(pref)]{(fam)}{(keyvals)}

530 \1ltxkeys@addpostsetkeys [(pref)]{(fam)}{(keyvals)}

531 \1ltxkeys@addpostsetkeys! [(pref)]{(fam)}{(keyvals)}

532 \1ltxkeys@removepostsetkeys[(pref)]{(fam)}{(keyvals)}
533 \1ltxkeys@removepostsetkeys! [(pref)]{(fam)}{(keyvals)}
534 \1ltxkeys@undefpostsetkeys [(pref)]{(fam)}

535 \1ltxkeys@undefpostsetkeys! [(pref)]{(fam)}

Here, (keyvals) is a comma-separated list of (key)=(value) pairs to be preset or postset in
the given families. The optional exclamation mark ! here, as in many (but not all) instances
in the ltxkeys package, means that the assignments would be done and the lists built globally
rather than locally. ‘Presetting keys’ means ‘these keys should be set before setting other keys
in every run of the command \ltxkeys@setkeys for the given key prefix and family’’>. The
command \1ltxkeys@addpresetkeys is an alias for \1txkeys@presetkeys, and this helps explain
that \1txkeys@presetkeys is indeed a list merger. Neither the command \1txkeys@presetkeys
nor \ltxkeys@postsetkeys set keys itself, contrary to what the names might suggest.

‘Post-setting keys’ means ‘these keys are to be set after setting other keys in every run of the
command \1ltxkeys@setkeys for the given key prefix and family’. \1txkeys@addpostsetkeys is
an alias for \1txkeys@postsetkeys. The commands

Macros

536 \1ltxkeys@removepresetkeys! [(pref)]{(fam)}{(keys)}
537 \1ltxkeys@removepostsetkeys! [(pref)]{(fam)}{(keys)}

remove (keys) from preset and post-set lists, respectively. The commands

Macros

538 \1ltxkeys@undefpresetkeys! [(pref)]{(fam)}
539 \1ltxkeys@undefpostsetkeys! [(pref)]{(fam)}

respectively, undefine all preset and post-set keys in the given family.

Logically, you can’t enter the same key twice in either preset or post-set list in the same family
and prefix.

| Examples: \ltxkeys@presetkeys, \ltxkeys@postsetkeys, etc. |
540 \1ltxkeys@definekeys* [KV1]{fam1} [mp@]{%

541 keya/left/\def\x##1{#1x##1};
542 \needvalue{keyb}/right;

543 keyc/center;

544 keyd

545 }

546 \1ltxkeys@presetkeys! [KV1]{fami}{keya=\flushleft,keyb=\flushright}
547 \1ltxkeys@postsetkeys! [KV1]{fam1}{keyd=\flushleft}

549 % Eventually, only ‘keya’ will be preset:

12 Keys contained in the current user input to \1txkeys@setkeys will not be preset or postset, i.e., the current user
values of keys will always take priority over preset and postset values.

| PAGE 29 OF 78]

The ltxkeys package 6th February 2012

550 \1ltxkeys@removepresetkeys! [KV1]{faml}{keyb=\flushright}

552 % Because of the x and + signs on \ltxkeys@setkeys, all unknown
553 % keys (those with prefix ‘KV2’ and in family ‘fam2’) will be saved in
554 % the list of remaining keys, and can be set later with \ltxkeys@setrmkeys:

555 \1ltxkeys@setkeys*+[KV1,KV2]{faml, fam2} [keyd] {keya=xxx,keyb=yyy,keyc}

4.7 Initializing keys

| New macro: \ltxkeys@initializekeys

556 \ltxkeys@initializekeys[(prefs)]{(fams)}[(na)]

This presets all the keys previously defined in families (fams) with their default values; it ignores
keys listed in (na). If (na) is a list of (key)=(value) pairs, the key names are extracted from the
list before the family keys are initialized. Any (key)=(value) pairs in (na) are not set at all. All
keys defined by \ltxkeys@definekeys and \ltxkeys@declarekeys are automatically instantly
initialized, except slave/alias and dependant keys. Alias and dependant keys aren’t initialized in
this case in order to avoid cyclic re-entrance of \1txkeys@setkeys.

The command \ltxkeys@initializekeys can be used in place of \1ltxkeys@executeoptions,
since \ltxkeys@executeoptions (similar to BTEX kernel’s \ExecuteOptions) fulfils the sole
purpose of setting up default values of options. Keys defined via \1ltxkeys@definekeys and
\1ltxkeys@declarekeys don’t have to be initialized, since they’re automatically initialized at defin-
ition time. But if you have used the scheme of note 3.3, then it might still be necessary to initialize
keys outside \1txkeys@definekeys and \ltxkeys@declarekeys.

Note 4.1 Keys that have been processed by \1txkeys@processoptions (i.e., keys submitted by
the user as package or class options via \documentclass or \usepackage can’t be initialized or
launched (see subsection 4.8 below for the meaning of ‘launched keys’). This is to avoid unwittingly
setting keys to their default values after the user has submitted them as package or class options.
This means that ‘option keys’ (see section 7) can’t be initialized or launched.

4.8 Launching keys

| New macro: \ltxkeys@launchkeys |

ss7 | \1ltxkeys@launchkeys [(prefs)]{(fams)}{{curr)}
558 \1ltxkeys@launchkeys* [(prefs)]{(fams)}{(curr)}
559 \1ltxkeys@launchkeys+[(prefs)]{(fams)}{(curr)}
560 \1ltxkeys@launchkeys*+[(prefs)]{(fams)}{(curr)}

This presets all keys defined in families (fams) with their default values; it ignores keys listed
in (curr). (curr) may be the list of (key)=(value) pairs that the user wants to use as current
values of keys. Their keys are to be ignored when setting up defaults, i.e., when initializing the
family keys. One major difference between \1txkeys@launchkeys and \1txkeys@initializekeys
is that in \1ltxkeys@launchkeys the (key)=(value) pairs in (curr) are immediately set after
the absent family keys (i.e., those without current values) are reinitialized. Keys appearing in
(curr) in the command \1ltxkeys@launchkeys will be the (na) (ignored) keys for the command
\1ltxkeys@initializekeys.

Keys across multiple prefixes (prefs) and families (fams) can be launched at the same time, but
the user has to know what is he doing: the keys might not have been defined across the given

| PacE 30 oF 78]

The ltxkeys package 6th February 2012

families, or some keys might have been disabled in some, and not all, families. The x and +
variants of \1txkeys@launchkeys have the same meaning as in \1ltxkeys@setkeys (section 4).
The starred (x) variant will save all undefined keys with prefix (pref) and in family (fam) in the
macro \(pref)@(fam)@(rmkeys), to be set later, perhaps with the command \1txkeys@setrmkeys.
The plus (+) variant will search in all the prefixes in (prefs) and all families in (fams) for a key
before logging the key in \(pref)@(fam)@(rmkeys) (if the x+ variant is the one used) or reporting
it as undefined.

4.8.1 Noninitialize and nonlaunch keys

Listing all the keys that shouldn’t be reinitialized by \1txkeys@initializekeys in the (na) list
every time \ltxkeys@initializekeys is called can sometimes be inconvenient, especially when
dealing with a large number of keys. Perhaps even more important is the fact that sometimes
you don’t want some of the keys in a family to be reinitialized even though they are absent
keys (i.e., they aren’t listed as current keys, meaning that they aren’t in the current (key)=
(value) list submitted to \1txkeys@launchkeys). This might be the case with package and class
options. The command \ltxkeys@nonlaunchkeys provides a convenient means for listing the
non-reinitializing keys once and for all. If there are keys in a family that shouldn’t be reinitial-
ized/launched with other keys in the same family during any call to \1txkeys@launchkeys or
\1ltxkeys@initializekeys, they can be listed in the \1txkeys@nonlaunchkeys command:

| New macro: \ltxkeys@nonlaunchkeys |

561 \1ltxkeys@nonlaunchkeys [(prefs)]{(fams)}{(keys)}

Keys across multiple prefixes and families can be submitted to the \ltxkeys@nonlaunchkeys
command: undefined keys are simply ignored by \ltxkeys@nonlaunchkeys.

Note 4.2 The command \ltxkeys@nonlaunchkeys doesn’t mean that the keys in (keys) can
no longer be set via the command \ltxkeys@setkeys; it simply implies that keys appearing in
\1ltxkeys@nonlaunchkeys will not be reinitialized to their default values when members of their
class are being launched or reinitialized. The command \1txkeys@noninitializekeys is an alias
for \1txkeys@nonlaunchkeys.

4.9 Handling unknown keys and options

You can use the macro \1txkeys@unknownkeyhandler to declare to 1txkeys package the course of
action to take if, while setting keys, it discovers that a key is undefined or unknown. The command
\1ltxkeys@unknownoptionhandler applies to unknown options (see section 11)T3. The syntax of
these commands is

| New macros: \ltxkeys@unknownkeyhandler, \ltxkeysQunknownoptionhandler | —_—

562 \1ltxkeys@unknownkeyhandler [(prefs)]{(fams)}{(cbk)}
563 \1ltxkeys@unknownoptionhandler [(prefs)]<(fams)>{(cbk)}

Here, (prefs) are the optional prefixes and (fams) is the mandatory families; both may contain
one or more comma-separated elements. The default value of (prefs) is KV. The callback (cbk)
signifies the action to take when an unknown key or option is encountered. The default (cbk) is
to log the keys and, in each run, warn the user of the presence of unknown keys. The same (cbk)
can be used across key prefixes (prefs) and families (fams). You can use #1 (or \CurrentPref)

3 Options are also keys, but (from the user’s viewpoint) there might be a need to treat options separately when
dealing with unknown keys.

|PacE 31 oF 78]

The ltxkeys package 6th February 2012

in (cbk) to represent the current key prefix, #2 (or \CurrentFam) for the current family, #3 (or
\CurrentKey) for the current key name, and #4 (or \CurrentVal) for the value of the current key.

If \CurrentVal contains undefined macros or active characters, then attempting to print it may
cause problems. Therefore, when making entries in the transcript file, it will sometimes be prefer-
able to use \InnocentVal instead of \CurrentVal. However, \InnocentVal detokenizes the cur-
rent key value and gives only the first 20 characters of a key’s value.

The following example provides unknown option and key handlers. The unknown key handler is
for two key prefixes (KVA and KVB) and two key families (faml and fam2).

| Examples: \ltxkeys@unknownkeyhandler, \ltxkeys@unknownoptionhandler | I

564 \1ltxkeys@unknownoptionhandler [KV]<faml,fam2>{}

565 \wlog{Prefix: #1/ Family: #2/ Option name: #3/ Value: \unexpanded{#41}}J,
566 }

567 \1ltxkeys@unknownkeyhandler [KVA,KVB] {faml,fam2}{%

568 \@expandtwoargs\in@{,#3,}{, \myspecialkeys,}%

569 \ifboolTF{in@}{%

570 % The reader may want to investigate what the parameter texts

571 % ##1 and ####1 below stand for (see note 4.3 below):

572 \1ltxkeys@ordkey [#1] {#2}{#3} [#4] {\def \x##t## 1 {##t## 1 xx##1}1}7,

573 H%

574 \1ltxmsg@warn{Unknown key ‘#3’ with value ‘#4’ in family ‘#2’ ignored}\@ehd
575 % \ltxmsg@warn{Unknown key ‘\CurrentKey’ with value

576 % ‘\InnocentVal’ in family ‘\CurrentFam’ ignored}\@ehd

577 Y

578 }

The macro \myspecialkeys in the above example doesn’t actually exist; it is only meant for
illustration here. But ‘handled keys’ may be introduced by the user to serve this purpose. This
will be the set of keys for which special actions may apply at key setting time (see section 8).

Note 4.3 To see what the parameter texts ##1 and ####1 above stand for, run the following code
on your own and note the outcome of \show\KV@fam@keyd. The characters ##1 will turn out to
be the parameter text which can be used to access the current values of keys keyd and keye after
they have been defined on the fly. And ####1 will be the parameter text of the arbitrary function
\x. If you do \show\KV@fam@keyd, you’ll notice that the parameter texts have been reduced by
one level of nesting.

| Examples: \ltxkeys@unknownkeyhandler |

579 \def\myspecialkeys{keyc,keyd,keye}
580 \1ltxkeys@unknownkeyhandler [KV]{fam}{%

581 \@expandtwoargs\in@{,#3,}{, \myspecialkeys, }%

582 \ifin®@

583 \1ltxkeys@ordkey [#1]{#2}{#3} [#4] {\def \x##t## 1 {##t## 1 xx##1}}7,
584 \else

585 \1ltxmsg@warn{Unknown key ‘#3’ with value ‘\InnocentVal’
586 in family ‘#2’ ignored}\@ehd

587 \fi

588 }

589 \1ltxkeys@setkeys [KV]{fam}{keyd=aaa,keye=bbb}
590 \show\KV@fam@keyd

| PAGE 32 OF 78]

The ltxkeys package 6th February 2012

5 Checking if a key is defined

| New macros: \ltxkeys@ifkeydefTF, \ltxkeys@ifkeydefFT

591 \1ltxkeys@ifkeydefTF [(prefs)]{(fams)}{(key)}{(true)}{(false)}
592 \1ltxkeys@ifkeydefFT [(prefs)]{(fams)}{(key)}{(false)}{(true)}

These check if (key) is defined with a prefix in (prefs) and in family in (fams). If the test proves
that (key) is defined, (true) text will be executed; otherwise (false) will be executed.

6 Disabling families and keys

6.1 Disabling families

New macro: \ltxkeys@disablefamilies ,\ltxkeys@gdisablefamilies

593 \ltxkeys@disablefamilies[(prefs)]{(fams)} [(nakeys)]
594 \ltxkeys@disablefamilies* [(prefs)]{(fams)}[(nakeys)]
595 \1ltxkeys@gdisablefamilies [(prefs)]{(fams)} [(nakeys)]
596 \1ltxkeys@gdisablefamilies*[(prefs)]{(fams)} [(nakeys)]

Here, (prefs) and (fams) are comma-separated lists of prefixes and families to be disabled. Keys
listed in the comma-separated list (nakeys) are ignored, i.e., they aren’t disabled with their
colleagues. The macros \ltxkeys@disablefamilies and \ltxkeys@gdisablefamilies disable
keys and cause an error to be issued when a disabled family is submitted to \1txkeys@setkeys
or invoked by the key caller. If the package option tracingkeys is true, disabled families are
highlighted in the transcript file. The command \ltxkeys@disablefamilies acts locally, while
\1ltxkeys@gdisablefamilies has a global effect.

The plain forms of \ltxkeys@disablefamilies and \ltxkeys@gdisablefamilies disable the
given families instantly, while the starred () variants disable the families at \AtBeginDocument.
Authors can use these commands to bar users of their keys from calling those families after a certain
point. Individual keys in a family can be disabled using the commands \1txkeys@disablekeys
and \ltxkeys@gdisablekeys.

| Example: \ltxkeys@disablefamilies |

597 \1txkeys{%

508 % The commands \declare@keys, \set@keys and \set@rmkeys are available
599 % only within \ltxkeys.

600 \declare@keys* [KV1]{fam1} [mp@]{%

601 bool/keyl/true/\def \xx##1{##1\\#1\\##1};
a0z bool/key2/true/\def\yy##1{##1+#15##1};
603 cmd/key3/aaa/;

604 cmd/key4/bbb/

605 }%

606 \\

607 \declare@keys* [KV2] {fam2} [mp@] {%

608 bool/keyl/true;

609 bool/key2/true;

610 cmd/key3/yyy/;

611 cmd/key4/zzz/

612 }%

| PAGE 33 oF 78]

The ltxkeys package 6th February 2012

613 \\
614 \1ltxkeys@disablefamilies[KV1,KV2]{faml,fam2} [key3,key4]
615 }

616 \showcsn{KV1@fam2@disabledkeys}

6.2 Disabling keys

New macro: \ltxkeys@disablekeys ,\ltxkeysQgdisablekeys

617 \1ltxkeys@disablekeys [(prefs)]{(fams)}{(keys)}
618 \1ltxkeys@gdisablekeys[(prefs)]{(fams)}{(keys)}
619 \1ltxkeys@disablekeys*[(prefs)]{(fams)}{(keys)}
620 \1ltxkeys@gdisablekeys*[(prefs)]{(fams)}{(keys)}

Here, (prefs), (fams) and (keys) are comma-separated lists of prefixes, families and associated
keys to be disabled. The macro \ltxkeys@disablekeys causes an error to be issued when a
disabled key is invoked. If the package option tracingkeys is true, undefined keys are highlighted
by \ltxkeys@disablekeys with a warning message. Because it is possible to mix prefixes and
families in \1txkeys@disablekeys, undefined keys may readily be encountered when disabling
keys. To see those undefined keys in the transcript file, enable the package option tracingkeys.
The macro \1txkeys@gdisablekeys will disable the given keys globally.

The unstarred variants of \1txkeys@disablekeys and \1ltxkeys@gdisablekeys disable the given
keys instantly, while the starred (x) variant disable the keys at \AtBeginDocument. Authors can
use this command to bar users of their keys from calling those keys after a certain point.

