
TEX for the Impatient No 1

3 Jan 2020 2:18 p.m.

TEX for the Impatient

TEX for the Impatient No 2

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 3

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 4

3 Jan 2020 2:18 p.m.

‘TEX’ is a trademark of the American Mathematical Society.
‘METAFONT’ is a trademark of Addison-Wesley Publishing Company.

This book, TEX for the Impatient, contains both tutorial and reference
information on all features of both plain and primitive TEX.

Copyright c© 2003–2020 Paul W. Abrahams, Kathryn A. Hargreaves,
and Karl Berry.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover texts, and with no Back-Cover
texts. A copy of the license is included in the chapter entitled “GNU Free
Documentation License”.

Under the terms of the GFDL, anyone is allowed to modify and redis-
tribute this material, and it is our hope that others will find it useful to
do so. That includes translations, either to other natural languages, or
to other computer source or output formats.

In our interpretation of the GFDL, you may also extract text from this
book for use in a new document, as long as the new document is also
under the GFDL, and as long as proper credit is given (as provided for
in the license).

TEX for the Impatient No 5

3 Jan 2020 2:18 p.m.

For Jodi.
—p.w.a.

In memory of my father,
who had faith in me.

—k.a.h.

For Dan.
—k.b.

TEX for the Impatient No 6

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 7

3 Jan 2020 2:18 p.m.

Preface

Donald Knuth’s TEX, a computerized typesetting system, provides nearly
everything needed for high-quality typesetting of mathematical notations
as well as of ordinary text. It is particularly notable for its flexibility, its
superb hyphenation, and its ability to choose aesthetically satisfying line
breaks. Because of its extraordinary capabilities, TEX has become the
leading typesetting system for mathematics, science, and engineering and
has been adopted as a standard by the American Mathematical Society.
A companion program, METAFONT, can construct arbitrary letterforms
including, in particular, any symbols that might be needed in mathemat-
ics. Both TEX and METAFONT are widely available within the scientific
and engineering community and have been implemented on a variety of
computers. TEX isn’t perfect—it lacks integrated support for graphics,
and some effects such as revision bars are very difficult to produce—but
these drawbacks are far outweighed by its advantages.
TEX for the Impatient is intended to serve scientists, mathematicians,

and technical typists for whom TEX is a useful tool rather than a primary
interest, as well as computer people who have a strong interest in TEX
for its own sake. We also intend it to serve both newcomers to TEX and
those who are already familiar with TEX. We assume that our readers
are comfortable working with computers and that they want to get the
information they need as quickly as possible. Our aim is to provide that
information clearly, concisely, and accessibly.

This book therefore provides a bright searchlight, a stout walking-stick,
and detailed maps for exploring and using TEX. It will enable you to mas-
ter TEX at a rapid pace through inquiry and experiment, but it will not
lead you by the hand through the entire TEX system. Our approach is to
provide you with a handbook for TEX that makes it easy for you to retrieve
whatever information you need. We explain both the full repertoire of TEX
commands and the concepts that underlie them. You won’t have to waste
your time plowing through material that you neither need nor want.

In the early sections we also provide you with enough orientation so
that you can get started if you haven’t used TEX before. We assume that

TEX for the Impatient No 8

3 Jan 2020 2:18 p.m.

viii Preface

you have access to a TEX implementation and that you know how to use
a text editor, but we don’t assume much else about your background.
Because this book is organized for ready reference, you’ll continue to find
it useful as you become more familiar with TEX. If you prefer to start
with a carefully guided tour, we recommend that you first read Knuth’s
The TEXbook (see page 18 for a citation), passing over the “dangerous
bend” sections, and then return to this book for additional information
and for reference as you start to use TEX. (The dangerous bend sections
of The TEXbook cover advanced topics.)

The structure of TEX is really quite simple: a TEX input document
consists of ordinary text interspersed with commands that give TEX fur-
ther instructions on how to typeset your document. Things like math
formulas contain many such commands, while expository text contains
relatively few of them.

The time-consuming part of learning TEX is learning the commands
and the concepts underlying their descriptions. Thus we’ve devoted most
of the book to defining and explaining the commands and the concepts.
We’ve also provided examples showing TEX typeset output and the cor-
responding input, hints on solving common problems, information about
error messages, and so forth. We’ve supplied extensive cross-references
by page number and a complete index.

We’ve arranged the descriptions of the commands so that you can look
them up either by function or alphabetically. The functional arrangement
is what you need when you know what you want to do but you don’t
know what command might do it for you. The alphabetical arrangement
is what you need when you know the name of a command but you don’t
know exactly what it does.

