The formal-grammar package*

Martin Vassor
bromind+ctan@gresille.org

February 9, 2022

Contents

1 Introduction 1

2 Usage 2
2.1 Loading the package (and loading options) 2
2.2 Basicusage 2
2.3 Advanced capabilities 3

3 Implementation 5

1 Introduction

The notion of formal language is one of the most important in theoretical computer
science. Intuitively, it is defined as follow: we are given a set X of letters or symbols
(the alphabet). For instance, we can consider ¥ = {a,b, ..., z}: our symbols is the
set of lowercase characters. A word is a tuple of letters. For instance, (a,b,c) is a
word of three letters over £. Therefore, £* is the set of words of k letters over X.
Notice in particular that %0 is the set {()}. () is the unique word that contains 0
letters. It is often noted e.

The set of all words over ¥ (independently of their length) is defined as ¥* =
Uien ="

An important operation is the concatenation, noted -, which consists in sticking
two words together. For instance (a,b) - (¢) = (a,b,c). For the sake of this quick
introduction, we do not specify further this operation.

A (formal) language over ¥ is a subset of ¥*: I C ¥*. That is, it consists
in picking some of the words of ¥*. For instance we can define the language L,
which contains all words that begin with an a: L, = {{a) - w,w € ¥*}.

We can see that describing languages by the mean of equations is quite tedious.
Therefore, we most often use grammars, which are a set of rules that characterise

*This document corresponds to formal-grammar v1.2, dated 2022/02/09.

grammar

a language. In particular, one of the standard way to define a grammar is what we
call the BNF, for Backus-Naur form (or Backus normal form). Such grammars are
defined from two sets of elements: terminal and non-terminal (by convention, in
this document, non-terminal are in calligraphic font, except when explicitely stated
otherwise). Basically, terminal correspond to the alphabet, and non-terminal are
names of rules.

A rule has the foom R == a , where R is the name of the rule, and
a is the production. The name of the rule is a non-terminal, and the produc-
tion is a sequence of terminals and non-terminal. If a rule has multiple possible
productions, we separate them as follow: § :=:== a | aS

Finally, a grammar is a set of rules.

A production defines a set of words. Without going into formalities, a produc-
tion produces the words described by the terminal, and where non-terminal are
replaced by productions of the corresponding rule. For instance, the rule & above
produces {a, aa,aaa, ...}. Notice that rules can be mutually recursive.

This package provides a new environment (grammar) and associated commands
to typeset BNF grammars. It allows to easily write formal grammars. For instance,
the syntax of the A-calculus is given in Grammar 1.

(TT) Application
AV T Abstraction

Variables

T =Y Variable
|
|

Grammar 1: A-calculus syntax

2 Usage

2.1 Loading the package (and loading options)

This package accepts a single option when loading: center. If the option is set,
the initial | of non-initial lines of multi-line rules is centered with respect to
the ::= of the initial line. If unset, the | is aligned to the right.

2.2 Basic usage

Creating a grammar. We first start creating a grammar using the grammar
environment.

This is the main environment to write your grammar. grammar accepts 3
optional arguments: the first one is a possible caption; the second is a positionning
option; and the third is a label.

If none of the optional arguments are provided, the grammar is inlined (i.e.
not in a float environment. If the first argument is set (the optional caption), the
grammar is typeset in a float, captionned with the provided caption. The second
optional argument is a positionning option (one of t, b, p, h, etc.). The default is

\firstcase

\otherform

\nonterm

\gralt

A == () Parenthesis
| {} Curly brackets

Grammar 2: A simple grammar

B = (B) | {B} Nested parenthesis or brackets
Cy = B Ezample of subtil non-terminal
D = B An interesting line

An uninteresting line
| D+D | A Important item

Grammar 3: A more advanced grammar

p- The last argument is a label, used to reference the grammar elsewhere in the
document.

The grammar can then be populated using two basic constructs: firstcase
and otherform.

