Options

In this package there are four categories of options (examples and differences will be shown further)

- 1. for interval notation
 - \bullet isointerval for using standardized format of interval described in ${\bf ISO~31\text{--}11}$
 - \bullet isoointerval for using standardized alternative format of interval described in $\mathbf{ISO~31\text{--}11}$
 - fnspeinterval for using special notation used at FNSPE CTU in Prague
- 2. for tensor notation (now for vectors and matrices)
 - isotensor for using standardized format of tensor
 - undertensor for using underline notation of tensor
 - **arrowtensor** for using arrow notation of tensor
- 3. for complex notation (real and complex part)
 - isocomplex for using standardized format of complex and real part
 - \bullet oldcomplex for using old LATEX default format of complex and real part
- 4. for definition notation
 - deftext for definition using *def.* over the equal
 - \bullet defcolon for definition using the colon with equal

Macros

Interval

Let a and b be real numbers.

Closed interval

Using of macro

```
ci{a}{b}
```

as \mathbf{c} losed \mathbf{i} nterval.

• isointerval

[a,b]

• isoointerval (same as for isointerval)

[a,b]

fnspeinterval

 $\langle a, b \rangle$

Opened interval

Using of macro

 $\ightarrow \{a\} \{b\}$

as $\mathbf{o} \mathrm{pened}$ interval.

isointerval

]a,b[

• isoointerval

(a,b)

• fnspeinterval (same as for isoointerval)

(a,b)

Right closed interval

Using of macro

 $rci{a}{b}$

as right closed interval.

- isointerval]a,b]• isoointerval (a,b]• fnspeinterval
 - (a,b)

Left closed interval

Using of macro

 $lci{a}{b}$

as left closed interval.

isointerval

[a, b[

• isoointerval (same as for isointerval)

[a,b)

fnspeinterval

 $\langle a, b \rangle$

Using in text

All these macros can be used directly in text (thanks to the command ensure-math). Therefore one can use this syntax

Let $x\ be in \ci{a}{b}$

which casts: Let x be in [a, b].

Tensor

Let x be vector and A be matrix.

Vector

Using of macro

\vec{x}

as $\mathbf{vec}\mathbf{tor}.$

• isotensor - small letter with italic boldface

	х
• undertensor	
	\underline{x}
• arrowtensor	
	\vec{x}

Matrix

Using of macro

 \max{x}

as matrix.

• isotensor - capital letter with italic boldface

Α

 $\underline{\underline{A}}$

- undertensor
- arrowtensor
- $\stackrel{\leftrightarrow}{A}$

Using in text

All these macros can be used directly in text (thanks to the command *ensure*math). Therefore one can use this syntax

Let \vec{x} be real.

which casts: Let \vec{x} be real.

Macro for set

Set of natural numbers from 1 to n

Using of macro

$\ \ n\}$

as **all** natural number up to n **set** leads to

 $\{1, 2, \ldots, n\}.$

Set of natural numbers from 0 to n

Using of macro

 $\ \ n\}$

as all natural number up to n set with zero leads to

 $\{0, 1, \ldots, n\}.$

Differentiability class

Just symbol

Using of macro

\cclass

 $\mathscr{C}.$

 \mathscr{C}^{∞} .

as C class leads to

C infinity

Using of macro

\ccinf

as ${\bf C}$ class of ${\bf inf}{\rm inity}$ leads to

. .

 ${\bf C}$ of order d

Using of macro

 \ccof{d}

as C class of order leads to

 $\mathscr{C}^d.$

Complex

Let $z \in \mathbb{C}$.

Real part

Using of macro

\<mark>Re{x</mark>}

as ${\bf Real.}$

• oldcomplex	
	$\mathfrak{Re}\left\{ z ight\}$
• isocomplex	

 ${\rm Re}\; z$

Imaginary part

Using of macro

 \Im{x}

as \mathbf{Im} aginary.

• oldcomplex	$\mathfrak{Im}\left\{ z ight\}$
• isocomplex	$\operatorname{Im} z$

Using in text

All these macros can be used directly in text (thanks to the command ensure-math). Therefore one can use this syntax

Let x equal to $Re{z}$.

which casts: Let x equal to Re z.