We must caution you that we haven’t tried to provide a complete def-
inition of TEX. For that you’ll need The TEXbook, which is the original
source of information on TEX. The TEXbook also contains a lot of infor-
mation about the fine points of using TEX, particularly on the subject of
composing math formulas. We recommend it highly.

In 1989 Knuth made a major revision to TEX in order to adapt it to
8-bit character sets, needed to support typesetting for languages other
than English. The description of TEX in this book incorporates that
revision (see p. 18).

You may be using a specialized form of TEX such as LATEX orAMS-TEX
(see p. 18). Although these specialized forms are self-contained, you may
still want to use some of the facilities of TEX itself now and then in order to
gain the finer control that only TEX can provide. This book can help you
to learn what you need to know about those facilities without having to
learn about a lot of other things that you aren’t interested in.

Two of us (K.A.H. and K.B.) were generously supported by the Univer-
sity of Massachusetts at Boston during the preparation of this book. In

TEX for the Impatient No 9

3 Jan 2020 2:18 p.m.

Preface ix

particular, Rick Martin kept the machines running, and Robert A. Morris
and Betty O’Neil made the machines available. Paul English of Interleaf
helped us produce proofs for a cover design.

We wish to thank the reviewers of our book: Richard Furuta of the
University of Maryland, John Gourlay of Arbortext, Inc., Jill Carter
Knuth, and Richard Rubinstein of the Digital Equipment Corporation.
We took to heart their perceptive and unsparing criticisms of the original
manuscript, and the book has benefitted greatly from their insights.

We are particularly grateful to our editor, Peter Gordon of Addison-
Wesley. This book was really his idea, and throughout its development
he has been a source of encouragement and valuable advice. We thank
his assistant at Addison-Wesley, Helen Goldstein, for her help in so many
ways, and Loren Stevens of Addison-Wesley for her skill and energy in
shepherding this book through the production process. Were it not for
our copyeditor, Janice Byer, a number of small but irritating errors would
have remained in this book. We appreciate her sensitivity and taste
in correcting what needed to be corrected while leaving what did not
need to be corrected alone. Finally, we wish to thank Jim Byrnes of
Prometheus Inc. for making this collaboration possible by introducing
us to each other.

Deerfield, Massachusetts P. W. A.
Manomet, Massachusetts K. A. H., K. B.

Preface to the free edition: This book was originally published in 1990
by Addison-Wesley. In 2003, it was declared out of print and Addison-
Wesley generously reverted all rights to us, the authors. We decided to
make the book available in source form, under the GNU Free Documen-
tation License, as our way of supporting the community which supported
the book in the first place. See the copyright page for more information
on the licensing.

The illustrations which were part of the original book are not included
here. Some of the fonts have also been changed; now, only freely-available
fonts are used. We left the cropmarks and galley information on the pages,
to serve as identification. An old version of Eplain was used to produce
it; see the eplain.tex file for details.

We don’t plan to make any further changes or additions to the book our-
selves, except possibly for correction of important errors reported to us.

Our distribution of the book is at https://ctan.org/pkg/impatient.
See the README in the distribution for more information about different
versions, translations, contact information, etc.