The firstcase command creates a new non-terminal of the grammar. It
takes 3 mandatory arguments: the letter(s) of the non-terminal, the definition,
and an explanation. On the other hand, otherform create an alternative for the
preceding non-terminal, on a new line. It takes two arguments: the definition of
the alternative, and an explanation. For instance, the following grammar typesets
as the grammar in Grammar 2.

\begin{grammar}[A simple grammar] [t] [gr:simple_grammar]
\firstcase{A}{()}{Parenthesis}

\otherform{\{\}}{Curly brackets}

\end{grammar}

Referencing non-terminals. This allows you to typeset a symbol as a non-
terminal. In the current version, the default typesetting is to wrap in a \mathcal
command. This allow to reference those non-terminals, both in grammar rules and
elsewhere in the document. Notice that, since the typesetting is just a wrapper
over \mathcal, it should be used in a math environment. For instance, the only
non-terminal of Grammar 2 is A (\ (\nonterm{A}\)).

2.3 Advanced capabilities

In this subsection, we will explain the more advanced capabilities of the package.
These would allow to typeset more complex grammars such as the one displayed
in Grammar 3.

Variants on the same line. When variants are short and simple, it is possible
to display multiple of them on the same line using \gralt. For instance, the first
line of Grammar 3 is typeset with the following command:

\firstcase{B}{(\nonterm{B})\gralt \{\nonterm{B}\}}{Nested parenthesis or brackets}

Subtle typesetting of non-terminals. Since nonterminals are, by default,
typeset using \mathcal, it can lead to the usual issues of \mathcal (typically, for
lowercases). Therefore, we provide subtle variants of \firstcase and \nonterm,
in which the non-terminal symbol is not typeset (i.e. as the user, you have to
typeset it manually).

\nontermsubtil This is equivalent to \nonterm, but where typesetting is left to the user. In
the current implementation does nothing. However users are encouraged to use
it for future modifications of the package. For instance, it is possible to typeset
a non-terminal with a number index as follow C; with the following command:
\(\nontermsubtil{\nonterm{C}_1}\)

\firstcasesubtil The subtle variant of \firstcase. It works similarly, except that the non-
terminal (i.e. the first argument) is not embedded in a \mathcal macro. For
instance, the C; in Grammar 3 is typeset with the following command:

\firstcasesubtil{\ (\nonterm{C}_1\)}{\nonterm{B}}{Example of subtil non-terminal}

Highlighting and downplaying variants. Three commands are provided to

highlight or downplay some parts of a grammar. \highlight highlights a whole

line, \loghighlight highlights a part of a line, while \downplay downplays a line.

\downplay The two commands \highlight and \downplay work similarly: when used

\highlight before a \firstcase, \firstcasesubtil, or \otherform, the next line is high-

lighted in blue, or printed in light grey. For instance, in Grammar 3, the rule for
non-terminal D is typeset with:

\highlight
\firstcase{D}{\nonterm{B}}{An interesting line}
\downplay
\otherform{\nonterm{D}}{An uninteresting line}

\lochighlight For more local highlighting, it is possible to use \lochighlight, which prints
some part of a rule in red. The last line of Grammar 3, which contains such local
highlight, is typeset with the following command:

\otherform{\lochighlight{\nonterm{D} + \nonterm{D}}
\gralt \nonterm{A}}{Important item}

Customizing the ::= symbol. At the end of the preamble (i.e. before the
\begin{document}), the package checks if a command \Coloneqq is defined. If
that is the case, it is used instead of ::=. Typically, packages mathtools, txfonts
and pxfonts define this command, but you can also define it manually if you use
the symbol elsewhere in the document.

https://www.ctan.org/pkg/mathtools
https://www.ctan.org/pkg/txfonts
https://www.ctan.org/pkg/pxfonts

3 Implementation

We declare an option center for aligning definition symbol (::=) and separator
symbol (|) in center. This is done by create a new conditional, and assign
corresponding values depending on the option.

1 \newif\if@formalalignsymbol\@formalalignsymbolfalse
2 \DeclareOption{center}{
3 \@formalalignsymboltrue
4 }
Now we process options.
5 \ProcessOptions\relax

floatgrammar This is a new float that contains floating grammars. This is needed so that they
are labeled with 'Grammar’.
6 \DeclareFloatingEnvironment [
7 name=Grammar,
8 listname={List of Grammars},
9 placement=tbhp,
10 1{floatgrammar}

\formal@rowstyle The default rowstyle is empty.
11 \newcommand*{\formal@rowstyle}{}

\rowstyle An command used to set the style of a row. In addition, we add column types
to reset the style (=) and to keep the style from one column to the other (+). As
of today, it is not advised for the user to use \rowstyle to define their own style
(i.e. I have not tested it), although I hope it will someday be possible.