For a given key prefix (pref) and family (fam), you can recall the full list of disabled keys (set up
earlier by \1txkeys@disablekeys and/or \1txkeys@gdisablekeys) by the command

[Recalling list of disabled keys |
621 \(pref)@(fam)@disabledkeys

7 Option and non-option keys

Sometimes you want to create keys that can only appear in \documentclass, \RequirePackage
or \usepackage, and at other times you may not want the user to submit a certain set of keys via
these commands. The xwatermark package, for example, uses this concept.

| New macros: \ltxkeysQoptionkeys, \ltxkeys@nonoptionkeys |
622 \1ltxkeys@optionkeys [(pref)]{(fam)}{(keys)}

623 \1ltxkeys@optionkeys*[(pref)]{(fam)}{(keys)}

624 \1ltxkeys@nonoptionkeys [(pref)]{(fam)}{(keys)}

Here, (keys) is a comma-separated list of keys to be made option or non-option keys. Keys listed
in \1txkeys@optionkeys can appear only in arguments of \documentclass, \RequirePackage or
\usepackage, while keys listed in \1txkeys@nonoptionkeys can’t appear in these macros. The
starred (x) variant of \1ltxkeys@optionkeys is equivalent to \ltxkeys@nonoptionkeys. Only
defined keys may appear in \1ltxkeys@optionkeys and \ltxkeys@nonoptionkeys.

| PAGE 34 oF 78]

The ltxkeys package 6th February 2012

| New macro: \ltxkeys@makeoptionkeys

625 \1ltxkeys@makeoptionkeys [(pref)]{(fam)}
626 \1ltxkeys@makeoptionkeys*[(pref)]{(fam)}
627 \1ltxkeys@makenonoptionkeys[(pref)]{(fam)}

The command \ltxkeys@makeoptionkeys makes all the keys with prefix (pref) and in family
(fam) options keys. The command \ltxkeys@makenonoptionkeys does the reverse, i.e., makes
the keys non-option keys. The starred (x) variant of \1txkeys@makeoptionkeys is equivalent to
\1ltxkeys@makenonoptionkeys.

8 Handled keys

As mentioned in subsection 4.9, handled keys are keys defined in a macro that is key-prefix and
key-family dependent. They are defined as a list in a macro so that they can be used for future
applications, such as deciding if a dependant key of a style key should be defined or redefined on
the fly. Handled keys should be defined, or added to, using key prefix, family and key names. You
can define or add to handled keys by the following command:

| New macro: \ltxkeys@handledkeys |
628 \1ltxkeys@handledkeys [(pref)]{(fam)}{(list)}

where (list) is a comma-separated list of key names. This command can be issued more than
once for the same key prefix (pref) and family (fam), since the content of (1ist) is usually merged
with the existing list rather than being merely added or overwritten. There is also

| New macro: \ltxkeys@addhandledkeys
629 \1ltxkeys@addhandledkeys [(pref)]{(fam)}{(list)}

which is just an alias for \1txkeys@handledkeys.

| Example: \ltxkeys@handledkeys |
630 \1ltxkeys@handledkeys [KVA,KVB]{faml,fam2}{keya,keyb,keyc}

For a given key prefix (pref) and family (fam), you can recall the full list of handled keys (set up
earlier by \1txkeys@handledkeys) by the command

| Recalling list of handled keys |
631 \(pref)@(fam)@handledkeys

You can remove handled keys from a given list of handled keys (in a family) by the following
command:

| New macro: \ltxkeys@removehandledkeys

632 \1ltxkeys@removehandledkeys [(pref)]{(fam)}{(list)}

Rather than remove individual handled keys from a list, you might prefer or need to simply
undefine or ‘emptify’ the entire list of handled keys in a family. You can do these with the
following commands:

| PAGE 35 OF 78]

The ltxkeys package 6th February 2012

| New macros: \ltxkeys@undefhandledkeys, \ltxkeys@emptifyhandledkeys | —_—

633 \1ltxkeys@undefhandledkeys [(pref)]{(fam)}
634 \1ltxkeys@emptifyhandledkeys[(pref)]{(fam)}

9 Reserving and unreserving key path or bases

By ‘key path’ we mean the key prefix (default is KV), key family (generally no default), and macro
prefix (default is dependent on the type of key). However, when dealing with ‘pathkeys’ (see
section 17) the term excludes the macro prefix. You can reserve key path or bases (i.e., bar future
users from using the same path or bases) by the following commands. Once a key family or prefix
name has been used, it might be useful barring further use of those names. For example, the
ltxkeys package has barred users from defining keys with key family 1txkeys and macro prefix
ltxkeysQ.

_l New macros: \ltxkeys@reservekeyprefix, \ltxkeys@reservekeyfamily, etc.

635 \1ltxkeys@reservekeyprefix{(list)}
636 \1ltxkeys@reservekeyprefix*{(list)}
637 \1ltxkeys@reservekeyfamily{(list)}
638 \1ltxkeys@reservekeyfamily*{(list)}
639 \1ltxkeys@reservemacroprefix{(list)}
640 \1ltxkeys@reservemacroprefix*{(list)}

Here, (1ist) is a comma-separated list of bases. The starred (x) variants of these commands will
defer reservation to the end of the current package or class, while the unstarred variants will effect
the reservation immediately. As the package or class author you may want to defer the reservation
to the end of your package or class.

Users can, at their own risk, override reserved key bases simply by issuing the package boolean op-
tion reservenopath. This can be issued in \documentclass, \usepackage or \1txkeys@options.
This might be too drastic for many users and uses. Therefore, the 1txkeys package also provides
the following commands that can be used for selectively unreserving currently reserved key bases:

— | New macros: \ltxkeys@unreservekeyprefix, \ltxkeys@unreservekeyfamily, etc. | —

641 \1ltxkeys@unreservekeyprefix{(list)}
642 \1ltxkeys@unreservekeyprefix*{(list)}
643 \1ltxkeys@unreservekeyfamily{(list)}
644 \1ltxkeys@unreservekeyfamily*{(list)}
645 \1ltxkeys@unreservemacroprefix{(list)}
646 \1ltxkeys@unreservemacroprefix*{(list)}

The starred (*) variants of these commands will defer action to the end of the current package or
class, while the unstarred variants will undo the reservation immediately.

10 Bad key names

Some key names are indeed inadmissible. The 1txkeys considers the literals in Table 2, among
others, as inadmissible for key names:
Continued on next page

| PAGE 36 OF 78]

The ltxkeys package 6th February 2012

Continued from last page

Table 2: Default bad key names

ord cmd sty style bool

choice ordkey cmdkey stylekey choicekey
boolkey .do .code set setkeys
execute executekeys executedkeys handled handledkeys
presetkeys preset postsetkeys postset rmkeys

ifdef boolean tog toggle switch

true false on off count

dimen skip toks savevalue savevaluekeys
xfamilykeys needvalue needvaluekeys usevalue

For reasons of efficiency, the 1txkeys package will attempt to catch bad key names only if the
package option tracingkeys is enabled.

You can add to the list of invalid key names by the following command:

| New macros: \ltxkeys@badkeynames, \ltxkeys@addbadkeynames

647 \1ltxkeys@badkeynames{(list)}
648 \1ltxkeys@addbadkeynames{(list)}

where (1ist) is a comma-separated list of inadmissible names. The updating is done by merging,
so that entries are not repeated in the internal list of bad key names.

You can remove from the list of bad key names by using the following command:

| New macro: \ltxkeys@removebadkeynames |

649 \1ltxkeys@removebadkeynames{(list)}

where, again, (1ist) is comma-separated. It is not advisable to remove any member of the default
bad key names.

11 Declaring options

| New macros: \ltxkeys@declareoption, \ltxkeys@unknownoptionhandler
650 \1ltxkeys@declareoption[(pref)]<(fam)>{(option)} [(dft)]{(cbk)}

651 \1ltxkeys@declareoption*[(pref)]<(fam)>{(cbk)}

652 \1ltxkeys@unknownoptionhandler [(pref)]<(fam)>{(cbk)}

The unstarred variant of \1ltxkeys@declareoption is simply a form of \1ltxkeys@ordkey, with
the difference that the key family (fam) is now optional and, when specified, must be given in
angled brackets. The default family name is ‘\@currname.\@currext’, i.e., the name of the class
file or package and its file extension.

The starred () variant of \ltxkeys@declareoption prescribes the default action to be taken
when undefined options with prefix (pref) and in family (fam) are passed to class or package. You
may use \CurrentKey and \CurrentVal within this macro to pass the unknown option and its
value to another class or package or to specify other actions. In fact, you can use #1 in this macro

| PAGE 37 OF 78]

The ltxkeys package 6th February 2012

to represent the current key prefix, #2 for the current family, #3 for the current key name, and #4
for the value of the current key. The command \1txkeys@unknownoptionhandler is equivalent to
the starred (x) variant of \1txkeys@declareoption.

Note 11.1 The starred (%) variant of \1txkeys@declareoption differs from the starred form of
ETREX’s \DeclareOption and the starred form of xkeyval package’s \DeclareOptionX.

| Examples: \ltxkeys@declareoption |

653 \1ltxkeys@declareoption* [KV]<mypackage>{/

654 \PackageWarning{mypackage}{’
655 Unknown option ‘\CurrentKey’ with value ‘\InnocentVal’ ignoredl}/
656 }

657 \1ltxkeys@declareoption*{\PassOptionsToClass{#3}{article}}

658 \1ltxkeys@unknownoptionhandler [KV]<mypackage>{%

659 \@expandtwoargs\in@{,#3,}{, \KV@mypackage@handledkeys, }’

660 \ifin®

661 % The reader may want to investigate what the parameter texts
662 % ##1 and ####1 below stand for:

663 \ltxkeys@ordkey [#1]{#2}{#3} [#4] {\def \x#### 1 {#### 1xx##1}}),

664 \else

665 \PassOptionsToClass{#3}{myclass}/

666 \fi

667 }

See note 4.3 for the meaning of the parameter texts in this example. The contents of the macro
\KV@mypackage@handledkeys are handled keys for key prefix KV and family fam. See section 8 for
the meaning of handled keys.

_ | New macros: \ltxkeys@declarecmdoption, \ltxkeys@declarebooloption, etc | —_

668 \1ltxkeys@declareordoption[(pref)]<(fam)>{(option)} [(dft)]{(cbk)}

669 \1ltxkeys@declarecmdoption [(pref)]<(fam)>[(mp)]{({option)} [(dft)]{(cbk)}

670 \1ltxkeys@declarebooloption[(pref)]<(fam)>[(mp)]{({option)} [(dft)]{(cbk)}
671 \1ltxkeys@declarechoiceoption[(pref)]{(fam)} [(mp)]{{option)} [(bin)]{(alt)}
672 [<dft>] {<Cbk>}

These are the equivalents of the macros \1txkeys@ordkey, \1txkeys@cmdkey, \1ltxkeys@boolkey
and \1ltxkeys@choicekey, respectively, but now the family (fam) is optional (as is (pref)) and,
when specified, must be given in angled brackets. The default family name for these new com-
mands is ‘\@currname.\@currext’, i. e., the current style or class filename and filename extension.
\1ltxkeys@declareordoption is equivalent to the unstarred variant of \1txkeys@declareoption.
See the choice keys in subsection 3.8 for the meaning of (bin) and (alt) associated with the
command \ltxkeys@declarechoiceoption.

11.1 Options that share the same attributes

The commands

Macros

673 \1ltxkeys@declareordoption
674 \1ltxkeys@declarecmdoption

| PAGE 38 OF 78]

The ltxkeys package 6th February 2012

675 \1ltxkeys@declarebooloption
676 \1ltxkeys@declarechoiceoption

can each be used to introduce several options that share the same path or bases (option prefix,
option family, and macro prefix) and callback (cbk). All that is needed is to replace (option) in
these commands with the comma-separated list (options). Because some users might prefer to
see these commands in their plural forms when defining several options with the same callback, we
have provided the following aliases.

S | New macros: \ltxkeys@declarecmdoptions, \ltxkeys@declarebooloptions, etc | —

677 \1ltxkeys@declareordoptions [(pref)]<(fam)>{(option)} [(dft)]{(cbk)}

678 \1ltxkeys@declarecmdoptions [(pref)]<(fam)>[(mp)]{({option)} [(dft)]{(cbk)}

679 \1ltxkeys@declarebooloptions [(pref)]<(fam)>[{mp)]{(option)} [(dft)]{(cbk)}
680 \1ltxkeys@declarechoiceoptions [(pref)]{(fam)} [(mp)]{(option)} [(bin)]{(alt)}
681 [<dft>] {<Cbk>}

11.2 Declaring all types of option with one command

| New macro: \ltxkeys@declaremultitypeoptions |

o82 \1ltxkeys@declaremultitypeoptions [(pref)]<(fam)>[(mp)]{%
683 (keytype)/(keyname)/(dft)/(cbk);

684 another set of key attributes;

685 etc.

686 }

687 \1ltxkeys@declaremultitypeoptions*[(pref)]<(fam)> [(mp)]{%
688 (keytype)/(keyname)/(dft)/(cbk);

689 another set of key attributes;

690 etc.

691 }

Here, the key default value (dft) and callback (cbk) can be absent in all cases. (keytype) may be
any one of {ord, cmd, sty, sty*, bool, choice}. The star (x) in ‘sty*’ has the same meaning
as in \1ltxkeys@stylekey above, namely, undefined dependants will be defined on the fly when
the parent key is set. The optional quantity (mp) is the macro prefix, as in, for example, subsec-
tion 3.4. The syntax for the command \1txkeys@declaremultitypeoptions is identical to that of
\1ltxkeys@declarekeys except for the following differences: For \1txkeys@declarekeys the fam-
ily is mandatory and must be given in curly braces, while for \1txkeys@declaremultitypeoptions
the family is optional, with the default value of ‘\@currname.\@currext’, i.e., the name of the
class file or package and its file extension. For \ltxkeys@declaremultitypeoptions, the op-
tional family is expected to be given in angled brackets. The starred (%) variant of the command
\1ltxkeys@declaremultitypeoptions defines only undefined options. An alias for the long com-
mand \ltxkeys@declaremultitypeoptions is \declaremultitypeoptions.

| Example: \ltxkeys@declaremultitypeoptions |

692 \declaremultitypeoptions* [KV]<fam> [mp@]{%

693 cmd/optionl/xx/\def \x##1{##1xx#1};
694 bool/option2/true;

695 styx*

696 }

| PAGE 39 oF 78]

The ltxkeys package 6th February 2012

12 Executing options

| New macro: \ltxkeys@executeoptions |

697 \1ltxkeys@executeoptions [(prefs)]<(fams)>[(na)]{(keyval)}

This executes/sets the (key)=(value) pairs given in (keyval). The optional (na) specifies the list
of keys (without values) to be ignored. (prefs) is the list of prefixes for the keys; and the optional
(fams) signifies families in which the keys suggested in (key)=(value) have been defined. The
default value of (fams) is \@currname.\@currext. The command \1txkeys@executeoptions can
thus be used to process keys with different prefixes and from several families.

13 Processing options

| New macro: \ltxkeys@processoptions |

698 \1ltxkeys@processoptions [(prefs)]<(fams)>[(na)]
699 \1ltxkeys@processoptions* [(prefs)]<(fams)>[(na)]

The command \1ltxkeys@processoptions processes the (key)=(value) pairs passed by the user
to the class or package. The optional argument (na) can be used to specify keys that should
be ignored. The optional argument (fams) can be used to specify the families that have been
used to define the keys. The default value of (fams) is \@currname.\@currext. The package
command \1ltxkeys@processoptions doesn’t protect expandable macros in the user inputs unless
the 1txkeys package is loaded before \documentclass, in which case it is also possible to use the
command \XProcessOptions of the catoptions package. When used in a class file, the macro
\1ltxkeys@processoptions will ignore unknown keys or options. This allows the user to use global
options in the \documentclass command which can be inherinted by packages loaded afterwards.

The starred (x) variant of \1txkeys@processoptions works like the plain variant except that, if
the 1txkeys package is loaded after \documentclass, it also copies user input from the command
\documentclass. When the user specifies an option in the \documentclass which also exists in
the local family or families of the package issuing \ltxkeys@processoptions*, the local key too
will be set. In this case, #1 in the command \1txkeys@declareoption (or a similar command) will
be the value entered in the \documentclass command for this key. First the global options from
\documentclass will set local keys and afterwards the local options, specified via \usepackage,
\RequirePackage or \LoadClass, will set local keys, which could overwrite the previously set
global options, depending on the way the options sections are constructed.