TEX for the Impatient No 10

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 11

3 Jan 2020 2:18 p.m.

Brief
contents

1 \ Using this book 1

2 \ Using TEX 7

3 \ Examples 21

4 \ Concepts 43

5 \ Commands for composing paragraphs 97

6 \ Commands for composing pages 133

7 \ Commands for horizontal and vertical modes 153

8 \ Commands for composing math formulas 187

9 \ Commands for general operations 221

10 \ Tips and techniques 265

11 \ Making sense of error messages 283

12 \ A compendium of useful macros 291

13 \ Capsule summary of commands 313

GNU Free Documentation License 341

Index 353

TEX for the Impatient No 12

3 Jan 2020 2:18 p.m.

Contents

1 \ Using this book 1

Syntactic conventions 2

Descriptions of the commands 3

2 \ Using TEX 7

Turning input into ink 7

Programs and files you need · 7
Running TEX · 9

Preparing an input file 10

Commands and control sequences · 10

Arguments · 11

Parameters · 12

Spaces · 12

Comments · 13

Punctuation · 13

Special characters · 15

Groups · 15

Math formulas · 16

How TEX works 16

New TEX versus old TEX 18

Resources 18

3 \ Examples 21

Entering simple text 22

Indentation 24

Fonts and special characters 26

Interline spacing 28

TEX for the Impatient No 13

3 Jan 2020 2:18 p.m.

Contents xiii

Spacing, rules, and boxes 30

Odds and ends 32

Using fonts from other sources 34

A ruled table 36

Typesetting mathematics 38

More mathematics 40

4 \ Concepts 43

5 \ Commands for composing paragraphs 97

Characters and accents 97

Letters and ligatures for European alphabets · 97

Special symbols · 98

Arbitrary characters · 99

Accents · 100

Defeating boundary ligatures · 101

Selecting fonts 102

Particular fonts · 102

Type styles · 103

Uppercase and lowercase 103

Interword spacing 104

Centering and justifying lines 108

Shaping paragraphs 110

Starting, ending, and indenting paragraphs · 110

Shaping entire paragraphs · 114

Line breaks 120

Encouraging or discouraging line breaks · 120

Line breaking parameters · 123

Hyphenation · 126

Section headings, lists, and theorems 129

6 \ Commands for composing pages 133

Interline and interparagraph spaces 133

Page breaks 136

Encouraging or discouraging page breaks · 136

Page breaking parameters · 138

TEX for the Impatient No 14

3 Jan 2020 2:18 p.m.

xiv Contents

Page layout 140

Page description parameters · 140

Page numbers · 142

Header and footer lines · 143

Marks · 144

Insertions 145

Footnotes · 145

General insertions · 146

Modifying the output routine 148

Splitting vertical lists 149

7 \ Commands for horizontal and vertical modes 153

Producing space 153

Fixed-width horizontal space · 153

Fixed-length vertical space · 154

Variable-size space · 155

Manipulating boxes 160

Constructing hboxes and vboxes · 160

Setting and retrieving the contents of boxes · 164

Shifting boxes · 166

Dimensions of box registers · 167

Struts, phantoms, and empty boxes · 167

Parameters pertaining to malformed boxes · 170

Retrieving the last item from a list 171

Rules and leaders 172

Alignments 176

Tabbing alignments · 176

General alignments · 178

8 \ Commands for composing math formulas 187

Simple parts of formulas 187

Greek letters · 187

Miscellaneous ordinary math symbols · 188

Binary operations · 189

Relations · 190

Left and right delimiters · 191

Arrows · 192

Named mathematical functions · 193

Large operators · 194

Punctuation · 196

TEX for the Impatient No 15

3 Jan 2020 2:18 p.m.

Contents xv

Superscripts and subscripts 197

Selecting and using styles · 198

Compound symbols 199

Math accents · 199

Fractions and other stacking operations · 200

Dots · 203

Delimiters · 204

Matrices · 205

Roots and radicals · 206

Equation numbers 207

Multiline displays 208

Fonts in math formulas 209

Constructing math symbols 211

Making delimiters bigger · 211

Parts of large symbols · 211

Aligning parts of a formula 212

Aligning accents · 212

Aligning material vertically · 213

Producing spaces 214

Fixed-width math spaces · 214

Variable-width math spaces · 215

Spacing parameters for displays · 216

Other spacing parameters for math · 217

Categorizing math constructs 218

Special actions for math formulas 218

9 \ Commands for general operations 221

Naming and modifying fonts 221

Converting information to tokens 224

Numbers · 224

Environmental information · 224

Values of variables · 226

Grouping 227

Macros 230

Defining macros · 230

Other definitions · 232

Controlling expansion · 233

Conditional tests · 235

Repeated actions · 240

Doing nothing · 241

TEX for the Impatient No 16

3 Jan 2020 2:18 p.m.

xvi Contents

Registers 242

Using registers · 242

Naming and reserving registers, etc. · 244

Doing arithmetic in registers · 245

Ending the job 246

Input and output 247

Operations on input files · 247

Operations on output files · 249

Interpreting input characters · 251

Controlling interaction with TEX 252

Diagnostic aids 253

Displaying internal data · 253

Specifying what is traced · 256

Sending messages · 261

Initializing TEX 263

10 \ Tips and techniques 265

Correcting bad page breaks 265

Preserving the end of a page 267

Leaving space at the top of a page 267

Correcting bad line breaks 268

Correcting overfull or underfull boxes 268

Recovering lost interword spaces 270

Avoiding unwanted interword spaces 270

Avoiding excess space around a display 271

Avoiding excess space after a paragraph 271

Changing the paragraph shape 272

Putting paragraphs into a box 272

Drawing lines 273

Creating multiline headers or footers 274

Finding mismatched braces 275

Setting dimensions 276

Creating composite fonts 276

Reproducing text verbatim 277

Using outer macros 279

Changing category codes 280

Making macro files more readable 281