Subscript

Subscript text with two or more characters should be written in roman style (not italic as default). One can use prefix ! which makes the word after it in roman style. Using of macro

```
A_{!unique}
```

which leads to

 A_{unigue}

instead of classic

 A_{unique}

Floor and ceiling functions

Floor function

Macro

 $\int floor{x}$

as **floor** function leads to

|x|

Ceil function

Macro

 $ceil{x}$

as ${\bf ceil}$ function leads to

 $\lceil x \rceil$

Definition operator

There are two ways to set a definition operator. First with *text* and the second with *colon*.

Text definition

Macro

x \df a	
• deftext	$x \stackrel{\text{\tiny def.}}{=} a$
• defcolon	x := a

Special sets of numbers

Natural number

Macro

\natun

as **natu**ral **n**umber leads to

 \mathbb{N}

Natural number with zero included

Macro

\nnzero

as natural number **zero** leads to

 \mathbb{N}_0

Integers

Macro

\inte

as **inte**regers leads to

 \mathbb{Z}

Rational number

Macro

\ratin

as ${\bf rational}\ {\bf n} {\bf u} {\bf m} {\bf b} {\bf e} {\bf r}$ leads to

 \mathbb{Q}

Real number

Macro

\realn

as ${\bf real}\ {\bf n}{\bf u}{\bf m}{\bf b}{\bf e}{\bf r}$ leads to

 $\mathbb R$

Complex number

Macro

\compn

as **comp**ex **n**umber leads to

 \mathbb{C}

Using in text

All these macros can be used directly in text (thanks to the command *ensure*math). Therefore one can use this syntax

Let $n\$ be in λ

which casts: Let n be in \mathbb{N} .

Derivative

It is derived from *physics* package. The manual is here.

Operator

Partially derived from *physics* package.

Gradient

Macro

\grad

as **grad**ient leads to

 ∇

Divergence

Macro

\div

as **div**ergence leads to

 $\nabla \cdot$

Derived from physics package, the original meaning of this command as a maths symbol for dividing has alias

÷

\divisionsymbol

which cast

Rotation

In English literature as **curl** operator has macro

\rot

as **rot**ation and leads to

abla imes

One can also use $physics\ {\rm package\ command}$

\curl

Laplacian

Macro

\lapl

as **lapl**acian leads to

Δ

One can also use physics package notation

 ∇^2

which is cast by macro

\laplacian

Degree

Macro

\degree

as degree leads to $^\circ.$ Can be used without math mode.

Physics unit

Variable unit

Macro

 $varun{m}{kg}$

as ${\bf var} iable \ {\bf un} it \ leads to$

 $[m] = \mathrm{kg}$

This macro can be used directly in text (thanks to the *ensure* function). Therefore one can use

where $\operatorname{varun}{m}{kg}$ is the mass.

which casts: where [m] = kg is the mass.

\mathbf{Unit}

Macro

m\unit{kg}

as ${\bf unit}$ leads to

 $m \, \mathrm{kg}$

This macro looks as

\;\mathrm{kg}

the space before the roman characters is very important in science publications.

Expected value

Macro

\expv{x}

as **exp**ected **v**alue leads to

```
\langle x \rangle
```

Shortcuts

One half

Macro

 $\$ as half leads to $\frac{1}{2}$ One over

Macro

 $\operatorname{vover}{x}$

as one over leads to

 $\frac{1}{x}$

Spaces

Horizontal space

Macro

\hem[width]

as $\mathbf{h} \mathrm{space}\{\mathbf{em}\}$ leads to horizontal space of specific width (multiples of em). Special case is 1em

\mathrm{text}\hem\mathrm{text}

which leads to

text text

or shortcut form space with 2em width

\mathrm{text}\htem\mathrm{text}

which casts

text text

Implies with em spaces

Macro

\impem

as **implies** with **em** spaces leads to

 $\mathrm{text} \hspace{0.1in} \Rightarrow \hspace{0.1in} \mathrm{text}$