13.1 Hooks for ‘before’ and ‘after’ processing options

_ | New macros: \ltxkeys@beforeprocessoptions, \ltxkeys@afterprocessoptions —_

700 \1ltxkeys@beforeprocessoptions{(code)}
701 \1ltxkeys@afterprocessoptions{(code)}

The macros \1txkeys@beforeprocessoptions and \1txkeys@afterprocessoptions can be used
to process an arbitrary code given in (code) before and after \1txkeys@processoptions has been
executed. The command \1txkeys@afterprocessoptions is particularly useful when it is required
to optionally load a package, with the decision dependent on the state or outcome of an option
in the current package. For obvious reasons, TEX’s options parser doesn’t permit the loading
of packages in the options section. The command \1ltxkeys@afterprocessoptions can be used

| PAGE 40 oF 78]

The ltxkeys package 6th February 2012

to load packages after the current package’s options have been processed. Here is an example for
optionally loading some packages at the end of the options section:

| Example: \ltxkeys@afterprocessoptions |
702 \1ltxkeys@cmdkey [KV]{fam} [mp@] {keyal} [1{%

703 \iflacus#1\dolacus\else

704 \1ltxkeys@afterprocessoptions{\RequirePackage [#1] {mypackage}1}’,
705 \fi

706 }

In this example, #1 refers (as usual) to the user input for key keya. Here, we assume that the values
of keya will be the (key)=(value) pairs for options of mypackage. The loading of mypackage will
be determined by whether the user input for keya is empty or not. That is why keya has an empty
default value. More complex application scenarios can, of course, be easily created.

14 Key commands and key environments

Key commands and environments are commands and environments that expect (key)=(value)
pairs as input, in addition to any number of possible nine conventional arguments. Key commands
and environments have already been introduced by the keycommand and skeycommand packages,
but the inherent robustness of the 1txkeys provides another opportunity to re-introduce these
features here. The syntax here is also simpler and the new featureset has the following advantages
over those in keycommand and skeycommand packages:

a) The defined commands and environments can have up to nine conventional parameters, in
addition to the (key)=(value) pairs.

b) Anyone or all of the nine command or environment parameters can be delimited.

c¢) All the various types of key (command keys, boolean keys, etc.) can be used as the keys for
the new command or environment.

d) With the prefixes \1txkeysglobal and \1ltxkeysprotected!’, global and robust key com-
mands and environments can be defined in a manner that simulates TEX’s \global and
e-TEX’s \protected.

e) The exit code for the key environment can have access to the arguments of the environment,
unlike in I¥TEX’s environment.

f) Simple commands are provided for accessing the current values (and, in the case of boolean
keys, the current states) of keys.

The specification of the mandatory arguments and any optional first argument for the key command
and key environment has the same syntax as in ITEX’s \newcommand and \newenvironment. The
key command and key environment of the 1txkeys package have the syntaxes:

| New macros: \ltxkeyscmd, \ltxkeysenv, etc |

(pref)\ltxkeyscmd(cs) [(narg)] [{(dft)]<(delim)>((keys)){(defn)}

()\reltxkeyscmd(cs) [(narg)] [(dft)]<(delim)>((keys)){(defn)}

709 (pref)\ltxkeysenv{(name)} [(narg)] [(dft)]<(delim)>((keys)){(begdefn)}{(enddefn)}
(pref)\reltxkeysenv{(name)} [(narg)] [(dft)]<(delim)>((keys)){(begdefn)}{(enddefn)}

708

710

Here, (pref) is the optional command prefix, which may be either \1txkeysglobal (for global
commands) or \1txkeysprotected (for e-TEX protected commands); (cs) is the command; (name)

t4 The command \iflacus, whose argument is delimited by \dolacus, tests for emptiness of its argument.
5 \1txkeysrobust is an alias for \1txkeysprotected.

|PAGE 41 oF 78]

The ltxkeys package 6th February 2012

is the environment name; (narg) is the number of parameters; (dft) is the default value of the first
argument; (delim) are the parameter delimiters; (keys) are the keys to be defined for the command
or environment; (defn) is the replacement text of the command; (begdefn) is the environment entry
text; and (enddefn) is the code to execute while exiting the environment.

The (keys) have the same syntax as they do for the command \ltxkeys@declarekeys (subsec-
tion 3.11). The parameter delimiters (delim), given above in angled brackets, have the syntax:

| Parameter delimiters |
711 1<delim1> 2<delim2> 9<delim9>

where (delim1) and (delim2) are the delimiters for the first and second parameters, respectively,
etc. Only the parameters with delimiters are to be specified in (delim). Examples are provided
later.

In the BTEX \newenvironment and \renewenvironment commands, with the syntax

| Macros: \newenvironment, \renewenvironment |

712 \newenvironment{(name)} [(narg)] [(dft)]{(begdefn)}{(enddefn)}
713 \renewenvironment{(name)} [(narg)] [(dft)] {(begdefn)}{(enddefn)}

the environment’s parameters and/or arguments aren’t accessible in (enddefn). If the environment
user wants to access the parameters in (enddefn), he has to save them while still in (begdefn).
This isn’t the case with the commands \1txkeysenv and \reltxkeysenv, for which the user can
access the environment parameters while in (enddefn). To do this, he should call the command
\envarg, which expects as argument the corresponding numeral of the parameter text. For ex-
ample, \envarg{1} and \envarg{3} refer to the first and third arguments of the environment,
respectively. Examples are provided later. The current values of environment’s keys can always
be accessed in (enddefn).

But how do we access the current values or states of keys while in (begdefn) and (enddefn)?
To this end the commands \val, \ifval, \ifvalTF, \keyval, \ifkeyval and \ifkeyvalTF are
provided. They have the following syntaxes:

| New macros: \val, \ifval, \ifvalTF, etc |

714 % The following commands don’t first confirm that the key exists before
715 % attempting to obtain its current value or state. They are expandable:
716 \val{(key)}

77 \ifval(boolkey)\then (true) \else (false) \fi

718 \ifvalTF{(boolkey)}{(true)}{(false)}

719 % The following commands first confirm that the key exists before attempting
720 % to obtain its current value or state. They are expandable if the key
721 % is defined:

722 \keyval{(key)}
723 \ifkeyval(boolkey)\then (true) \else (false) \fi
724 \ifkeyvalTF{(boolkey)}{(true)}{(false)}

The command \val yields the current value of a command or environment key, irrespective of the
type of key. Its argument should exclude the key-command name, key prefix, key family, and macro
prefix. The command \ifval expects as argument a boolean key name (boolkey) (without the
command name, key prefix, key family, and macro prefix) and yields either \iftrue or \iffalse.

| PAGE 42 oF 78]

The ltxkeys package 6th February 2012

The command \ifvalTF expects as argument a boolean key and yields one of two IXTEX branches,
(true) or (false).

The commands \val, \ifval and \ifvalTF can be used in expansion contexts (including in
\csname. ..\endcsname) but if their arguments aren’t defined as keys, they will return an un-
defined command, either immediately or later. On the hand, their counterparts (namely, the
commands \keyval, \ifkeyval and \ifkeyvalTF) will first check that the key has been defined
before attempting to obtain its current value or state. This affects their expandability when a key
is undefined. My advice is that the user should always use \keyval, \ifkeyval and \ifkeyvalTF
instead of \val, \ifval and \ifvalTF, unless he is sure he hasn’t committed any mistakes in key’s
name; but he might be writing a package—that contains these commands—for the use of the TEX
community. Also, here there is an advantage in using \protected@edef in place of \edef: some
KTEX commands are protected with \protect.

The commands \val, \ifval, \ifvalTF, \keyval, \ifkeyval and \ifkeyvalTF, like the command
and environment keys, are available in (defn), (begdefn) and (enddefn). These commands (i.e.,
\val, \ifval, \ifvalTF, \keyval, \ifkeyval and \ifkeyvalTF) are pushed on entry into (defn)
or (begdefn), and they are popped on exit of (defn) or (enddefn). Unless they’re defined elsewhere
outside the ltxkeys package, they’re undefined outside (defn), (begdefn), (enddefn), and the
environment body°.

14.1 Final tokens of every environment

The user can add some tokens to the very end of every subsequent environment by declaring
those tokens in the macro \1txkeys@everyeoe, which by default contains only BTEX’s command
\ignorespacesafterend. That is, the 1txkeys package automatically issues

| Example: \ltxkeys@everyeoe |

725 \1ltxkeys@everyeoe{\ignorespacesafterend}

It is important to note that new tokens are prepended (and not appended) to the internal hook
that underlies \1txkeys@everyeoe, such that by default \ignorespacesafterend always comes
last in the list. You can empty the list \1txkeys@everyeoe by issuing \ltxkeys@everyeoe{} and
rebuild it anew, still by prepending elements to it. \ltxkeys@everyeoe isn’t actually a token
list register but it behaves like onel”. Tt is safe to issue \ltxkeys@everyeoe{(token)} and/or
\1ltxkeys@everyeoe{} in the (begdefn) part of the key environment. One of the examples in
subsection 14.2 illustrates this point.

Note 14.1 The pointer schemes of subsection 4.4 are applicable to key commands and key envir-
onments. The \needvalue pointer is used in one of the examples in subsection 14.2.

14.2 Examples of key command and environment

| Examples: Key command |

726 % It is possible to use parameter delimiters, as the following
727 % \0nil and \@mil show:

728 % \ltxkeysglobal\ltxkeysrobust\ltxkeyscmd*\cmdframebox

729 yA [3] [default]<2\@nil 3\@mil>((keys)){(defn)}

6 The commands \pathkeysval, \ifpathkeysval, \ifpathkeysvalTF, \pathkeyskeyval, \ifpathkeyskeyval and
\ifpathkeyskeyvalTF are always available, but they can be used only in the context of ‘pathkeys’ (section 17).
7 However, you can’t do \ltxkeys@everyeoe\expandafter{\cmd} because \ltxkeys@everyeoe isn’t a token list
register.

| PAGE 43 oF 78]

The ltxkeys package

6th February 2012

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

766

767

768

769

770

771

772

774

775

776

7T

% No parameter delimiters for the following:
\1ltxkeysglobal\ltxkeysrobust\ltxkeyscmd*\cmdframebox[3] [default] (%
cmd/width/\textwidth;
cmd/textcolor/black;
cmd/framecolor/red;
cmd/framerule/.4pt;
cmd/framesep/4pt;
bool/putframe/true;
bool/testbool/true;
VA
\begingroup
\fboxrule\keyval{framerule}\relax
\fboxsep\keyval{framesep}\relax
\ifkeyval putframe\then
\fcolorbox{\keyval{framecolor}}{gray!25}{%
\fi
\parbox{\keyval{width}}{%
\color{\keyval{textcolor}}/
Arg-1: #1\\
Arg-2: #2\\
Arg-3: #3}
Yh
\ifkeyval putframe\then}\fi
\ifkeyvalTF{testbool}{\def\x{T}}{\def\y{F}}%
\endgroup
}

\begin{document}
\cmdframebox [Text-1]1{Text-2\\ ...\\ text-3}{Text-4} (%
width=.5\textwidth,
framecolor=cyan,
textcolor=purple,
framerule=1pt,
framesep=10pt,
putframe=true
)
\end{document}

| Example: Key environment

\ltxkeysenv*{testenv}[1] [right] (%
cmd/xwidth/2cm;
cmd/ywidth/1.5cm;
cmd/body ;
cmd/\needvalue{author}/\null;
bool/boola/false;
)%
\1ltxkeys@iffound{,#1,}\in{,right,left,}\then\else
\@latex@error{Unknown text alignment type ‘#1’}\Qehd
\fi
\centering
\fbox{\parbox{\keyval{xwidth}}{\usename{ragged#1}\keyval{body}}}%
\ifkeyval boola\then\color{red}\fi

| PAGE 44 oF 78]

The ltxkeys package

6th February 2012

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

797

798

799

800

802

803

804

805

806

808

809

810

812

813

814

815

817

818

819

820

822

823

824

825

\fbox{\parbox{\keyval{ywidth}}{\usename{ragged#1}\keyval{body}}1}7%

\normalcolor

% \val, \ifval, etc, are unavailable in \ltxkeys@everyeoe. Hence

% we save the value of ‘author’ here:

\protected@edef\quoteauthor{\val{author}}/,

% Re-initialize \ltxkeys@everyeoe:

\1ltxkeys@everyeoe{}V

\1ltxkeys@everyeoe{\ignorespacesafterend}’

\1ltxkeys@everyeoe{\endgraf\vskip\baselineskip
\centerline{\itshape\quoteauthor}}

% Just to test parameter use inside \ltxkeysenv:

\def\testmacroa##l{aaa##1})

H%
\def\testmacrob##1{##1bbb}}
}
\begin{document}
\begin{testenv} (%
xwidth=5cm,
ywidth=4cm,
boola=true,
author={Cornelius Tacitus \textup{(55--1207AD)}},
body={Love of fame is the last thing even learned men can bear
to be parted from.}
)
\end{testenv}
\end{document}
| Examples: Key environment |
% The following line has parameter delimiters \@nil and \@mil:
% \ltxkeysglobal\ltxkeysrobust\ltxkeysenv*{envframebox}
% [3] [default]<2\@nil 3\@mil>((defn)){}
% No parameter delimiters for the following:

\1ltxkeysglobal\ltxkeysrobust\ltxkeysenv*{envframebox}[3] [default] (%

cmd/width/\textwidth/\def\xx##1{##1};
cmd/textcolor/black;
cmd/framerule/.4pt;
ord/framecolor/brown;
bool/putframe/true;

Yk

\begingroup
\fboxrule\val{framerule}\relax
\ifval putframe\then\fcolorbox{\val{framecolor}}{gray!25}{\fi
\parbox{\val{width}}{%
Arg-1: #1\\
Arg-2: \textcolor{\val{textcolor}}{#2}\\
Arg-3: #3%,
Yh
\ifval putframe\then}\fi
\endgroup

H%

| PAGE 45 oF 78]

The ltxkeys package

6th February 2012

827

828

829

830

831

832

833

835

836

837

838

\edef\firstarg{\envarg{1}}%
\def\yy##1{##1}%
}

\begin{document}
\begin{envframebox} [Text-1]{Text-2\\ ...\\ test text-2}{Text-3}(%
width=.5\textwidth,
textcolor=purple,
framerule=1pt,
putframe=true
)
\end{envframebox}
\end{document}

| Examples: Nested key environments

\def\testenv{}

\reltxkeysenv{testenv}(/

% The \y below is just a test:
cmd/fraclen/0.1lcm/\def\y##1{#1yyy##1};
cmd/framerule/.4pt;
cmd/framecolor/blue;
cmd/textcolor/black;
bool/putframe/true;

)%
\1ltsdimdef\tempb{.5\textwidth-\val{fraclen}*\currentgrouplevelly,
\noindent
\endgraf\fboxrule=\val{framerule}\relax
\color{\val{framecolor}}%

H?

\begin{document}
\begin{testenv} (%
fraclen=0.1cm,
framerule=1.5pt,
framecolor=red,
textcolor=magenta,
putframe=true
A
\ifval putframe\then\fbox{\fi
\parbox\tempb{J,
\color{\val{textcolor}}%
outer box\endgraf
*kkgaakkok
\vspace*{5mm}Y
\begin{testenv} (%
fraclen=0.1cm,
framerule=3pt,
framecolor=green,
textcolor=cyan,
putframe=true
Y%
\ifval putframe\then\fbox{\fi

| PAGE 46 OF 78]

The ltxkeys package 6th February 2012

875

876

877

879

880

881

882

884

885

886

888

889

890

891

893

894

896

897

898

899

901

902

903

904

906

907

908

909

911

912

913

914

916

917

918

919

\parbox\tempb{’,
\color{\val{textcolor}}/
inner box\endgraf\vspace*{5mm}%
+++bbb+++

Yh

\ifval putframe\then}\fi

\end{testenv}’%

192

\ifval putframe\then}\fi
\end{testenv}
\end{document}

The following example shows that in place of the functions \val, \ifval, \ifvalTF, \keyval,
\ifkeyval and \ifkeyvalTF the user can access the values and states of keys by concatenating
the command or environment name, the ‘@’ sign and the name of the key. This, of course, requires
that ‘@’ has catcode 11.

| Examples: Key command |

\1ltxkeyscmd\myframebox [2] [default text] (%
cmd/width/\textwidth;
cmd/textcolor/black;
cmd/framecolor/black;
cmd/framesep/3\pQ;
cmd/framerule/0.4\pQ@;
% The following is choice key ‘textalign’ with default value ‘center’.
% The ¢.do=’ in the admissible values is optional, but not the forward
% slash “/’:
choice/textalign.{%
center/.do=\def\ttextalign{center},
left/.do=\def\ttextalign{flushleft},
right/.do=\def\ttextalign{flushright}
}/center;
bool/putframe/true
){%
\begingroup
\fboxsep\myframebox@framesep
\fboxrule\myframebox@framerule\relax
\1ltsdimdef\myframebox@boxwidth
{\myframebox@width-2\fboxsep-2\fboxrule}y
\noindent\begin{lrbox}\@tempboxa
\begin{minipage} [c] [\height] [s]\myframebox@boxwidth
\@killglue
\begin\ttextalign
\textcolor{\myframebox@textcolor}{Arg-1: #1\endgraf Arg-2: #21}J,
\end\ttextalign
\end{minipagel}’,
\end{1lrbox}%
\@killglue
\color{\myframebox@framecolorl}
\ifmyframebox@putframe\fbox{\fi
\usebox\@tempboxa
\ifmyframebox@putframe}\fi
\endgroup

| PAGE 47 oF 78]

The ltxkeys package

6th February 2012

921

922

924

925

926

927

928

930

931

932

933

934

935

937

938

939

940

941

942

943

945

946

947

948

3

\begin{document}

\myframebox [Text-1]{Test text-2\\ ...\\test text-2}
(framerule=2pt,framecolor=blue,textcolor=purple,
putframe=true,textalign=right)

\end{document}

15 Declaring variables

Sometimes keys are used simply to save values for later use. This can be achieved easily by using

the command \ltxkeys@declarevariables

| New macro: \ltxkeys@declarevariables ,\setvarvalues ,\getvarvalue

\1ltxkeys@declarevariables[(namespace)]{/
(key-1) = (dft-1) = (cbk-1), ..., (key-n) = (dft-n) = (cbk-n)
}
\setvarvalues [(namespace)]{(key)=(value) pairs}
\getvarvalue [(namespace)]{(key)}

Here, (key-i), (dft-i) and (cbk-i) are key name, key default value, and key callback, respectively,
for key ‘i’. The optional (namespace) is the private namespace for the declared variables and is

used to avoid clashes of control sequences.