TEX for the Impatient No 17

3 Jan 2020 2:18 p.m.

Contents xvii

11 \ Making sense of error messages 283

12 \ A compendium of useful macros 291

Preliminaries 291

Displays 295

Time of day 297

Lists 298

Verbatim listing 300

Tables of contents 301

Cross-references 302

Environments 304

Justification 306

Tables 307

Footnotes 309

Double columns 309

Finishing up 311

13 \ Capsule summary of commands 313

GNU Free Documentation License 341

PREAMBLE 341

APPLICABILITY AND DEFINITIONS 342

VERBATIM COPYING 343

COPYING IN QUANTITY 344

MODIFICATIONS 345

COMBINING DOCUMENTS 346

COLLECTIONS OF DOCUMENTS 347

AGGREGATION WITH INDEPENDENT WORKS 347

TRANSLATION 348

TERMINATION 348

FUTURE REVISIONS OF THIS LICENSE 349

Index 353

TEX for the Impatient No 18

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 19

3 Jan 2020 2:18 p.m.

Read this first

If you’re new to TEX:

Read Sections 1–2 first.

Look at the examples in Section 3 for things that resemble what you

want to do. Look up any related commands in “Capsule summary

of commands”, Section 13. Use the page references there to find

the more complete descriptions of those commands and others that

are similar.

Look up unfamiliar words in “Concepts”, Section 4, using the list on

the back cover of the book to find the explanation quickly.

Experiment and explore.

If you’re already familiar with TEX, or if you’re editing or otherwise mod-

ifying a TEX document that someone else has created:

For a quick reminder of what a command does, look in Section 13,

“Capsule summary of commands”. It’s alphabetized and has page

references for more complete descriptions of the commands.

Use the functional groupings of command descriptions to find those

related to a particular command that you already know, or to find a

command that serves a particular purpose.

Use Section 4, “Concepts”, to get an explanation of any concept that

you don’t understand, or need to understand more precisely, or have

forgotten. Use the list on the inside back cover of the book to find a

concept quickly.

TEX for the Impatient No 20

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 21

3 Jan 2020 2:18 p.m.

1 Using this book

This book is a do-it-yourself guide and handbook for TEX. Here in this
section we tell you how to use the book to maximum advantage.

We recommend that you first either read or skim in sequence Sections
1 through 3, which tell you what you need to know in order to get started
using TEX. If you’ve already had experience using TEX, it will still be
helpful to know what kinds of information are in these sections of the
book. Sections 4–10 and 13, which occupy most of the rest of the book,
are designed to be accessed randomly. Nevertheless, if you’re the kind of
person who likes to read reference manuals, you’ll find that it is possible
to proceed sequentially if you’re willing to take a lot of detours at first.

In Section 2, “Using TEX”, we explain how to produce a TEX document
from a TEX input file. We also describe the conventions for preparing
that input file, explain a little about how TEX works, and tell you about
additional resources that are available. Reading this section will help you
understand the examples in the next section.

Section 3, “Examples”, contains a sequence of examples that illustrate
the use of TEX. Each example consists of a page of output together with
the input that we used to create it. These examples will orient you and
help you locate the more detailed material that you’ll need as you go. By
seeing which commands are used in the input, you’ll know where to look
for more detailed information on how to achieve the effects shown in the
output. The examples can also serve as models for simple documents,
although we must caution you that because we’ve tried to pack a variety
of TEX commands into a small number of pages, the examples are not
necessarily illustrations of good or complete document design.

As you read the explanation of a command, you may encounter some
unfamiliar technical terms. In Section 4, “Concepts”, we define and ex-
plain these terms. We also discuss other topics that aren’t covered else-

TEX for the Impatient No 22

3 Jan 2020 2:18 p.m.

2 Using this book \ §1

where in the book. The inside back cover of the book contains a list of
all the concepts and the pages where they are described. We suggest that
you make a copy of this list and keep it nearby so that you’ll be able to
identify and look up an unfamiliar concept immediately.

TEX’s commands are its primary vocabulary, and the largest part of
this book is devoted to explaining them. In Sections 5 through 9 we
describe the commands. You’ll find general information about the com-
mand descriptions on page 3. The command descriptions are arranged
functionally, rather like a thesaurus, so if you know what you want to do
but you don’t know which command does it for you, you can use the ta-
ble of contents to guide you to the right group of commands. Commands
that we think are both particularly useful and easy to understand are
indicated with a pointing hand (+).

Section 13, “Capsule summary of commands”, is a specialized index
that complements the more complete descriptions in Sections 5–9. It lists
TEX’s commands alphabetically, with a brief explanation of each com-
mand and a reference to the page where it is described more completely.
The capsule summary will help you when you just want a quick reminder
of what a command does.

TEX is a complex program that occasionally works its will in mysterious
ways. In Section 10, “Tips and techniques”, we provide advice on solving
a variety of specific problems that you may encounter from time to time.
And if you’re stumped by TEX’s error messages, you’ll find succor in
Section 11, “Making sense of error messages”.

