Residue theorem: Let *f* be analytic in the region *G* except for the isolated singularities $a_1, a_2, ..., a_m$. If *y* is a closed rectifiable curve in *G* which does not pass through any of the points a_k and if $y \approx 0$ in *G*, then

$$\frac{1}{2\pi i}\int_{\gamma}f=\sum_{k=1}^{m}n(\gamma;a_k)\operatorname{Res}(f;a_k).$$

Maximum modulus principle: Let *G* be a bounded open set in \mathbb{C} and suppose that *f* is a continuous function on \overline{G} which is analytic in *G*. Then

$$\max\{|f(z)|: z \in \overline{G}\} = \max\{|f(z)|: z \in \partial G\}.$$

Jacobi's identity: Define the *theta function* ϑ by

$$\vartheta(t) = \sum_{n=-\infty}^{\infty} \exp(-\pi n^2 t), \qquad t > 0.$$

Then

$$\vartheta(t) = t^{-1/2} \vartheta(1/t).$$