The key default value (dft) and callback (cbk) are optional and may be missing in the mandatory

argument of \1txkeys@declarevariables.

| Example: \ltxkeys@declarevariables

\1ltxkeys@declarevariables [mynamespace] {/,
varl = {default valuel} = \def\userinput{#1}\def\cmd##1{##1},
% No callback:
var2 = default value2,
% No default value and no callback:
var3
}
\setvarvalues [mynamespace]{varl=new valuel, var2=new value2}
\edef\x{\getvarvalue [mynamespace]{vari}}

\begin{document}
\getvarvalue [mynamespace] {vari}
\end{document}

The private namespace is optional but clashes of control sequences might occur:

| Example: \ltxkeys@declarevariables

\1ltxkeys@declarevariables{),
varl = {default valuel} = \defl\userinput{#1}\def\cmd##1{##1},
% No callback:
var2 = default value2,
% No default value and no callback:
var3

| PAGE 48 oF 78]

The ltxkeys package 6th February 2012

950 3
951 \setvarvalues{varl=new valuel, var2=new value2}
952 \edef\x{\getvarvalue{vari}}

953 \begin{document}

954 \getvarvalue{vari}
955 \end{document}
16 The \1txkeys command
| New macro: \ltxkeys |
956 \1ltxkeys*’{(code-1) \\ (code-2) ... \\ ... (code-n)}

The command \1txkeys simply provides an ungrouped® environment for using the short forms of
the commands shown in Table 3. The abbreviated commands are pushed on entry into \1txkeys,
they are then assigned the meaning of their longer counterparts, and then popped (to whatever
their original meaning was before entry into \1txkeys) on exist of \1txkeys. The list parser within
\1txkeys is invariably ‘\\’. The list is normalized’® and the given codes (code-i), i = 1,...,n,
executed on the consecutive loops. The commands \ordkeys, \cmdkeys, etc., can be used to define
just one key or multiple keys in the same family and of the same callback. Table 3 lists the other
abbreviations available within \1txkeys.

The starred () variant of \1txkeys will expand its argument once before commencing the loop and
executing the codes (code-i), i = 1,...,m. The prime (’) variant is equivalent to invoking the pack-
age option endcallbackline before calling \1txkeys. Using both x and ’ makes \endlinechar
—1 but the effect is not enforced, since in the starred (%) variant of \1txkeys the argument has
already been read.

Table 3: Command abbreviations available within \1txkeys

Command Abbreviation
\ordkey \1ltxkeysQordkey
\ordkeys \1ltxkeys@ordkeys
\listkey \1ltxkeys@listkey
\listkeys \1ltxkeys@listkeys
\cmdkey \1ltxkeys@cmdkey
\cmdkeys \1ltxkeys@cmdkeys
\boolkey \1txkeys@boolkey
\boolkeys \1ltxkeys@boolkeys
\switchkey \1ltxkeys@switchkey
\switchkeys \1ltxkeys@switchkeys
\choicekey \1ltxkeys@choicekey
\choicekeys \1ltxkeys@choicekeys
\stylekey \1ltxkeys@stylekey

8 Meaning no local groups are created.

Continued on next page

9 Normalization implies replacing double ‘\\’ by single ‘\\’ and removing spurious spaces around each ‘\\’.

| PAGE 49 oF 78]

The ltxkeys package

957

959

960

961

962

964

965

967

968

969

970

972

973

974

975

Continued from last page

Command Abbreviation

\stylekeys \1ltxkeys@stylekeys

\definekeys \1ltxkeys@definekeys

\declarekeys \1ltxkeys@declarekeys
\declareoptions \1ltxkeys@declaremultitypeoptions
\ifdeclaringkeys\then \ifltxkeys@dec

\setkeys \1ltxkeys@setkeys

\setrmkeys \1ltxkeys@setrmkeys

| Example: \ltxkeys

\1ltxkeys’{

\switchkeys+[KV]{fam} [mp@]{keya,keyb} [true]{

\if\@nameuse{mp@\CurrentKey}
\def \xx##1{##1x#1x#H#1}
\fi

H
\keyvalueerror

}

\declarekeys* [KV]{fam} [mp@]{
bool/keyc/true/\def \x##1{##1\\#1\\##1};
cmd/keyd/keyd-default/\def\currval{#1};

}%

\\

% Arbitrary code to be executed on its own:

\def\x##1{x ##1 x}

\\

\setkeys* [KV] {fam} [keyb,keyc] {keya=false,keyb,keyc=false,keyd=yy}

\setrmkeys* [KV]{fam} [keyc]

17 Pathkeys

Let us start this section with a welcome message: you don’t have to repeatedly type in long key
paths and commands when using pathkeys. There is plenty of help ahead on how to reduce estate
when using pathkeys.

The pathkeys package can be loaded on its own (via \RequirePackage or \usepackage) or as
an option to the 1txkeys package (see Table 1)*!. All the options listed in Table 1 are accepted
by the pathkeys package. They are all passed on to 1txkeys package, except pathkeys that is
simply ignored by pathkeys package.

Pathkeys are keys with a tree or directory structuret?. When defining and setting pathkeys, the full
key path is usually required. This is also the case when seeking the current value or state of a key.
When using pathkeys the user is relieved of the need to known and remember where the optional
arguments have to be placed in calls to macros. And like the commands \1txkeys@definekeys

1 The user has no access to the command \pathkeys unless he/she first loads pathkeys package.
2 This might sound like pgf keys, but the semantics, syntaxes, and the implementation here are all different from
those of pgf keys.

| PAGE 50 oF 78]

6th February 2012

The ltxkeys package 6th February 2012

and \ltxkeys@declarekeys, pathkeys are automatically initialized after definition, i.e., they are
automatically set with their default values. Boolean keys are set with a default value of ‘false’
irrespective of the user-specified default value. See subsections 3.10 and 3.11 for an explanation of
this philosophy.

The command for defining and setting pathkeys is \pathkeys, which has the following syntax.
The same command is used for several other tasks related to pathkeys. The ‘flag’ entry in the
argument of \pathkeys determines the action that the command is expected to take.

| New macros: \pathkeys |
976 \pathkeys*’{(paths)/(flag): (attrib)}

The starred (x) variant of \pathkeys will expand its argument once before commencing the loop
and executing the codes on the specified paths. The prime (’) variant is equivalent to invok-
ing the package option endcallbackline before calling \pathkeys. Using both x and ’ makes
\endlinechar —1 but the effect is not enforced, since in the starred (x) variant of \pathkeys the
argument has already been read.

In the argument of command \pathkeys, (paths) has the syntax

| New macros: Paths in \pathkeys |
077 (main-1)/(sub-1)/(subsub-1), (main-2)/(sub-2)/(subsub-2), ..., etc.

[

in which individual paths are separated by comma ‘,”. The quantity (main) is the main path
and (sub) is the sub path, etc. It should be noted that there is no forward slash (/) before
(paths) or (main). If the path is empty, the default path ‘dft@main/dft@sub’, or the user-supplied
current path (see later), is used. Note, however, that when the current path is empty, the default
path is not resorted to automatically; you have to indicate that this is your choice. You can call
\pathkeys@usedefaultpath to indicate that you really want the default path to be the current
path. The aim is that users don’t leave out the path when they don’t actually intend it to be
empty. There is more about the default and current paths later in this guide.

The (attrib), the property of a pathkey, is determined by the quantity called (flag). The (flag)
determines the action the command \pathkeys takes, and must be a member of the set described
in Table 4. The action specified by (flag) is, if applicable on all the given paths, taken on all
the given paths. Multiple paths should invariably be comma-separated. See the notes of Table 4
for the (attrib)’s of the flags. The attributes describe the arguments associated with the flags,
i.e., the quantities expected after the colon ‘:’ in the argument of \pathkeys. The (na) is the
list of keys that are ignored by the (flag)’s action. If it is present in the attribute (attrib) part
of \pathkeys, it must always be given in square brackets ‘[1’ (see note 17.1). Not all the flags
expect, or can process, the (na) list.

Some important points about the command \pathkeys:

a) A key message of the above syntax of (paths) is that several paths can be submitted to
\pathkeys in one go. The attribute (attrib) will then apply to all the given paths, according
to the given (flag). If (flag) involves defining keys, the keys will be defined on all the listed
paths. If (flag) involves determining if a key is defined on any of the given paths, all the
listed paths are searched to find the key.

b) Within the command \pathkeys, if the package option endcallbackline is enabled, every
line implicitly ends with a comment sign. Invariably, within \pathkeys the ‘at sign’ (@) has
category code 11 (letter). So no need to reassign this category code to 11 within \pathkeys.

c¢) For flags with %, + and ! signs, the user should make sure there is no space between the
flag and its star, plus or exclamation sign: such a space will not be zapped internally, since
syntactic matching is used. The sign is part of the flag’s name.

Continued on next page

|PAGE 51 OF 78]

The ltxkeys package

6th February 2012

Continued from last page

No.

Tt o W N =S

10

11

12
13

14

15

16

17

18
19
20
21
22
23

24

25
26

27

Flag

Flag

define

define*
declareoptions
declareoptions*

preset

preset!

postset

postset!
set

set*
set*+

setrm

setrm*

setrm*+

executeoptions

processoptions
processoptions*

launch
storevalue
printvalue
addvalue
ifbool
ifdef

ifkeyonpath

disable

disable*

keyhandler or
handler

Meaning

Table 4: Flags and attributes for pathkeys

Meaning

Define the keys whether or not they already exist.5¢¢ note 41

Define the keys only if they don’t already exist.*?
Declare the given options whether or not they already exist.*?
Declare the options if they don’t already exist.**

Preset the listed keys on the given path. This actually means preparing
the list of preset keys, for later use when setting keys with the flag set or
any key-setting flag.*®

Preset the listed keys, saving the list globally.*-¢

Post-set the listed keys. This actually means preparing the list of postset
keys.*7

Post-set the listed keys, saving the list globally.*®
Set the listed keys.*”

Set the listed keys and save undefined keys in the list of ‘remaining keys’
without raising errors.**°

Set the listed keys in all the given key prefixes and families; save undefined

keys in the list of ‘remaining keys’ without raising errors.*!!

Set the ‘remaining keys’.*'?

Set the ‘remaining keys’ and again save undefined keys in the revised list
of ‘remaining keys’ without raising errors.” '

Set the ‘remaining keys’ in all the given key prefixes and families; save
undefined keys in the revised list of ‘remaining keys’ without raising er-

rors.t 14

Execute the listed options.?'?

Process the listed options in the order in which they were declared, and
don’t copy \documentclass options.* !¢

Process the listed options in the order in which they appear in the com-

mand \usepackage, and copy \documentclass options.*!”

Launch the listed keys (see subsection 4.8).%'8

Store the value of (key) in the given (macro).**?

Print the current value of (key).**°

Add the specified value to the current value of key.*2*

Test the state of a boolean key. This returns (true) or (false).**?

Test if (key) is currently defined on any of the given comma-separated
multiple paths. This returns (true) or (false). This is equivalent to
ifkeyonpath.‘*‘23

Test if (key) is currently defined on any of the given comma-separated
multiple paths. This returns (true) or (false). This is synonymous with
ifdef.*?*

Immediately disable the given keys.*2®

Disable the given keys at the hook \AtBeginDocument and not immedi-
ately.*2¢

Unknown key handler.*2”

Continued on next page

| PAGE 52 OF 78]

The ltxkeys package 6th February 2012

Continued from last page
No. Flag Meaning

28 optionhandler Unknown option handler (see subsection 4.9). Options are keys with a
special default family. There might be a reason to handle unknown options
separately from unknown keys.

29 normalcode The given code will simply be executed. Virtually any code can be the
(attrib) of this flag. This is the flag to use to, for example, change path
within \pathkeys command. It should be recalled that path changes within
\pathkeys command are limited in scope, since the current path is pushed
upon entry into this command and popped on exit.

Table 4 notes

These notes describe the attributes of key flags, i.e., what are required to be specified in the
command \pathkeys after the colon ‘:’ sign. (na) keys are the keys to be ignored; they must
appear in square brackets, e.g., [keya, keyb].

41 See attribute in note 17.1.
42 Same as for define flag.
43 Same as for define flag.

44 The flag declareoptions* simply signifies the user’s aim to define definable options; it has nothing
to do with the starred (%) variant of the command \1ltxkeys@declareoption of section 11. The attribute
is the same as for define flag.

key)=(value) pairs (see subsection 4.6).
key)=(value) pairs (see subsection 4.6).
key)=(value) pairs (see subsection 4.6).
key)=(value) pairs (see subsection 4.6).

keys and (key)=(value) pairs (see section 4).
keys and (key)=(value) pairs (see section 4).
keys and (key)=(value) pairs (see section 4).
keys (see subsection 4.2).

)
)
)
)

na) keys (see subsection 4.2).
) keys (see subsection 4.2).
)
)
)

425 The attribute is a comma-separated key list.
4.26 Comma-separated key list.

427 The key or option handler can have up to a maximum of 4 arguments. The arguments of the unknown
key or option handler are the main path (argument 1); subpaths, separated by forward slash (argument

| PAGE 53 OF 78]

The ltxkeys package 6th February 2012

2); key name (argument 3), and the current key value (argument 4). The handler can/should be defined
by the user (see subsection 4.9).

Note 17.1 The syntax for specifying keys to be defined by \pathkeys is (see subsection 3.11)

| Syntax for defining keys in \pathkeys |

078 \pathkeys{(path)/define:

079 (keytype)/(keyname)/(dft)/(cbk);
980 another set of key attributes;
081 etc.

982 }

]

Here, the default list parser (semicolon ‘;’) is shown. This can be changed by using the package
option keyparser—see section 2. The default key value (dft) and the callback (cbk) can be absent
in all cases. (keytype) may be any member of the set {ord, cmd, sty, sty*, bool, choice}.
The star (%) in ‘sty*’ has the same meaning as in \1txkeys@stylekey (subsection 3.5), namely,
undefined dependants will be defined on the fly when the parent is set/executed.

| Example: Syntax for defining pathkeys |

083 % Define keys on only one path:

984 \pathkeys{fam/subfam/subsubfam/define:
0985 cmd/keya/defaultval/\def\cmda#1{#1};
086 bool/keyb/true;

987 }

088 % Define keys on multiple paths:
989 \pathkeys{faml/subfaml/subsubfaml,fam2/subfam2/subsubfam?, .../define:

990 cmd/keya/defaultval/\def\cmda#1{#1};
991 bool/keyb/true
992 }

Choice keys must have their names associated with their nominations (i.e., admissible values) in
the format (keyname).{(nominations)}, as below (see also subsection 3.11):

| Syntax for defining choice keys in \pathkeys |

993 % ‘keya’ is a choice key with simple nominations and callback, while ‘keyb’
994 % is a choice key with complex nominations. The function \order is generated
995 % internally by the package for choice keys. It means the numerical order of
996 % of the nomination, starting from zero.

997 \pathkeys{fam/subfam/subsubfam/define:

998 choice/keya.{left,right,center}/center/

999 \edef\x{\ifcase\order O\or 1\or 2\fi};

1000 choice/keyb.{’

1001 center/.do=\def\textalign{center},

1002 left/.do=\def\textalign{flushleft},

1003 % ¢.do=’ can be omitted, as in:

1004 right/\def\textalign{flushright},

1005 justified/\let\textalign\relax

1006 }/center/\def\x##1{##1xx#1}

1007 }

The (na) keys, if they are present in the attribute of \pathkeys, must always be given in square
brackets []. They can come either before or after the (key)=(value) list to be set in the current
run. For example,

| PAGE 54 oF 78]

The ltxkeys package 6th February 2012

| Example: ‘na’ keys

1008 \pathkeys{fam/subfam/subsubfam/define:

1009 cmd/keya/xx/\def\cmda#1{#1};
1010 bool/keyb/true
1011 }

1012 % Set ‘keya’ and ignore ‘keyb’:

1013 \pathkeys{fam/subfam/subsubfam/set: keya=zz,keyb=true [keybl}
1014 % or

1015 \pathkeys{fam/subfam/subsubfam/set: [keyb] keya=zz,keyb=true}

See subsection 17.5 for further examples of the use of ignored keys. Here we can see that a value
is provided for ‘keyb’ and yet we’re ignoring the key. However, in practical applications it is
often impossible to predict the subset of keys (among a set of them) that may be executed at any
time by the user of the keys. Therefore, (na) keys are much more useful than the above example
demonstrates .