The gray tabs on the side of the book will help you locate parts of the
book quickly. They divide the book into the following major parts:

1) general explanations and examples

2) concepts

3) descriptions of commands (five shorter tabs)

4) advice, error messages, and the eplain.tex macros

5) capsule summary of commands

6) index

In many places we have provided page references to The TEXbook
(see page 18 for a citation). These references apply to the seventeenth
edition of The TEXbook. For other editions, some references may be off
by a page or two.

Syntactic conventions

In any book about preparing input for a computer, it’s necessary to in-
dicate clearly the literal characters that should be typed and to distin-
guish those characters from the explanatory text. We use the Computer

TEX for the Impatient No 23

3 Jan 2020 2:18 p.m.

Descriptions of the commands 3

Modern typewriter font for literal input like this, and also for the
names of TEX commands. When there’s any possibility of confusion, we
enclose TEX input in single quotation marks, ‘like this’. However, we
occasionally use parentheses when we’re indicating single characters such
as (‘) (you can see why).

For the sake of your eyes we usually just put spaces where you should
put spaces. In some places where we need to emphasize the space, how-
ever, we use a ‘ ’ character to indicate it. Naturally enough, this character
is called a visible space.

Descriptions of the commands

Sections 5–9 contain a description of what nearly every TEX command
does. Both the primitive commands and those of plain TEX are covered.
The primitive commands are those built into the TEX computer program,
while the plain TEX commands are defined in a standard file of auxiliary
definitions (see p. 88). The only commands we’ve omitted are those that
are used purely locally in the definition of plain TEX (Appendix B of The
TEXbook). The commands are organized as follows:

“Commands for composing paragraphs”, Section 5, deal with char-
acters, words, lines, and entire paragraphs.
“Commands for composing pages”, Section 6, deal with pages, their
components, and the output routine.
“Commands for horizontal and vertical modes”, Section 7, have cor-
responding or identical forms for both horizontal modes (paragraphs
and hboxes) and vertical modes (pages and vboxes). These com-
mands provide boxes, spaces, rules, leaders, and alignments.
“Commands for composing math formulas”, Section 8, provide ca-
pabilities for constructing math formulas.
“Commands for general operations”, Section 9, provide TEX’s pro-
gramming features and everything else that doesn’t fit into any of
the other sections.

You should think of these categories as being suggestive rather than
rigorous, because the commands don’t really fit neatly into these (or any
other) categories.

Within each section, the descriptions of the commands are organized
by function. When several commands are closely related, they are de-
scribed as a group; otherwise, each command has its own explanation.
The description of each command includes one or more examples and
the output produced by each example when examples are appropriate
(for some commands they aren’t). When you are looking at a subsection
containing functionally related commands, be sure to check the end of a

TEX for the Impatient No 24

3 Jan 2020 2:18 p.m.

4 Using this book \ §1

subsection for a “see also” item that refers you to related commands that
are described elsewhere.

Some commands are closely related to certain concepts. For instance,
the \halign and \valign commands are related to “alignment”, the \def
command is related to “macro”, and the \hbox and \vbox commands are
related to “box”. In these cases we’ve usually given a bare-bones des-
cription of the commands themselves and explained the underlying ideas
in the concept.

The examples associated with the commands have been typeset with
\parindent, the paragraph indentation, set to zero so that paragraphs
are normally unindented. This convention makes the examples easier to
read. In those examples where the paragraph indentation is essential,
we’ve set it explicitly to a nonzero value.

The pointing hand in front of a command or a group of commands
indicates that we judged this command or group of commands to be
particularly useful and easy to understand.

Many commands expect arguments of one kind or another (p. 11). The
arguments of a command give TEX additional information that it needs
in order to carry out the command. Each argument is indicated by an
italicized term in angle brackets that indicates what kind of argument it is:
〈argument〉 a single token or some text enclosed in braces
〈charcode〉 a character code, i.e., an integer between 0 and 255
〈dimen〉 a dimension, i.e., a length
〈glue〉 glue (with optional stretch and shrink)
〈number〉 an optionally signed integer (whole number)
〈register〉 a register number between 0 and 255

All of these terms are explained in more detail in Section 4. In addi-
tion, we sometimes use terms such as 〈token list〉 that are either self-
explanatory or explained in the description of the command. Some com-
mands have special formats that require either braces or particular words.
These are set in the same bold font that we use for the command headings.

Some commands are parameters (p. 12) or table entries. This is indi-
cated in the command’s listing. You can either use a parameter as an
argument or assign a value to it. The same holds for table entries. We
use the term “parameter” to refer to entities such as \pageno that are
actually registers but behave just like parameters.