12 \newcommand*{\rowstyle}[1]{), sets the style of the next row
13 \gdef\formal@rowstyle{#1}/,

14 \formal@rowstyle\ignorespaces,

15 }

16 \newcolumntype{\formal@reset}{) resets the row style

17 >{\gdef\formal@rowstyle{}}’

18 }

19

20 \newcolumntype{\formal@add}{), adds the current row style to the next column
21 >{\formal@rowstyle}’

22 }

grammar This is the implementation of the grammar environment. The main difficulty is to
check whether optional arguments are provided. If the first is provided, we embed
the grammar into a floatgrammar; then if the second argument is provided, we
use it as the position, (otherwise, we use p). Finally, if the third argument is
provided, we use it as a label. Notice that, if the grammar is not a float (is inline),
we do not break line before and after the grammar.
Depending on whether the option center is set, we align the symbols accord-
ingly. This is done via an auxiliary column type.

\firstcase

\firstcasesubtil

\otherform

\nonterm

\nontermsubtil

23 \if@formalalignsymbol

24 \newcolumntype{\formal@symbol}{c}
25 \else

26 \newcolumntype{\formal@symbol}{r}
27 \fi

28 \ExplSyntaxOn

29 %% 1st argument: caption (makes it float)
30 %% 2nd argument: positionning option (‘p¢ by default)
31 %% 3rd argument: label

32 \NewDocumentEnvironment{grammar} {o O{p} o}
33 {

34 \IfNoValueF{#1}{

35 \begin{floatgrammar} [#2]

36 \centering

37}

38

39 \begin{tabular}{\formal@reset 1 \formal@add \formal@symbol \formal@add 1 \formal®add 1}
40 H{

41 \end{tabular}

42

43 \IfNoValueF{#1}{

44 \caption{#1}

45 \IfNoValueF{#3}{

46 \label{#3}

47}

48 \end{floatgrammar}

49 }

50 }

51 \ExplSyntax0ff

The \firstcase is typeset as a new line in the array, which first cell is the symbol
of the non-terminal, the second cell is just ::=, the third cell is the rule (it is
directly printed, without any modification), and the last cell is the description of
the rule, in greyish color.

52 \newcommand{\firstcase}[3]1{\ (\mathcal{#1}\) & \(\formal@Coloneqq\) & \(#2\) & {\itshape \color{

The \firstcasesubtil is implemented similarly to \firstcase, except that the
first argument is not surrounded by \mathcal.

53 \newcommand{\firstcasesubtil}[3]{#1 & \(\formal@Coloneqq\) & \(#2\) & {\itshape \color{gray!90!

Adds a line with an empty first cell, and which second cell is just a pipe. The
third and fourth cells are similar to \firstcase.

54 \newcommand{\otherform} [2]{& \(I\) & \(#1\) & {\itshape \color{gray!90!black} #2}\\}

Typesets in \mathcal.
55 \newcommand{\nonterm} [1]{\mathcal{#1}}

Does nothing right now.
56 \newcommand{\nontermsubtil} [1]{#1}

\gralt \gralt is simply a pipe surrounded by large spaces.
57 \newcommand{\gralt}[0]{\quad |\quad }

\highlight We simply set the row color to LightCyan.
58 \newcommand{\highlight}[0]{\rowcolor{LightCyan}}

\lochighlight We simply surround the argument with red.
59 \newcommand{\lochighlight}[1]{{\color{red} #1}}

\downplay We simply apply a style that write in light grey for the row.
60 \newcommand{\downplay} [0]{\rowstyle{\color{white!80!black}}}

Finally, we check, at the end of the preamble, if there already exist a ::=
symbol. We search for a command called Coloneqq, e.g. defined in the mathtools.

61 \AtBeginDocument{%

62 \ifdefined\Coloneqq

63 \let\formal@Coloneqq\Coloneqq

64 \else

65 \newcommand{\formal@Coloneqq}{: :=}
66 \fi

67

https://www.ctan.org/pkg/mathtools

	Introduction
	Usage
	Loading the package (and loading options)
	Basic usage
	Advanced capabilities

	Implementation