Some of the commands associated with pathkeys are listed below. The abbreviation (pk) means
the full key path and key name, all separated by forward slash.

| New macros: \pathkeysval, \ifpathkeysval, \ifpathkeysvalTF, etc. |

1016 % The following commands are expandable:

1017 \pathkeysval{(pk)}

1018 \ifpathkeysval{(pk)} \then ... \else ... \fi
1019 \ifpathkeysvalTF{(pk)}{(true)}{(false)}

1020 % The following commands aren’t expandable:

1021 \pathkeyskeyval{(pk)}

1022 \ifpathkeyskeyval{(pk)} \then ... \else ... \fi
1023 \ifpathkeyskeyvalTF{(pk)}{(true)}{(false)}

1024 \pathkeys@storevalue{(pk)}(cmd)

The commands \pathkeysval and \pathkeyskeyval simply yield the current value of the key.
The commands \ifpathkeysval and \ifpathkeyskeyval, which require \then to form balanced
conditionals, test the current state of the boolean key (pk) in a TEX-like syntax. The commands
\ifpathkeysvalTF and \ifpathkeyskeyvalTF also test the current state of the boolean key (pk)
but return (true) or (false) in a KTEX syntax. The command \pathkeys@storevalue stores the
current value of key (pk) in the given command (cmd).

Note 17.2 If called outside an assignment or document environment, the macros \pathkeysval
and \pathkeyskeyval can give ‘no document error’, to signify that a token has been output outside
these situations. And one source of problem with \ifpathkeysval and \ifpathkeyskeyval is to
omit \then after their argument. If you find yourself typing long key paths and the commands
\pathkeysval and \pathkeyskeyval, etc., repeatedly, there is help ahead on how to reduce the
amount of typing required in using pathkeys.

The following provide our first examples of pathkeys and a demonstration of some of the commands
associated with pathkeys.

| Examples: Pathkeys |

1025 \pathkeys{fam/subfam/subsubfam/define:

1026 cmd/xwidth/\@tempdima/\def \y##1{#1yy##1};
1027 cmd/keya/\def\cmda#1{#1};
1028 bool/putframe/true

| PAGE 55 OF 78]

The ltxkeys package

6th February 2012

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

}
\pathkeys{fam/subfam/subsubfam/set: putframe=true [keya]}

\pathkeys{fam/subfam/subsubfam/ifdef: xwidth}{\def\x{T}}{\def\x{F}}

\pathkeys{fam/subfam/subsubfam, famx/subfamx/subsubfamx/ifkeyonpath: xwidth}

{\def\x{T}}{\def\x{F}}
\pathkeys{fam/subfam/subsubfam/print value: xwidthl}=\z@pt
\pathkeys{fam/subfam/subsubfam/store value: keya \cmd}
\pathkeys{fam/subfam/subsubfam/add value: keya=\def\cmdb#1{#1}}
\pathkeys@storevalue{fam/subfam/subsubfam/putframe}\cmd
\edef\x{\ifpathkeysvalTF{fam/subfam/subsubfam/putframe}{THF}}
\edef\x{\ifpathkeysval fam/subfam/subsubfam/putframe\then T\else F\fi}
\edef\x{\ifpathkeysval fam/subfam/subsubfam/putframe\then T\else F\fi}
% ‘xputframe’ is undefined. What does the following return?
\edef\x{\pathkeysval{fam/subfam/subsubfam/xputframe}}
% Unknown key handler:
\pathkeys{fam/subfam/subsubfam/keyhandler:

% ‘#1° is the key’s main path, ‘#2’ is the subpaths combined,

% ‘#3° is the key name, and ‘#4°’ is the current value of the key:

\1ltxkeys@warn{Unknown key ‘#3’ with value ‘#4’ ignored.}%
}
\pathkeys{fam/subfam/subsubfam/disable*: keya,keyb,keyc}

| Examples: Pathkeys |

\pathkeys{KV/frame/framebox/define*:
cmd/width/\textwidth/\def\x##1{#1xx##1};
cmd/textcolor/black;
cmd/framecolor/black;
cmd/framesep/3\pQ;
cmd/framerule/0.4\p@;
cmd/cornersize/20\p@;
choice/textalign.{%
center/.do=\def\ttextalign{center},
left/.do=\def\ttextalign{flushleft},
right/.do=\def\ttextalign{flushright}
}/center;

bool/putframe/true;

cmd/arga;

cmd/argb

}

\newcommand*\myframebox [1] [1{¥%

% Use ‘set’ or ‘launch’ here, but they don’t have the same meaning:
\pathkeys{KV/frame/framebox/set:#13}/
\begingroup
\fboxsep\pathkeysval{KV/frame/framebox/framesepl}’
\fboxrule\pathkeysval{KV/frame/framebox/framerule}\relax
\1tsdimdef\boxwidtha{%

\pathkeysval{KV/frame/framebox/width}-2\fboxsep-2\fboxrule

Yh
\noindent\begin{lrbox}\@tempboxa
\begin{minipage} [c] [\height] [s]\boxwidtha
\@killglue

| PAGE 56 OF 78]

The ltxkeys package

6th February 2012

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

3

\begin\ttextalign
\textcolor{\pathkeysval{KV/frame/framebox/textcolor}}{/
Arg-1: \pathkeysval{KV/frame/framebox/arga}
\endgraf
Arg-2: \pathkeysval{KV/frame/framebox/argb}%
Yh
\end\ttextalign
\end{minipagel}’
\end{1lrbox}%
\@killglue
\color{\pathkeysval{KV/frame/framebox/framecolor}}’
\ifpathkeysval{KV/frame/framebox/putframe}\then\ovalbox{\fi
\usebox\@tempboxa
\ifpathkeysval{KV/frame/framebox/putframe}\then}\fi
\endgroup

\begin{document}
\myframebox [arga=Text-1,argb={Test text-2\\ ...\\test text-2},

framerule=2pt,framecolor=blue,textcolor=purple,
putframe=true,textalign=right]

\end{document}

| Example: Forward slashes in key defaults and macros

Note 17.3 When using pathkeys (and in general the commands \ltxkeys@definekeys and
\1ltxkeys@declarekeys), there is a potential problem in deploying forward slashes in key de-
faults and macros without enclosing those slashes in curly braces. They will confuse the parser.
Several solutions exist, including tweaking the relevant internal parser, but I haven’t decided on
the optimal solution to this possibility. For example, the following will fail:

\pathkeys{fam/subfam/subsubfam/definex:

bool/keya/true/\ifpathkeysval fam/subfam/subsubfam/keya\then
\def\x{T}\else\def\x{F}\fi;

Its correct form is

| Example: Forward slashes in key defaults and macros

\pathkeys{fam/subfam/subsubfam/definex*:

bool/keya/true/\ifpathkeysval{fam/subfam/subsubfam/keyal}\then

\def\x{T}\else\def\x{F}\fi;

17.1 Defining pathkeys of common type

| PAGE 57 OF 78]

To define pathkeys of the same/one type (in the set {ord, cmd, sty, sty*, bool, choice}),
simply put ‘((type))’, within the parenthesis, after (flag) and omit (keytype) in (attrib). For
example, the following defines only boolean pathkeys:

The ltxkeys package 6th February 2012

| Example: Pathkeys of the same type

1107 \pathkeys{fam/subfam/subsubfam/define* (bool) :

1108 % No (keytype) in the following specifications:

1109 keya/true/\ifpathkeysval{fam/subfam/subsubfam/keya}t\then
1110 \def\x{T}\else\def\x{F}\fi;

1111 keyb/true/\ifpathkeysvalTF{fam/subfam/subsubfam/keyb}
1112 {\def\x##1{##1}}{\def \x{F}}

1113 }

And the following defines only command keys:

| Example: Pathkeys of the same type

1114 \pathkeys{fam/subfam/define*(cmd) :

1115 keya/keya-default/\def\cmda##1{##1};
1116 keyb/keyb-default
1117 }

17.2 Shortened pathkeys commands

As seen above, the estate for deploying pathkeys can be large when compared with the amount of
typing required for conventional keys presented in the previous chapters. To reduce the estate, the
first line of thought is to store any long path in a macro and call the macro instead of the path.
The path is always fully expanded under safe actives. The following example demonstrates this
approach.

| Examples: Putting paths in macros |

1118 \def\mypath{fam/subfam/subsubfam}
1119 \pathkeys{\mypath/define:

1120 cmd/xwidth/\Q@tempdima/\def\y##1{#1yy##1};
1121 cmd/keya/\def\cmda#1{#1};

1122 bool/putframe/true

1123 }

1124 \pathkeys{famx/subfamx,fam/subfam/ifkeyonpath: xwidth}{\def\x{T}}{\def\x{F}}
1125 \pathkeys{famx/subfamx, \mypath/ifkeyonpath: xwidth}{\def\x{T}}{\def\x{F}}
1126 \pathkeys{\mypath/set: putframe=true}

1127 \pathkeys{\mypath/ifdef: xwidth}{\def\x{T}}{\def\x{F}}

1128 \pathkeys{\mypath/print value: xwidth}=\z@pt

1129 \pathkeys@storevalue{\mypath/putframe}\cmd

1130 \edef\x{\ifpathkeysvalTF{\mypath/putframe}{T}HF}}

1131 \edef\x{\ifpathkeysval \mypath/putframe\then T\else F\fi}

1132 \edef\x{\ifpathkeysval \mypath/putframe\then T\else F\fi}

1133 \pathkeys{\mypath/add value: keya=\def\cmdb#1{#1}}

Instead of defining your own commands like the above \mypath, you can use the following name-
spaced commands:

| New macros: \pathkeys@newpath, \pathkeys@usepaths, etc. |

1134 \pathkeys@newpath{(pathname)}{(path)}

1135 \pathkeys@defpath{(pathname)}{(path)}

1136 \pathkeys@assignpaths{(pathname-1)=(path-1),...,(pathname-n)=(path-n)}
1187 \pathkeys@changepath{(pathname)}{(path)}

| PAGE 58 OF 78]

The ltxkeys package 6th February 2012

1138 \pathkeys@undefpaths{(pathname-1), (pathname-2), ..., (pathname-n)}
1139 \pathkeys@undefpath{(pathname)}

1140 \pathkeys@gundefpaths{(pathname-1), (pathname-2), ..., (pathname-n)}
1141 \pathkeys@gundefpath{(pathname)}

1142 \pathkeys@usepaths{(pathname-1), (pathname-2), ..., (pathname-n)}
1143 \pathkeys@usepath{(pathname)}

These commands have their own separate namespace. Internally, the plural forms of these com-
mands are the same as their singular variants. Here,

a) After the definition of (pathname), it is used as an abbreviation for the full path (path).

) The command \pathkeys@newpath creates (pathname) if it didn’t already exist.

) The command \pathkeys@defpath creates (pathname) whether or not it exists.

) The command \pathkeys@changepath is equivalent to \pathkeys@defpath.

) The commands \pathkeys@undefpaths and \pathkeys@gundefpaths undefine the comma-

separated list of (pathnames) locally and globally, respectively.

f) The command \pathkeys@assignpaths defines a series of unique pathnames as shown by
its use syntax above. The equality sign in that syntax is mandatory. Existing paths are not
overwritten.

g) The commands \pathkeys@usepaths and \pathkeys@usepath are synonymous and expand
the comma-separated entries in (pathnames) or (pathname) to their full meaning. The action
specified by (flag) is then executed on all the listed paths.

h) The macros

o o T

1144 \pathkeys@newpath \pathkeys@defpath \pathkeys@assignpaths
1145 \pathkeys@changepath \pathkeys@undefpaths \pathkeys@undefpath
1146 \pathkeys@gundefpaths \pathkeys@gundefpath \pathkeys@usepaths

1147 \pathkeys@usepath

have shorter counterparts via the command \pathkeys@useshortcmds (see Table 5).

The macros \iusepaths and \iusepath, which are available only within the \pathkeys command,
are synonymous with their longer variants.

| Examples: \pathkeys@assignpaths, \pathkeysQusepaths |

1148 \pathkeys@assignpaths{pathl=fam/subfam/subsubfaml,path2=fam/subfam/subsubfam2}
1149 % Define ‘keya’ and ‘keyb’ on paths 1 and 2:
1150 \pathkeys{\iusepaths{pathl,path2}/definex*:

1151 cmd/keya/xx/\def\cmda#1{#1};
1152 bool/keyb/true
1153 }

1154 % Check if ‘keya’ is defined on either path 1 or 2:

1155 \pathkeys{\iusepaths{pathl,path2}/ifkeyonpath: keyal}{\def\x{T}}{\def\x{F}}
1156 % \iusepaths and \iusepath aren’t available outside \pathkeys:

1157 \pathkeys@storevalue{\pathkeysQusepath{pathl}/keyb}\cmd

1158 \edef\x{\ifpathkeysvalTF{\pathkeysQusepaths{pathl}/keya}{THF2}}

1159 % Force redefine ‘pathl’ and ‘path2’:

1160 \pathkeys@defpath{pathi}{fam/subfam/subsubfaml}
1161 \pathkeys@defpath{path2}{fam/subfam/subsubfam2}
1162 % Define ‘keyl’ on ‘pathl’ and ‘path2’:

1163 \pathkeys{\iusepaths{pathl,path2}/define:

1164 cmd/keyl/12cm/\def \y##1{#1yy##1}

| PAGE 59 OF 78]

The ltxkeys package 6th February 2012

1165 }

1166 % Set keys on ‘pathl’ and ‘path2’ and put undefined keys in the ‘rm list’
1167 % instead of raising errors:

1168 \pathkeys{\iusepaths{pathl,path2}/set*+:

1169 key1=10cm, key2=true,key3=xx

1170 }

1171 % Set ‘rm keys’ and again put undefined keys in the ‘rm list’

1172 % instead of raising errors:

1173 \pathkeys{\iusepaths{pathl,path2}/setrm+:}

The shortened counterparts of the pathkeys commands are provided in Table 5. The abbreviated
commands become available only after the user has invoked the macro \pathkeys@useshortcmds
(or \pathkeys@useshortnames), which expects no argument. The abbreviations-building macro
\pathkeys@useshortcmds has only local effect, i. e., the abbreviations may be localized to a group.
The abbreviations are defined only if they’re definable (i. e., didn’t exist before calling the command
\pathkeys@useshortcmds).

Table 5: Pathkeys command abbreviations

Command Abbreviation = Command Abbreviation
\pathkeysval \pkv \pathkeyskeyval \pkkv
\ifpathkeysval \ifpkv \ifpathkeyskeyval \ifpkkv
\ifpathkeysvalTF \ifpkvTF \ifpathkeyskeyvalTF \ifpkkvTF
\pathkeys@newpath \newpath \pathkeys@defpath \defpath
\pathkeys@changepath \changepath \pathkeys@assignpaths \assignpaths
\pathkeys@undefpaths \undefpaths \pathkeys@undefpath \undefpath
\pathkeys@gundefpaths \gundefpaths \pathkeys@gundefpath \gundefpath
\pathkeys@usepath \usepath \pathkeys@usepaths \usepaths

The user isn’t constrained to use the short form commands of Table 5. He can define his own short
forms by using the command \pathkeys@makeshortcmds, which has the syntax:

| New macro: \pathkeys@makeshortcmds |

1174 \pathkeys@makeshortcmds{(short-1)=(long-1), ..., (short-n)=(long-n)}

where (short-i) and (long-i) are the short (new) and long (existing) aliases of the command
(i). The equality sign (=) is mandatory here. You don’t have to (in fact, you shouldn’t) call
\pathkeys@useshortcmds after calling \pathkeys@makeshortcmds.

| Example: \pathkeys@makeshortcmds |
1175 \pathkeys@makeshortcmds{\kval=\pathkeyskeyval,\ifkvalTF=\ifpathkeyskeyvalTF}

17.3 Default and current paths

We begin the section with a note of caution: path changes within the \pathkeys command are
limited in scope, since the current path is pushed upon entry into this command and popped on
exit. To change the current path while in \pathkeys command, use the normalcode flag of Table 4.

3 The user can introduce his own abbreviations using the command \pathkeys@makeshortcmds.

| PAGE 60 OF 78]

The ltxkeys package 6th February 2012

| New macros: \pathkeysQcurrentpath, etc.

1176 \pathkeys@addtodefaultpath{(path)}
1177 \pathkeys@changedefaultpath{(path)}
1178 \pathkeys@currentpath{(path)}

1179 \pathkeysQusedefaultpath

1180 \pathkeys@pushcurrentpath

1181 \pathkeys@popcurrentpath

1182 \pathkeys@pathhistory

If the key path is empty, then the current path will be used. If there is no current path, the default
path will be used, but only after the user has issued \pathkeys@usedefaultpath. The default path
is ‘dft@main/dft@sub’. The default path can be made the current path by invoking the command
\pathkeys@usedefaultpath, which is parameterless. The default path can be changed by the
one-parameter commands \pathkeys@addtodefaultpath and \pathkeys@changedefaultpath.