TEX for the Impatient No 25

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 26

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 27

3 Jan 2020 2:18 p.m.

2 Using TEX

Turning input into ink

Programs and files you need

In order to produce a TEX document, you’ll need to run the TEX program
and several related programs as well. You’ll also need supporting files for
TEX and possibly for these other programs. In this book we can tell
you about TEX, but we can’t tell you about the other programs and
the supporting files except in very general terms because they depend
on your local TEX environment. The people who provide you with TEX
should be able to supply you with what we call local information. The
local information tells you how to start up TEX, how to use the related
programs, and how to gain access to the supporting files.

Input to TEX consists of a file of ordinary text that you can prepare
with a text editor. A TEX input file, unlike an input file for a typical
word processor, doesn’t ordinarily contain any invisible control charac-
ters. Everything that TEX sees is visible to you too if you look at a
listing of the file.

Your input file may turn out to be little more than a skeleton that
calls for other input files. TEX users often organize large documents
such as books this way. You can use the \input command (p. 247) to
embed one input file within another. In particular, you can use \input to
incorporate files containing macro definitions—auxiliary definitions that
enhance TEX’s capabilities. If any macro files are available at your TEX
installation, the local information about TEX should tell you how to get

TEX for the Impatient No 28

3 Jan 2020 2:18 p.m.

8 Using TEX \ §2

at the macro files and what they can do for you. The standard form of
TEX, the one described in this book, incorporates a collection of macros
and other definitions known as plain TEX (p. 88).

When TEX processes your document, it produces a file called the .dvi

file. The abbreviation “dvi” stands for “device independent”. The abbre-
viation was chosen because the information in the .dvi file is independent
of the device that you use to print or display your document.

To print your document or view it with a previewer, you need to process
the .dvi file with a device driver program. (A previewer is a program that
enables you to see on a screen some approximation of what the typeset
output will look like.) Different output devices usually require different
device drivers. After running the device driver, you may also need to
transfer the output of the device driver to the printer or other output
device. The local information about TEX should tell you how to get the
correct device driver and use it.

Since TEX has no built-in knowledge of particular fonts, it uses font files
to obtain information about the fonts used in your document. The font
files should also be part of your local TEX environment. Each font nor-
mally requires two files: one containing the dimensions of the characters
in the font (the metrics file) and one containing the shapes of the char-
acters (the shape file). Magnified versions of a font share the metrics file
but have different shape files. Metrics files are sometimes referred to as
.tfm files, and the different varieties of shape files are sometimes referred
to as .pk files, .pxl files, and .gf files. These names correspond to the
names of the files that TEX and its companion programs use. For exam-
ple, cmr10.tfm is the metrics file for the cmr10 font (10-point Computer
Modern Roman).

TEX itself uses only the metrics file, since it doesn’t care what the
characters look like but only how much space they occupy. The device
driver ordinarily uses the shape file, since it’s responsible for creating the
printed image of each typeset character. Some device drivers need to
use the metrics file as well. Some device drivers can utilize fonts that are
resident in a printer and don’t need shape files for those fonts.

TEX for the Impatient No 29

3 Jan 2020 2:18 p.m.

Turning input into ink 9

Running TEX

You can run TEX on an input file screed.tex by typing something like
‘run tex’ or just ‘tex’ (check your local information). TEX will respond
with something like:

This is TeX, Version 3.0 (preloaded format=plain 90.4.23)

**

The “preloaded format” here refers to a predigested form of the plain TEX
macros that come with TEX. You can now type ‘screed’ to get TEX to
process your file. When it’s done, you’ll see something like:

(screed.tex [1] [2] [3])

Output written on screed.dvi (3 pages, 400 bytes).

Transcript written on screed.log.

displayed on your terminal, or printed in the record of your run if you’re
not working at a terminal. Most of this output is self-explanatory. The
numbers in brackets are page numbers that TEX displays when it ships
out each page of your document to the .dvi file. TEX will usually assume
an extension ‘.tex’ to an input file name if the input file name you gave
doesn’t have an extension. For some forms of TEX you may be able to
invoke TEX directly for an input file by typing:

tex screed

or something like this.
Instead of providing your TEX input from a file, you can type it directly

at your terminal. To do so, type ‘\relax’ instead of ‘screed’ at the ‘**’
prompt. TEX will now prompt you with a ‘*’ for each line of input and
interpret each line of input as it sees it. To terminate the input, type
a command such as ‘\bye’ that tells TEX you’re done. Direct input is
sometimes a handy way of experimenting with TEX.

When your input file contains other embedded input files, the displayed
information indicates when TEX begins and ends processing each embed-
ded file. TEX displays a left parenthesis and the file name when it starts
working on a file and displays the corresponding right parenthesis when
it’s done with the file. If you get any error messages in the displayed
output, you can match them with a file by looking for the most recent
unclosed left parenthesis.

For a more complete explanation of how to run TEX, see Chapter 6 of
The TEXbook and your local information.

TEX for the Impatient No 30

3 Jan 2020 2:18 p.m.

10 Using TEX \ §2

Preparing an input file

In this section we explain some of the conventions that you must follow in
preparing input for TEX. Some of the information given here also appears
in the examples in Section 3 of this book.

Commands and control sequences

Input to TEX consists of a sequence of commands that tell TEX how to
typeset your document. Most characters act as commands of a particu-
larly simple kind: “typeset me”. The letter ‘a’, for instance, is a command
to typeset an ‘a’. But there’s another kind of command—a control se-
quence—that gives TEX a more elaborate instruction. A control sequence
ordinarily starts with a backslash (\), though you can change that con-
vention if you need to. For instance, the input:

She plunged a dagger (\dag) into the villain’s heart.

contains the control sequence \dag; it produces the typeset output:

She plunged a dagger (†) into the villain’s heart.

Everything in this example except for the \dag and the spaces acts like a
“typeset me” command. We’ll explain more about spaces on page 12.

There are two kinds of control sequences: control words and con-
trol symbols:

A control word consists of a backslash followed by one or more letters,
e.g., ‘\dag’. The first character that isn’t a letter marks the end of
the control word.
A control symbol consists of a backslash followed by a single character
that isn’t a letter, e.g., ‘\$’. The character can be a space or even the
end of a line (which is a perfectly legitimate character).

A control word (but not a control symbol) absorbs any spaces or ends
of line that follow it. If you don’t want to lose a space after a con-
trol word, follow the control sequence with a control space (\) or with
‘{}’. Thus either:

The wonders of \TeX\ shall never cease!

or:

The wonders of \TeX{} shall never cease!

produces:

The wonders of TEX shall never cease!

TEX for the Impatient No 31

3 Jan 2020 2:18 p.m.

Preparing an input file 11

rather than:

The wonders of TEXshall never cease!

which is what you’d get if you left out the ‘\ ’ or the ‘{}’.
Don’t run a control word together with the text that follows it—TEX

won’t know where the control word ends. For instance, the \c control se-
quence places a cedilla accent on the character that follows it. The French
word garçon must be typed as ‘gar\c con’, not ‘gar\ccon’; if you write
the latter, TEX will complain about an undefined control sequence \ccon.

A control symbol, on the other hand, doesn’t absorb anything that
follows it. Thus you must type ‘$13.56’ as ‘\$13.56’, not ‘\$ 13.56’; the
latter form would produce ‘$ 13.56’. However, those accenting commands
that are named by control symbols are defined in such a way that they
produce the effect of absorbing a following space. Thus, for example, you
can type the French word déshabiller either as ‘d\’eshabiller’ or as
‘d\’ eshabiller’.

Every control sequence is also a command, but not the other way
around. For instance, the letter ‘N’ is a command, but it isn’t a control
sequence. In this book we ordinarily use “command” rather than “con-
trol sequence” when either term would do. We use “control sequence”
when we want to emphasize aspects of TEX syntax that don’t apply to
commands in general.

Arguments

Some commands need to be followed by one or more arguments that
help to determine what the command does. For instance, the \vskip

command, which tells TEX to skip down (or up) the page, expects an
argument specifying how much space to skip. To skip down two inches,
you would type ‘\vskip 2in’, where 2in is the argument of \vskip.

Different commands expect different kinds of arguments. Many com-
mands expect dimensions, such as the 2in in the example above. Some
commands, particularly those defined by macros, expect arguments that
are either a single character or some text enclosed in braces. Yet others
require that their arguments be enclosed in braces, i.e., they don’t accept
single-character arguments. The description of each command in this
book tells you what kinds of arguments, if any, the command expects. In
some cases, required braces define a group (see p. 15).

TEX for the Impatient No 32

3 Jan 2020 2:18 p.m.

12 Using TEX \ §2

Parameters

Some commands are parameters (p. 87). You can use a parameter in
either of two ways:

1) You can use the value of a parameter as an argument to another
command. For example, the command \vskip\parskip causes a
vertical skip by the value of the \parskip (paragraph skip) glue
parameter.

2) You can change the value of the parameter by assigning something
to it. For example, the assignment \hbadness=200 causes the value
of the \hbadness number parameter to be 200.

We also use the term “parameter” to refer to entities such as \pageno

that are actually registers but behave just like parameters.
Some commands are names of tables. These commands are used like

parameters, except that they require an additional argument that specifies
a particular entry in the table. For example, \catcode names a table
of category codes (p. 53). Thus the command \catcode‘~=13 sets the
category code of the ‘~’ character to 13.