The current path can be declared by providing an argument to the non-expandable one-parameter
command \pathkeys@currentpath. The declared current path will be available in the macro
\pathkeys@c@rrentpath, which is expandable. A call to \pathkeys@currentpath immediately
changes the current path. The internal macro \pathkeys@c@rrentpath always holds the current
path. It is possible for the user to change \pathkeys@c@rrentpath directly, but this is not recom-
mended, since it will not allow the path history to be revised. That is why \pathkeys@c@rrentpath
doesn’t look like a user command. For example, the following assignment is possible but not ad-
visable:

1183 \let\pathkeys@c@rrentpath=\pathkeys@defaultpath

This should only be done via \pathkeys@usedefaultpath.

If you change the default path by calling any of the commands \pathkeys@addtodefaultpath
and \pathkeys@changedefaultpath, you will have to call \pathkeys@usedefaultpath to update
\pathkeys@c@rrentpath. For some reason, this is not done automatically.

It isn’t mandatory, but it is useful, to first push the prevailing path before changing it. This can
be done by calling the parameterless command \pathkeys@pushcurrentpath. When you're done
with the current path, you can revert to the path before the current path by calling the command
\pathkeys@popcurrentpath. You can get the entire history of path changes from the container
\pathkeys@pathhistory, which is useful in complex situations. However, it should be noted that
\pathkeys@pathhistory doesn’t contain a chronological order of path changes: if a path is already
contained in it, it wouldn’t be added again. Also, \pathkeys@pathhistory is built and revised
globally: path changes in local groups will appear in \pathkeys@pathhistory outside the groups.
The commands \pathkeys@undefpaths and \pathkeys@gundefpaths don’t affect this behavior.

I can’t see a user need for it, but you can use the command \pathkeys@ifnopath to ascertain if
a given (path) actually contains a valid path. This is used internally.

| New macro: \pathkeys@ifnopath |
1184 \pathkeys@ifnopath{(path)}{(true)}{(false)}

Before the current path is resorted to (i.e., used), the path specified in the the commands
\pathkeys, \pathkeysval, \ifpathkeysval, etc. must be empty (i.e., no main and no subs).
Therefore, in any given setting, the path that is dominant can be made current so that it isn’t
given in \pathkeys, \pathkeysval, \ifpathkeysval, etc. The non-dominant paths could then

| PAGE 61 OF 78]

The ltxkeys package

6th February 2012

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

be listed in full. Of course, there can’t be more than one current path. Perhaps a better approach
is to use \pathkeys@newpath, \pathkeys@usepaths, etc.

| Examples: \pathkeys@currentpath, etc. |

}

\newcommand*\myframebox [1] [1{%

\pathkeys@currentpath{KV/frame/framebox}%
\pathkeys{launch:#1}J,

\begingroup

\pathkeys@useshortcmds
\fboxsep\pkv{framesep}\fboxrule\pkv{framerule}\relax
\1ltsdimdef\boxwidtha{\pkv{width}-2\fboxsep-2\fboxrulel}’
\noindent\begin{lrbox}\@tempboxa
\begin{minipage} [c] [\height] [s]\boxwidtha

\@killglue

\begin\ttextalign

\textcolor{\pkv{textcolor}}{Arg-1: \pkv{arga}\endgraf Arg-2: \pkv{argbl}}/

\end\ttextalign

\end{minipagel}’,

\end{lrboxl}%

\@killglue

\color{\pkv{framecolor}}/

\ifpkv{putframe}\then\ovalbox{\fi
\usebox\@tempboxa

\ifpkv{putframe}\then}\fi

\endgroup

\begin{document}
\myframebox [arga=Text-1,argb={Test text-2\\ ...\\test text-2},

framerule=2pt,framecolor=blue,textcolor=purple,
putframe=true,textalign=right]

\end{document}

}

| Examples: Tiling with pathkeys

\documentclass{article}
\usepackage{atbegshi,picture,graphicx,ifpdf}
\usepackage{pathkeys}

\makeatletter
\pathkeys{wallpaper/fam/define* (cmd) :

viewport/00 00 100 100;
xtilenr/2;

ytilenr/2;
wpxoffset/Opt;
wpyoffset/Opt;
inputpath//

\newcommand*\mytilewallpaper [2] [1{%

\begingroup
\pathkeyscurrentpath{wallpaper/fam}’,
\pathkeys{set:#1}%
\pathkeysuseshortcmds
\edef\ffileext{\ifpdf pdf\else eps\fil}}

| PAGE 62 OF 78]

The ltxkeys package 6th February 2012

1230 \edef\reserved@a{\pkv{inputpathl}}/

1231 \edef\reserved@a{\expandafter\ltxkeys@stripallouterbraces

1232 \expandafter{\reserved@al}}y,

1233 \edef\Ginput@path{\ifcsnullTF\reserved@a{}{{\reserved@a/}}}%

1234 \1ltsdimdef\tilewidth{(\paperwidth-\pkv{wpxoffset}*2)/\pkv{xtilenr}}’
1235 \1ltsdimdef\tileheight{(\paperheight-\pkv{wpyoffset}*2)/\pkv{ytilenr}}}
1236 \1ltsdimdef\tileY{-\paperheight+\pkv{wpyoffset}1}’

1237 \@t empcntb\z@

1238 \1tswhilenum\@tempcntb<\pkv{ytilenr}\do{%

1239 \edef\tileX{\pkv{wpxoffset}}/

1240 \@tempcnta\z@

1241 \1ltswhilenum\@tempcnta<\pkv{xtilenr}\do{%

1242 \leavevmode\@killglue

1243 \1ltsexpanded{\noexpand\put (\tileX,\tileY) {\noexpand\includegraphics
1244 [viewport=\pkv{viewport},height=\tileheight,width=\tilewidth,clipl%
1245 {#2 . \ffileext}}}’%

1246 \advance\@tempcnta\@ne

1247 \1ltsdimadd\tileX{\tilewidthl}Y

1248 }%

1249 \advance\@tempcntb\@ne

1250 \1ltsdimadd\tileY{\tileheightl}%

1251 }0/0

1252 \endgroup

1253 }

1254 \makeatother

1255 \begin{document}

1256 \def\wpspecq{ [viewport=20 21 590 400,xtilenr=4,ytilenr=4,

1257 wpxoffset=2cm,wpyoffset=2cm, inputpath={./graphics}]{comet1}}

1258 \AtBeginShipout{’

1259 \AtBeginShipoutUpperLeft{’

1260 \ifnumoddTF\thepage{}{\expandafter\mytilewallpaper\wpspec}’

1261 }}

1262 X

1263 \end{document}

17.4 Nested pathkeys

The command \pathkeys can be nested, as the following example shows:

| Example: Nested pathkeys |

1264 \def\mypath{fam/subfam/subsubfam}

1265 \pathkeys{\mypath/define:

1266 cmd/xwidth/\@tempdima/\def \y##1{#1yy##1};

1267 % The default, not callback, of ‘keya’ is \def\cmda#1{#1}. The key
1268 % has no callback:

1269 cmd/keya/\def\cmda#1{#1};

1270 % The callback of ‘keyb’ says ‘‘if ‘keyb’ is ‘true’, define ‘keyc’’’:
1271 bool/keyb/true/

1272 \pathkeys{\mypath/ifbool: keyb}{%

1273 \pathkeys{\mypath/define: cmd/keyc/xx/\def\cmdc####1{####1#1}}
1274 }{

| PAGE 63 OF 78]

The ltxkeys package 6th February 2012

1275 % ‘keyd’ has no callback:

1276 \pathkeys{\mypath/define: choice/keyd.{yes,no}/yes}
1277 }

1278 }

1279 \pathkeys{\mypath/set: keyb=true}

Try to find out why the following produces an error:

| Example: Nested pathkeys

1280 \def\mypath{fam/subfam/subsubfam}
1281 \pathkeys{\mypath/define:

1282 cmd/keya/keyadefault/
1283 \pathkeys{\mypath/define*: cmd/keyb/xx/\def\cmdb####1{####1}};
1284 }

1285 \pathkeys{\mypath/set: keya=bbb}

The reason is that keyb was defined when the default was being set up for keya after the definition
of keya. The second setting of keya prompts an error that keyb is being redefined. Notice that
keyb is to be defined uniquely by the flag define*. To avoid this type of error, you may consider
removing * from define*.

17.5 Pathkeys as class or package options

To use the command \pathkeys for declaring class or package options, the user should simply call
\pathkeys with the flag declareoptions (or declareoptions* for defining only unique options).
The flags executeoptions, processoptions and processoptions* can be used to execute and
process options, respectively. In this respect, although not necessary, you may want to change the
default or current path to reflect the class file or package name.

| Example: Declaring and processing options |

1286 \ProvidesPackage{mypackage}[2011/11/11 v0.1 My test package]
1287 \pathkeys@newpath{mypath}{mypackage/myfunc/myfunckeys}

1288 % Declare three unique options:

1289 \pathkeys{\pathkeysQusepath{mypathl}/declareoptions*:

1290 cmd/optl/12cm/\def\y##1{#1yy##1};

1201 bool/opt2/true/\ifpathkeysval{\pathkeys@usepaths{mypath}/opt2}\then
1202 \def\x{TH\else\def\x{F}\fi;

1293 ord/opt3/zz/\def\z##1{#1zz##1}

1294 }

1205 % Set up defaults for options ‘optl’ and ‘opt2’, ignoring option ‘opt3’:
1296 \pathkeys{\pathkeys@usepaths{mypath}/executeoptions:

1297 opt1=10cm,opt2=true,opt3=yy [opt3]
1298 }
1209 % Ignore ‘optl’ when processing options:

1300 \pathkeys{\pathkeysQusepath{mypath}/processoptions*: [optl]}

1301 \documentclass [opt1=2cm,opt2=false]{article}
1302 \usepackage [opt3=somevalue] {mypackage}

17.6 ‘Classes’ in pathkeys command

| PAGE 64 OF 78]

The ltxkeys package

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

The \pathkeys command indeed can accommodate ‘classes’. This is one of its advantages. Each
class is made up of one unit of (paths), (flag) and (attrib), as in

| New macros: A single classes in \pathkeys |

\pathkeys*[{classparser)] {(paths)/(flag): (attrib)}

The starred (*) variant of \pathkeys expects a macro that contains the given classes. It will expand
the given macro once before processing its contents further. The optional argument (classparser)
is the class list parser/separator (see below)™*. The default list parser for classes is double bar ‘| |7,
but this can be changed, within limits, by the user. It can be changed to one or a combination
of characters that aren’t in the set {,;:@|/}. Active bars that are list parsers will be normalized
internally. Those bars that aren’t list parsers will be left intact.

The following is the syntax for multiple classes in \pathkeys:

| New macros: Classes in \pathkeys

\pathkeys*[(classparser)]{
(paths-1)/(flag-1): (attrib-1) ||
(paths-2)/(flag-2): (attrib-2) ||

T
(paths-n)/(flag-n): (attrib-n)
}

Here, (attrib-1) will be executed on all the paths listed in (paths-1), (attrib-2) on all of
(paths-2), etc.

| Examples: Classes in \pathkeys |

\1ltxkeys@options{endcallbackline=true}
\pathkeys{
% Define command keys ‘keya’ and ‘keyb’ on path ‘faml/subfaml’:
faml/subfaml/definex(cmd) :
keya/keya-default/\def\cmda##1{##1};
keyb/keyb-default
I
% Define boolean keys ‘keyc’ and ‘keyd’ on path ‘faml/subfamil’:
faml/subfaml/definex (bool) :
keyc/true/\ifpathkeysval{faml/subfaml/keyc}\then\def\cmdb##1{##1}\f1i;
keyd/true
|
% Define command option ‘optl’ on path ‘optionsl/suboptionsl’:
optionsl/suboptionsl/declareoptions(cmd) :
optl/{default-argl,default-arg2}/
% The boolean ‘\ifpathkeys@dec’ is true when keys are being defined,
% and false otherwise. It requires \then to follow it. In its place,
% you can use ‘\ifltxkeys@dec’, which requires no \then.
% ‘\argpattern’ is introduced in section 18.
\argpattern{#1,#23}
\ifpathkeys@dec\then\else
\def\cmda##1{#1xx*x##1}

4 The default list parser for (attrib) remains semicolon ‘;’. This too can be changed via the package option

keyparser (see Table 1).

| PAGE 65 OF 78]

6th February 2012

The ltxkeys package 6th February 2012

1332 \def\cmdb##1{#2+++##1}

1333 \fi ’

1334 H

1335 % Set ‘keya’ and ‘keyc’ on path ‘faml/subfaml’; ignore ‘keyb’:
1336 faml/subfaml/set: keya=xx, keyb=yy, keyc=false [keyb]

1337 H

1338 % Set 2-argument ‘optl’ on path ‘optionsl/suboptionsl’:

1339 optionsl/suboptionsl/set: optl={x,y}

1340 H

1341 % Change current path to ‘fam2/subfam2’ and define command \cmde:
1342 normalcode:

1343 \pathkeys@currentpath{fam2/subfam2}

1344 \def\cmde##1{x##1x}

1345 H

1346 % Define command keys ‘keya’ and ‘keyb’ on current path ‘fam2/subfam2’:
1347 define(cmd) :

1348 keya/keya-default/\def\cmda##1{##1};

1349 keyb/keyb-default

1350 H

1351 % Set ‘keya’ and ‘keyb’ on current path ‘fam2/subfam2’:

1352 set: keya=ww, keyb=zz

1353 H

1354 % Define ‘keya’ and ‘keyb’ on paths ‘fam3/subfam3’ and ‘fam4/subfamé’:
1355 fam3/subfam3,fam4/subfam4/define:

1356 cmd/keya/keya-default/\def\cmda##1{##1};

1357 % What is the problem with the next definition? This illustrates
1358 % a point of caution about defining keys on multiple paths. When
1359 % setting ‘keyb’ on path ‘famé4/subfamd’, we will be executing its
1360 % callback on path ‘fam3/subfam3’:

1361 bool/keyb/true/\ifpathkeysvalTF{fam3/subfam3/keyb}{\def\x{T}}{\def\x{F}}
1362 H

1363 % Define the following keys on paths ‘faml/subfaml’ and ‘fam2/subfam2’:
1364 fami/subfaml,fam2/subfam2/definex*:

1365 choice/boxalign.{%

1366 center/.do=\def\ttextalign{center}\def\cmd##1{#1xx##17},

1367 left/.do=\def\ttextalign{flushleft},

1368 right/.do=\def\ttextalign{flushright}

1369 }/center;

1370 bool/putframe/true;

1371 cmd/boxlength/2cm;

1372 ord/boxheight/1.5cm

1373 }

It should be recalled that path changes within \pathkeys command are limited in scope, since the
current path is pushed upon entry into this command and popped on exit.

18 Keys with argument patterns

‘Argument pattern’ simply means the structure of the arguments that a key’s macro expects in
order to execute the key’s callback. In 1txkeys package it is possible to specify the nature of the
parameter pattern for the key macro, but this makes sense only in the case of ordinary (ord),
command (cmd) and style (sty or sty*) keys. Boolean and choice keys can’t have weird (i.e.,

| PAGE 66 OF 78]

The ltxkeys package 6th February 2012

multiple or delimited) arguments, since their expected values are restricted: boolean keys must
have a value of either true or false, and choice keys must have ‘nominations’, i.e., admissible or
alternate values. Therefore, the concept introduced in this section applies only to the following
key-definition commands:

| Macros: Key-definition commands that can have argument pattern |

1374 \1ltxkeys@ordkey \1ltxkeys@newordkey

1375 \1ltxkeys@ordkeys \1ltxkeys@newordkeys

1376 \1ltxkeys@cmdkey \1ltxkeys@newcmdkey

1377 \1ltxkeys@cmdkeys \1ltxkeys@newcmdkeys

1378 \1ltxkeys@stylekey \1ltxkeys@newstylekey

1379 \1ltxkeys@stylekeys \1ltxkeys@newstylekeys

1380 \1ltxkeys@definekeys only when defining cmd keys

1381 \1ltxkeys@declarekeys only when defining ord, cmd, sty keys
1382 \pathkeys only when defining ord, cmd, sty keys

When using the xkeyval package it is indirectly possible to submit multiple arguments to a key’s
macro. Suppose we wish to set the text size, then we can define an ordinary key called textsize
as follows:

| Example: Key callback with multiple arguments |

1383 \1ltxkeys@ordkey [KV]{fam}{textsize} [{2cm,8cm}]{%

1384 % Since ‘ltxkeys’ package preserves outer braces in values of keys,
1385 % first strip any possible outer braces from the key’s value:
1386 \1ltsstripallouterbraces{#1}\reserved@a

1387 % Test if the key’s value contains comma:

1388 \oifinsetTF{, }{\reserved@a}{%

1389 \def\do##1,##2\0nil{%

1390 \textwidth=##1

1391 \textheight=##2

1392 }%

1393 \expandafter\do\reserved@a\@nil

1394 }{%

1395 \@latex@error{Bad argument for key ‘textsize’}

1396 {No comma in value of key ‘textsize’l}

1397 }%

1398 }

1399 \1ltxkeys@setkeys[KV]{fam}{textsize={4cm,10cm}}

With the 1txkeys package this can be achieved directly as follows:

| Example: Key callback with multiple arguments

1400 \1ltxkeys@ordkey [KV]{fam}{textsize} [{2cm,8cm}]{%
1401 \argpattern{#1,#2} \textwidth=#1 \textheight=#2\relax
1402 }

1403 \1ltxkeys@setkeys [KV]{fam}{textsize={4cm,10cm}}

The argument pattern for the key’s macro should be specified within the key’s callback as the
argument of the undefined command \argpattern. The token \argpattern{(pattern)} can be
positioned anywhere within the key’s callback, provided it isn’t enclosed in curly braces. There is
no need to delimit the last argument: an internal delimiter is used.

| PAGE 67 OF 78]

The ltxkeys package 6th February 2012

The same principles apply when using the macros \1txkeys@definekeys, \1txkeys@declarekeys
and \pathkeys: simply put \argpattern{(pattern)} anywhere within the key’s callback, but note
that it doesn’t apply in the case of boolean and choice keys.

| Examples: Key callback with multiple arguments |

1404 \1ltxkeys@cmdkey [KV]{fam} [mp@] {keyal} [{defaultl and default2}]1{%
1405 \argpattern{#1 and #2}\def\z##1{#1xx##1xx#2}
1406 }

1407 \1ltxkeys@setkeys [KV]{fam}{keya={argl and arg2}}

1408 \1ltxkeys@declarekeys [KV]{fam} [mpe]{’

1409 cmd/keya/{left/right}/\argpattern{#1/#2}\def \xa##1{#1/##1/#2};
1410 bool/keyb/true/\ifmp@keyb\def \xb##1{#1xx##1}\f1;

1411 sty*/keyc/bluetgreentblack/\argpattern{#1+#2+#3}\def \xc##1{#1==#2==#3}/
1412 % Dependant ‘keyd’. Choice key can’t have weird arguments:

1413 choice>keyd.{%

1414 left/.do=\def\y##1{#1 xx ##1},

1415 right/.do=\def\y##1{##1 yy #1},

1416 center/.do=\def\y##1{##1 zz #1}

1417 F>left>\def \xd##1{##1xx#17};

1418 ord/keye/{x y z w}/\argpattern{#1 #2 #3 #4}\def\xe{#1 #2 #3 #41};
1419 }

1420 \1ltxkeys@setkeys [KV]{fam}{keya={valuel/value2}, keyc={valuel+value2+value3}}

Caution should be exercised when using \argpattern{(pattern)} for the dependant key of a style
key in the case in which the value of the parent key is used as the default for the dependant key.
The following gives an error because, although keya has two arguments, the macros \parentval
and \KV@fam@keya@value will not be expanded before the callbacks of keyb and keyc are called.
Errors will be flagged when initializing (or setting without values) keyb and keyc. Remember that
the starred (x) variant of \1txkeys@stylekeys will define and initialize dependant keys on the fly.

| Examples: Style key callback with multiple arguments |

1421 \1ltxkeys@stylekeys* [KV]{fam} [mp@] {keya}[{left right centerl}] (%

1422 ord/keyb/\parentval/\argpattern{#1,#2}\edef\y{\expandcsonce{#1}#2};
1423 ord/keyc/\KV@fam@keya@value/\argpattern{#1,#2}\def \y##1{#1xx##1xx#2};
1424 cmd/keyd/{center}

1425){%

1426 \argpattern{#1 #2 #3 #4 #5}\def\x##1{#1xx##1xx#2#3#4#5}

1427 }

1428 \1ltxkeys@setkeys [KV] {fam}{keya={argl arg2 arg3}}

19 Some miscellaneous commands

Some of the macros used internally by the 1txkeys package are available to the user. A few of
them are described below.

19.1 Trimming leading and trailing spaces

| PAGE 68 OF 78]

The ltxkeys package 6th February 2012

| New macros: \ltxkeys@hardtrimspaces, \ltxkeys@simpletrimspaces, etc. |_

1429 \1ltxkeys@simpletrimspaces{(token)}(cs)
1430 \1ltxkeys@hardtrimspaces{(token)}(cs)
1431 \1ltxkeys@currtrimspaces{(token)}(cs)

1432 \1ltxkeys@usesimpletrimspaces
1433 \1ltxkeys@usehardtrimspaces
1434 \1ltxkeys@trimspacesincs(cs)

The command \1txkeys@hardtrimspaces trims (i.e., removes) all the leading and trailing spaces
around (token) and returns the result in the macro (cs). Forced (i.e., explicit) leading and
trailing spaces around (token) are removed unless they are enclosed in braces. This command
comes with a small price: it mildly slows down processing, especially when tracing commands.
The command \ltxkeys@simpletrimspaces trims only one leading and one trailing space; it
doesn’t iterate. Forced spaces are rare, but for fear of the unknown, the default space-trimming
function is \1ltxkeys@hardtrimspaces. The commands \ltxkeys@usesimpletrimspaces and
\1ltxkeys@usehardtrimspaces allow the user to toggle \1txkeys@currtrimspaces between ‘hard’
and ‘simple’.

The command \1ltxkeys@trimspacesincs trims the leading and trailing spaces around the token
in the macro (cs) and returns the result in (cs). It calls \1txkeys@currtrimspaces.

19.2 Checking user inputs

__ | New macros: \ltxkeys@checkchoice, \ltxkeys@checkinput, \CheckUserInput | —_

1435 \1ltxkeys@checkchoice [(parser)] ({val)(order)){(input)}{(nomin)}{(true)}

1436 \1ltxkeys@checkchoice*[(parser)] ({(val)(order)){(input)}{(nomin)}{(true)}

1437 \1ltxkeys@checkchoice+[(parser)] ({(val)(order)){(input)}{(nomin)}{(true)}{(false)}
1438 \1ltxkeys@checkchoice*+[(parser)] ((val)(order)){(input)}{(nomin)}{(true)}{(false)}
1439 \1ltxkeys@checkinput{(input)}{(nomin)}{(true)}{(false)}

1440 \CheckUserInput{(input)}{(nomin)}

The command \ltxkeys@checkchoice is a re-implementation of xkeyval package’s command
\XKV@checkchoice so as to accept arbitrary list parser (parser) and for more robustness. It checks
the user input (input) against the list of nominations (nomin). If the input is valid, the user input
is returned in (val) and the numerical order (starting from zero) of the input in the nominations
is returned in (order)*. If the input isn’t valid, the user input is still returned in (val), but —1 is
returned in (order). (parser) is the list parser. The starred () variant of \1txkeys@checkchoice
will convert (input) into lowercase before checking it against the nominations. The plus (+) variant
of \1txkeys@checkchoice expects two branches ((true) and (false)) of callback at the end of
the test. The non-plus variant expects only one branch ((true)) and will return error if the input
is invalid*S.

The commands \1txkeys@checkinput and \CheckUserInput apply to comma-separated lists of
nominations (nomin) and they always convert (input) to lowercase before checking it against
the nominations (nomin). The macro \ltxkeys@checkinput expects two branches of callback,
while \CheckUserInput expects no callback. Instead, \CheckUserInput will toggle the internal
boolean \ifinputvalid to true if the input is valid, and to false otherwise. The internal boolean
\ifinputvalid could then be called by the user after the test.

5 The functions (val) and (order) are user-supplied macros.
6 There is also \1txkeys@commacheckchoice, whose parser is implicitly comma ¢,
by the user.

> and does not need to be given

| PAGE 69 OF 78]

The ltxkeys package 6th February 2012

19.3 Does a test string exist in a string?

| New macros: \ltxkeys@in, \ltxkeys@iffound |

1441 \1ltxkeys@in{(teststr)}{(str)}
1442 \1ltxkeys@in*{(teststr)}{(str)}{(true)}{(false)}
1443 \1ltxkeys@iffound(teststr)\in(str)\then (true) \else (false) \fi

The unstarred variant of the command \1txkeys@in is identical with IXTEX2¢ kernel’s (2011,/06/27)
\in@. The command \in@ tests for the presence of (teststr) in (str) and returns the boolean
\ifin@ as \iftrue or \iffalse. The starred (x) variant of \ltxkeys@in returns two IXTEX
branches (true) and (false). On the other hand, the command \1txkeys@iffound requires the
first argument to be delimited by \in and the second argument by \then.

| Example: \ltxkeys@iffound |
1444 \ltxkeys@iffound xx\in aax\then \def\x{T}\else \def\x{F}\fi

Note 19.1 The command \1txkeys@iffound trims leading and trailing spaces around the tokens
(teststr) and (str) before the test! The commands \1txkeys@in and \ltxkeys@iffound aren’t
expandable.

19.4 Does a given pattern exist in the meaning of a macro?

| New macro: \ltxkeys@ifpattern |
1445 \ltxkeys@ifpattern{(teststr)}({cmd){(true)}{(false)}

The command \1txkeys@ifpattern simply determines if the meaning of (cmd) contains (teststr).
It returns (true) if (teststr) is found in the meaning of (cmd), and (false) otherwise.

19.5 \ifcase for arbitrary strings

| New macros: \ltxkeys@ifcase, \ltxkeys@findmatch

1446 \1ltxkeys@ifcase{(teststr)}{%
1447 (case-1):(cbk-1),...,(case-n):(cbk-n)}{(true)}{(false)}

1448 \1ltxkeys@findmatch{(teststr)}{(case-1):(cbk-1),...,(case-n):(cbk-n)}{(fn)}

The command \ltxkeys@ifcase tests (teststr) against (case-i). If a match is found, the
(case-i)’s callback (cbk-i) is returned in the macro \currmatch and (true) is executed. If at
the end of the loop no match is found, \1txkeys@ifcase returns empty \currmatch and executes
(false).

The command \1txkeys@findmatch works like \1txkeys@ifcase but executes the fallback (fn)
(instead of (true) or (false)) when no match is found.

Because of the need to return \currmatch, the macros \1txkeys@findmatch and \1txkeys@ifcase
are not expandable. The expandable variant of these commands is \1txkeys@ifcasse, which can
be used to test with an arbitrary boolean (‘true-or-false outcome’) operator (testoper).

| PAGE 70 OF 78]

The ltxkeys package 6th February 2012

| New macro: \ltxkeysQifcasse

1449 \ltxkeys@ifcasse(testoper){(teststr)}
1450 {(case-1)}\do{(cbk-1)}

1451 e

1452 (case-n)\do{(cbk-n)}

1453 \ifnone

1454 \do{(nomatch)}

1455 \endif

Here, (nomatch) is returned when the test fails in all cases. For the sake of speed optimization,
there is a restriction in the use of the command \1txkeys@ifcasse. When testing with numbers
or dimensions, the braces around the test tokens are vital, and the tokens \ifnone\do{}\endif
must always be present, irrespective of the type of test. In this regard, the commands \1tsifcasse
and \1tsdocasse of the catoptions package are more versatile, if somewhat less fast.

| Example: \ltxkeys@ifcasse |

1456 \edef\x{%

1457 \1ltxkeys@ifcasse\ifcassedimcmpTF{1pt+2pt+3pt}
1458 {=2pt}\do{equal to 2pt}

1459 {<3pt}\do{less than 3pt}
1460 {>4pt}\do{greater than 4pt}
1461 \ifnone

1462 \do{no match}

1463 \endif

1464 }

1465 \edef\x{%

1466 \1ltxkeys@ifcasse\ifcassenumcmpTF{1+2+3}
1467 {=2}\do{equal to 2}

1468 {<38}\do{less than 3}

1469 \ifnone

1470 \do{no match}

1471 \endif

1472 }

1473 \edef\x{%

1474 \1ltxkeys@ifcasse\ifstrcmpTF{x}
1475 {a}\do{\def\y{a}}

1476 {b}\do{\def\y{b}}

1477 {cI\do{\def\y{c}?}

1478 \ifnone

1479 % The \do must always be there, even when the (nomatch) is empty:
1480 \do{}

1481 \endif

1482 }

1483 \begin{document}

1484 \ltxkeys@ifcasse\ifstrcmpTF{x}
1485 {a}\do{\def\y{a}}

1486 {b}\do{\def\y{b}}

1487 {cH\do{\def\y{c}}

1488 \ifnone

1489 \do{\def\y{no match}}

1490 \endif

|PAGE 71 OF 78]

The ltxkeys package 6th February 2012

1491

1492

1493

1494

1495

1496

1497

\end{document}

19.6 Is the number of elements from a sublist found in a csv list > n?

| New macro: \ltxkeysQ@ifincsvlistTF |

\1ltxkeys@ifincsvlistTF [Aparser] ((nr)){(sub)}{({main)}{(true)}{(false)}
\1ltxkeys@ifincsvlistTF*[Aparser] ((nr)){(sub)}{(main)}{(true)}{(false)}

The command \1txkeys@ifincsvlistTF checks if the number of elements of (parser)-separated
(csv) list (sub) found in (main) is equal or greater than (nr). The argument (main) is the main
list and (sub) is the sublist of test strings. Normally, (sub) will be a user input and (main)
the list of nominations. Neither (main) nor (sub) is expanded in the test. If the test is true,
\1ltxkeys@itemspresent returns all the elements found, \ltxkeys@nritems returns the num-
ber of elements found, and (true) is executed. If the test fails, \1txkeys@itemspresent re-
turns empty, \ltxkeys@nritems returns —1, and (false) is executed. The starred (x) variant of
\1ltxkeys@ifincsvlistTF will turn both input and nominations to lowercase before the test. The
default values of the optional list (parser) and the optional number of elements to find (nr) are
comma ‘,’ and 1, respectively.

19.7 Is the number of elements from a sublist found in a tsv list > n?

| New macro: \ltxkeys@ifintsvlistTF |

\1ltxkeys@ifintsvlistTF ({nr)){(sub)}{(main)}{(true)}{(false)}
\1ltxkeys@ifintsvlistTF*((nr)){(sub)}{(main)}{(true)}{(false)}

The command \1txkeys@ifintsvlistTF checks if the number of elements of nonparser-separated
(tsv) list (sub) found in (main) is equal or greater than (nr). The argument (main) is the main
list and (sub) is the sublist of test strings. Normally, (sub) will be a user input and (main)
the list of nominations. Neither (main) nor (sub) is expanded in the test. If the test is true,
\1ltxkeys@itemspresent returns all the elements found, \ltxkeys@nritems returns the num-
ber of elements found, and (true) is executed. If the test fails, \1txkeys@itemspresent re-
turns empty, \1txkeys@nritems returns —1, and (false) is executed. The starred (x) variant of
\1ltxkeys@ifintsvlistTF will turn both input and nominations to lowercase before the test.

Normally, tsv-matching requires that the test strings in (sub) are unique in the nominations (main).
Some caution is, therefore, necessary when dealing with tsv lists.

19.8 Is the number of elements in a csv list > n or < n?

| New macro: \ltxkeys@ifeltcountTF |

\1ltxkeys@ifeltcountTF [(parser)] ((rel)){(nr)}{(list)}{(true)}{(false)}
\1ltxkeys@ifeltcountTF*[(parser)] ((rel)){(nr)}{(listcmd)}{(true)}{(false)}

The command \1txkeys@ifeltcountTF checks if the number of elements in (parser)-separated
list (1ist) has relation (rel) (>=<) with number (nr). If the test is true, (true) is executed,
otherwise (false) is executed. The starred (x) variant of \ltxkeys@ifeltcountTF will expand
(listcmd) once before the test. Double parsers and empty entries in (list) are ignored. The
default values of the optional list (parser) and the optional relational type (rel) are comma *,’
and ‘=", respectively. The number (nr) is a mandatory argument.

| PAGE 72 OF 78]

The ltxkeys package 6th February 2012

The following example returns (false) (i.e., \meaning\x -> F).

| Example: \ltxkeys@ifeltcountTF |
uos | \ltxkeys@ifeltcountTF[;] (<){2}{a;b;cH\def\x{T}}H{\def\x{F}}

19.9 What is the numerical order of an element in a csv list?

| New macro: \ltxkeys@getorder |

1499 \1ltxkeys@getorder [(parser)]{(elt)}{(list)}
1500 \1ltxkeys@getorder*[(parser)]{(elt)}{(listcmd)}

The command \1ltxkeys@getorder returns in \ltxkeys@order the numerical order of (elt) in
(parser)-separated (list) or (listcmd). The value of \ltxkeys@order is the numerical order
of the first match found. The count starts from zero (0). The starred (%) variant will expand
(listcmd) once before commencing the search for (elt). If no match is found, \1txkeys@order
returns —1, which can be used for taking further decisions.

19.10 List normalization

New macros: \ltxkeys@commanormalize, \ltxkeys@kvnormalize |

1501 \1ltxkeys@commanormalize{(1list)}(cmd)

1502 \1ltxkeys@commanormalizeset{{(list-1)}(cmd-1),...,{(list-n)}(cmd-n)}
1503 \1ltxkeys@kvnormalize{(list)}(cmd)

1504 \1ltxkeys@kvnormalizeset{{(list-1)}(cmd-1),...,{(list-n)}(cmd-n)}

These commands will normalize the comma-separated (1ist) (or (1ist-i)) and return the result
in (cmd) (or (cmd-i)). For the command \1txkeys@kvnormalize, (1ist) is assumed to be a list of
(key)=(value) pairs. Normalization implies changing the category codes of all the active commas
to their standard values, as well as trimming leading and trailing spaces around the elements of
the list and removing consecutive multiple commas. Thus empty entries that are not enforced by
curly braces are removed. Besides dealing with multiple commas and the spaces between entries,
the command \ltxkeys@kvnormalize removes spaces between keys and the equality sign, and
multiple equality signs are made only one. Further, the category codes of comma and the equality
sign are made normal throughout the list.

19.11 Parsing arbitrary csv or kv list

| New macro: \ltxkeys@listparse |

1505 \1ltxkeys@listparse(flag)[(parser)]{(list)}
1506 \1ltxkeys@listparse*(flag) [(parser)]{(listcmd)}

The unexpandable command \1txkeys@listparse is the list processor for the 1txkeys package. It
can process both arbitrary (parser)-separated lists and (key)=(value) pairs. It can also be nested
to any level, and it keeps each nesting-level independent. The default value of the optional list-
item separators (parser) is comma ¢,’. The list normalizer for \1txkeys@listparse is catoptions
package’s \csv@@normalize, which can deal with arbitrary list parsers/separators. The (flag),
which must lie in the range (0, 3), determines the type of processing that is required. The admissible
values of (flag) and their meaning are given in Table 6. The macro \1txkeys@listparse loops
over the given (parser)-separated (1ist) and execute the user-defined, one-parameter command

| PAGE 73 oF 78]

The ltxkeys package 6th February 2012

\1txkeys@do for every item in the list, passing the item as an argument and preserving outer braces.
The default value of (parser) is comma *,’. The starred (x) variant of \1txkeys@listparse will
expand (listcmd) once before commencing the loop.

Table 6: Flags for command \ltxkeys@listparse

Flag Meaning

0 (1ist) is assumed to be an ordinary list (i.e., not a list of (key)=(value) pairs); it isn’t
normalized by \ltxkeys@listparse prior to parsing.

1 (list) is assumed to be an ordinary list (i.e., not a list of (key)=(value) pairs); it is nor-
malized by \1ltxkeys@listparse prior to parsing.

2 (list) is assumed to be a list of (key)=(value) pairs; it isn’t normalized by the command
\1ltxkeys@listparse prior to parsing.

3 (list) is assumed to be a list of (key)=(value) pairs; it is normalized by \1txkeys@listparse
prior to parsing.

Here are some points to note about the list processor \1txkeys@listparse:

a) If an item contains (parser), it must be wrapped in curly braces when calling the command
\1ltxkeys@listparse, otherwise the elements may be mixed up during parsing. The braces
will persist thereafter, but will of course be removed during printing (if the items are printed).

b) White spaces before and after the list separator are always ignored by the normalizer called by
\ltxkeys@listparse. If an item contains (parser) or starts with a space, it must, therefore,
be wrapped in curly braces before calling \1txkeys@listparse.

¢) Since when (flag) is 0 or 2 the command \1txkeys@listparse doesn’t call the normalizer, in
this case it does preserve outer/surrounding spaces in the entries. Empty entries in (1ist) or
(listcmd) will be processed by \ltxkeys@listparse if the boolean \ifltxkeys@useempty
is true. You may thus issue \ltxkeysQuseemptytrue before calling \1txkeys@listparse.
The ability to parse empty entries is required by packages that use empty key prefixes, and/or
families'”. \ifltxkeys@useempty is false by default, and its state is nesting-level dependant.

d) The command \1txkeys@listparse can be nested to any level and can be mixed with other
looping macros.

e) In the command \ltxkeys@listparse, it is always possible to break out of the loop prema-
turely at any level of nesting, simply by issuing the command \1txkeysbreak, which toggles
the boolean \ifltxkeysbreak®. Breaking an inner loop doesn’t affect the continuation of
the outer loop, and vice versa: loop break is nesting-level dependant.

f) The argument of the one-parameter command \ltxkeys@do can be passed to a multi-
parameter command, or to a command that expects delimited arguments.

19.12 Expandable list parser

| New macro: \ltxkeys@declarelistparser

\1ltxkeys@declarelistparser(iterator){(parser)}
\def(processor)#1{...#1...}
(iterator){(list)}(processor)
(iterator)!{(list)}(processor)

7 The use of empty key prefixes, families and paths is, in general, not advisable.

18 \1ltxkeysbreak isn’t meant to be submitted as a list item; to use it to break the loop prematurely, you have to
call it within the loop. The unprocessed items of the list will be handled by the command \1ltsdoremainder, which
can be redefined by the user. By default, it is defined as the IATEX kernel’s \@gobble, meaning that it simply throws
away the list remainder.

| PAGE 74 oF 78]

The ltxkeys package 6th February 2012

Given a parser (or list separator) (parser), the command \1ltxkeys@declarelistparser can be
used to define an expandable list iterator (iterator). The item processor (processor) should
be a one-parameter macro, which will receive and process each element of (1ist). The optional
exclamation mark (!) determines whether or not the processor is actually expanded and executed
in the current expansion context. If ! is given, the processor is expanded and executed, otherwise
it is merely given the elements as argument without expansion. In general, (1ist) isn’t normalized,
but is expanded once, before commencing the loop. The list can be normalized by the command
\csv@@normalize of the catoptions package before looping®. The following example demon-
strates the concept. The user can insert \1txkeysbreak as an item in the list to break out of the
iteration prematurely.

| Examples: \ltxkeys@declarelistparser

1511 \1ltxkeys@declarelistparser\iterator{;?}

1512 \def\do#1{#1}

1513 % The following example will yield ‘\x=macro:->\do{a}\do{b}\do{c}’:
1514 \edef\x{\iterator{a;b;c}\do}

1515 % The following example will yield ‘\x=macro:->abc’:

1516 \edef\x{\iterator!{a;b;c}\do}

1517 % The following example will add ‘a,b,c’ to macro \y:

1518 \1ltxkeys@declarelistparser\doloopq{,}

1519 \doloop{a,b,c}{\1tsaddtolist\y}

1520 % The following example will add ‘d,e’ to macro \y and ignore ‘f’:
1521 \doloop!{d,e,\1ltxkeysbreak,f}{\1tsaddtolist\y}

1522 % Nesting of the (iterator) is possible:
1523 \ltxkeys@declarelistparser\alistparser{,}
1524 \1ltxkeys@declarelistparser\blistparser{;}
1525 \def\@do#1{#1}

1526 \def\do#1{=#1=\blistparser!{x;y;z}\@do}
1527 \edef\x{\alistparser!{a,b,c}\do}

1528 % This gives: \x=macro:->=a=xyz=b=xyz=c=xy

19.13 Remove one or all occurrences of elements from a csv list

| New macro: \ltxkeys@removeelements |

1529 \1ltxkeys@removeelements [(parser)] ((nr)) (1istcmd){(sublist)}{(£fd)}{(nf)}
1530 \1ltxkeys@removeelements*[(parser)] ((nr)) (listcmd){(sublist)}{(fd)}{(nf)}

The command \ltxkeys@removeelements removes (nr) number of each element of (sublist)
from (listcmd). The default values of the optional list (parser) and the optional maximum
number of elements to remove (nr) are comma ‘,” and 1, respectively. If at least one mem-
ber of (sublist) is found and removed from (listcmd), then the callback (fd) is returned and
executed, otherwise (nf) is returned. Both (fd) and (nf) provide some fallback following the
execution of \ltxkeys@removeelements. The challenge to the user is to remember that the
command \ltxkeys@removeelements requires these callbacks, which may both be empty. The

starred (x) variant of \ltxkeys@removeelements will remove from (listcmd) all the members

19 The catoptions package is loaded by the ltxkeys package. The ltxtools-base2 package provides the com-
mand \ltsdeclarelistparser, which works similar to the macro \1txkeys@declarelistparser but has a dynamic,
expandable list normalizer for arbitrary list parsers/separators.

| PAGE 75 OF 78]

The ltxkeys package 6th February 2012

of (sublist) found irrespective of the value of (nr). The optional (nr) is therefore redundant
when the starred (x) variant of \1txkeys@removeelements is called. Here, (sublist) is simply
(parser)-separated.

| Example: \ltxkeysOremoveelements |

1531 \def\xx{a;b;c;d;d;e;f;c;d}

1532 % Remove at most 2 occurrences of ‘c’ and ‘d’ from \xx:

1533 \1ltxkeys@removeelements[;] (2)\xx{c;d}{\def\x{done}}{\def\x{nil found}}
1534 % Remove all occurrences of ‘c’ and ‘d’ from \xx:

1535 \1ltxkeys@removeelements*[;]\xx{c;d}{\def\x{done}}{\def\x{nil found}}

19.14 Replace one or all occurrences of elements in a csv list

| New macro: \ltxkeys@replaceelements

1536 \1ltxkeys@replaceelements [(parser)] ((nr)) (listcmd){(sublist)}{(fd)}{(nf)}
1537 | \ltxkeys@replaceelements* [(parser)] ((nr)) (listcmd){(sublist)}{(fd)}{(nf)}

The command \ltxkeys@replaceelements replaces (nr) number of each element of (sublist)
in (1istemd). The default values of the optional list (parser) and the optional maximum num-
ber of elements to replace (nr) are comma ‘,” and 1, respectively. If at least one member of
(sublist) is found and replaced in (listcmd), then the callback (fd) is returned and executed,
otherwise (nf) is returned. Both (fd) and (nf) provide some fallback following the execution
of \1txkeys@replaceelements. The challenge to the user is to remember that the command
\1ltxkeys@replaceelements requires these callbacks, which may both be empty. The starred (x)
variant of \1txkeys@replaceelements will replace in (listcmd) all the members of (sublist)
found irrespective of the value of (nr). The optional (nr) is therefore redundant when the
starred (*) variant of \1txkeys@replaceelements is used. Here, the syntax of (sublist) is as
follows:

| Sublist for \ltxkeys@replaceelements |
1538 {{(01d-1)}{(new-1)}(parser). . .(parser){(old-n)}{(new-n)}}

where (01d-i) is the element to be replaced and (new-1i) is its replacement.

| Example: \ltxkeys@replaceelements |
1539 \def\xx{a;b;c;d;d;e;f;c;d}

1540 % Replace at most 2 occurrences of ‘c’ and ‘d’ in \xx with ‘s’ and ‘t’,

1541 % respectively:

1542 \1ltxkeys@replaceelements[;] (2)\xx{c{s};d{t}}{\def\x{done}}{\def\x{nil foundl}}
1543 % Replace all occurrences of ‘c’ and ‘d’ in \xx with ‘s’ and ‘t’:

1544 \1ltxkeys@replaceelements*[;]\xx{c{s};d{t}}{\def\x{done}}{\def\x{nil found}}

19.15 Stripping outer braces

The list and key parsers of the 1txkeys package preserve outer braces, but sometimes it is needed
to rid a token of one or more of its outer braces. This can be achieved by the following commands:

| PAGE 76 OF 78]

The ltxkeys package 6th February 2012

—_— | New macros: \ltxkeys@stripNouterbraces, \ltxkeys@stripallouterbraces, etc. | —_

1545 \1ltxkeys@stripNouterbraces(nr){(token)}
1546 \1ltxkeys@stripallouterbraces{(token)}
1547 \1ltxkeys@stripallouterbracesincs{(cmd)}

The command \ltxkeys@stripNouterbraces strips (nr) number of outer braces from (token).
The command \ltxkeys@stripallouterbraces strips all outer braces from (token). The com-
mand \1ltxkeys@stripallouterbracesincs strips all the outer braces in the top content of the
command (cmd). All these commands are expandable. Normally, (token) wouldn’t be expanded
by these commands in the process of stripping off outer braces.

I | Examples: \ltxkeys@stripNouterbraces, \ltxkeys@stripallouterbraces, etc. | —

1548 \toks@\expandafter\expandafter\expandafter

1549 {\1ltxkeys@stripNouterbraces{2}{{{\y}}}}
1550 \edef\x{\unexpanded\expandafter\expandafter\expandafter
1551 {\1txkeys@stripNouterbraces\@m{{{\y}}}}}

1552 \edef\x{\1ltxkeys@stripallouterbraces{{{{\y}}}}}

20 To-do list

This section details additional package features that may become available in the foreseeable future.
User views are being solicited in regard of the following proposals.

20.1 Patching key macros
Patching the macro of an existing key, instead of redefining the key. etoolbox package’s \patchcmd

doesn’t permit the patching of commands with nested parameters. But since key macros may have
nested parameters, a new patching scheme is to be first explored.

20.2 Modifying the dependant keys of an existing style key

| New macros: \ltxkeys@adddepkeys, etc |

1553 \1ltxkeys@adddepkeys [(pref)]{(fam)}{(paren)}{(deps)}
1554 \1ltxkeys@removedepkeys [pref]{fam}{(paren)}{(deps)}
1555 \1ltxkeys@replacedepkeys [pref]{fam}{(paren)}{(olddeps)}{(newdeps)}

Here, (paren) is the parent key of dependants keys; (deps) is the full specification of new or
existing dependant keys (as in subsection 3.5), with their default values and callbacks; (olddeps)
are the old dependants to replace with (newdeps). This would require patching macros of the form
\(pref)@(fam)@(key)@dependants, which might have nested parametered-commands.

20.3 Toggle keys

Introduce toggle keys. The package already contains switch keys (subsection 3.7). Toggles and
switches, found in, e. g., the catoptions package, are more efficient than conventional booleans in
the sense that each of them introduces and requires only one command, while each native boolean
defines and requires up to three commands.

| PAGE 77 OF 78]

The ltxkeys package 6th February 2012

21 Version history

The following change history highlights significant changes that affect user utilities and interfaces;
changes of technical nature are not documented in this section. The star sign (*) on the right-hand
side of the following lists means the subject features in the package but is not reflected anywhere
in this user guide.

Version 0.0.3[2011/12/17]
More flags (preset, postset, setrm, etc.) have been introduced for pathkeys section 17
Version 0.0.2[2011/09/01]
Pathkeys introduced Lo e section 17
User guide completed. *
Version 0.0.1[2011/07/30]

First public release. e e e *

| PAGE 78 OF 78]

	1 Introduction
	1.1 Motivation

	2 Package options
	3 Defining keys
	3.1 Defining only definable keys
	3.2 Ordinary keys
	3.2.1 Ordinary keys that share the same attributes

	3.3 List keys (liskeys)
	3.4 Command keys
	3.4.1 Command keys that share the same attributes

	3.5 Style keys
	3.5.1 Style keys that share the same attributes

	3.6 Boolean keys
	3.6.1 Boolean keys that share the same attributes
	3.6.2 Biboolean keys

	3.7 Switch keys
	3.7.1 Switch keys that share the same attributes

	3.8 Choice keys
	3.8.1 Choice keys that share the same attributes

	3.9 Every default value of a key
	3.10 Defining boolean and command keys with one command
	3.11 Defining all types of key with one command
	3.11.1 Defining keys of common type

	3.12 Need-value keys
	3.13 Cross-family keys

	4 Setting keys
	4.1 Setting defined keys
	4.2 Setting remaining keys
	4.3 Setting aliased keys
	4.4 Using key pointers
	4.5 Accessing the saved value of a key
	4.6 Pre-setting and post-setting keys
	4.7 Initializing keys
	4.8 Launching keys
	4.8.1 Noninitialize and nonlaunch keys

	4.9 Handling unknown keys and options

	5 Checking if a key is defined
	6 Disabling families and keys
	6.1 Disabling families
	6.2 Disabling keys

	7 Option and non-option keys
	8 Handled keys
	9 Reserving and unreserving key path or bases
	10 Bad key names
	11 Declaring options
	11.1 Options that share the same attributes
	11.2 Declaring all types of option with one command

	12 Executing options
	13 Processing options
	13.1 Hooks for `before' and `after' processing options

	14 Key commands and key environments
	14.1 Final tokens of every environment
	14.2 Examples of key command and environment

	15 Declaring variables
	16 The command
	17 Pathkeys
	17.1 Defining pathkeys of common type
	17.2 Shortened pathkeys commands
	17.3 Default and current paths
	17.4 Nested pathkeys
	17.5 Pathkeys as class or package options
	17.6 Classes in pathkeys command

	18 Keys with argument patterns
	19 Some miscellaneous commands
	19.1 Trimming leading and trailing spaces
	19.2 Checking user inputs
	19.3 Does a test string exist in a string?
	19.4 Does a given pattern exist in the meaning of a macro?
	19.5 texcolorifcase for arbitrary strings
	19.6 Is the number of elements from a sublist found in a csv list n?
	19.7 Is the number of elements from a sublist found in a tsv list n?
	19.8 Is the number of elements in a csv list n or n?
	19.9 What is the numerical order of an element in a csv list?
	19.10 List normalization
	19.11 Parsing arbitrary csv or kv list
	19.12 Expandable list parser
	19.13 Remove one or all occurrences of elements from a csv list
	19.14 Replace one or all occurrences of elements in a csv list
	19.15 Stripping outer braces

	20 To-do list
	20.1 Patching key macros
	20.2 Modifying the dependant keys of an existing style key
	20.3 Toggle keys

	21 Version history
	0.0.3 (2011/12/17)
	0.0.2 (2011/09/01)
	0.0.1 (2011/07/30)