Spaces

You can freely use extra spaces in your input. Under nearly all circum-
stances TEX treats several spaces in a row as being equivalent to a single
space. For instance, it doesn’t matter whether you put one space or two
spaces after a period in your input. Whichever you do, TEX performs
its end-of-sentence maneuvers and leaves the appropriate (in most cases)
amount of space after the period. TEX also treats the end of an input line
as equivalent to a space. Thus you can end your input lines wherever it’s
convenient—TEX makes input lines into paragraphs in the same way no
matter where the line breaks are in your input.

A blank line in your input marks the end of a paragraph. Several blank
lines are equivalent to a single one.

TEX ignores input spaces within math formulas (see below). Thus you
can include or omit spaces anywhere within a math formula—TEX doesn’t
care. Even within a math formula, however, you must not run a control
word together with a following letter.

If you are defining your own macros, you need to be particularly careful
about where you put ends of line in their definitions. It’s all too easy to
define a macro that produces an unwanted space in addition to whatever
else it’s supposed to do. We discuss this problem elsewhere since it’s
somewhat technical; see page 270.

TEX for the Impatient No 33

3 Jan 2020 2:18 p.m.

Preparing an input file 13

A space or its equivalent between two words in your input doesn’t
simply turn into a space character in your output. A few of these input
spaces turn into ends of lines in the output, since input lines generally
don’t correspond to output lines. The others turn into spaces of variable
width called “glue” (p. 66), which has a natural size (the size it “wants to
be”) but can stretch or shrink. When TEX is typesetting a paragraph that
is supposed to have an even right margin (the usual case), it adjusts the
widths of the glue in each line to get the lines to end at the margin. (The
last line of a paragraph is an exception, since it isn’t ordinarily required
to end at the right margin.)

You can prevent an input space from turning into an end of line by
using a tie (~). For example, you wouldn’t want TEX to put a line break
between the ‘Fig.’ and ‘8’ of ‘Fig. 8’. By typing ‘Fig.~8’ you can prevent
such a line break.

Comments

You can include comments in your TEX input. When TEX sees a com-
ment it just passes over it, so what’s in a comment doesn’t affect your
typeset document in any way. Comments are useful for providing extra
information about what’s in your input file. For example:

% ========= Start of Section ‘Hedgehog’ =========

A comment starts with a percent sign (%) and extends to the end of
the input line. TEX ignores not just the comment but the end of the line
as well, so comments have another very important use: connecting two
lines so that the end of line between them is invisible to TEX and doesn’t
generate an output space or an end of line. For instance, if you type:

A fool with a spread%

sheet is still a fool.

you’ll get:

A fool with a spreadsheet is still a fool.

Punctuation

TEX normally adds some extra space after what it thinks is a punctuation
mark at the end of a sentence, namely, ‘.’, ‘?’, or ‘!’ followed by an
input space. TEX doesn’t add the extra space if the punctuation mark
follows a capital letter, though, because it assumes the capital letter to
be an initial in someone’s name. You can force the extra space where it
wouldn’t otherwise occur by typing something like:

A computer from IBM\null?

TEX for the Impatient No 34

3 Jan 2020 2:18 p.m.

14 Using TEX \ §2

The \null doesn’t produce any output, but it does prevent TEX from
associating the capital ‘M’ with the question mark. On the other hand,
you can cancel the extra space where it doesn’t belong by typing a control
space after the punctuation mark, e.g.:

Proc.\ Royal Acad.\ of Twits

so that you’ll get:

Proc. Royal Acad. of Twits

rather than:

Proc. Royal Acad. of Twits

Some people prefer not to leave more space after punctuation at the end
of a sentence. You can get this effect with the \frenchspacing command
(p. 106). \frenchspacing is often recommended for bibliographies.

For single quotation marks, you should use the left and right single
quotes (‘ and ’) on your keyboard. For left and right double quotation
marks, use two left single quotes or two right single quotes (‘‘ or ’’)
rather than the double quote (") on your keyboard. The keyboard double
quote will in fact give you a right double quotation mark in many fonts,
but the two right single quotes are the preferred TEX style. For example:

There is no ‘q’ in this sentence.

‘‘Talk, child,’’ said the Unicorn.

She said, ‘‘\thinspace‘Enough!’, he said.’’

These three lines yield:

There is no ‘q’ in this sentence.
“Talk, child,” said the Unicorn.
She said, “ ‘Enough!’, he said.”

The \thinspace in the third input line prevents the single quotation
mark from coming too close to the double quotation marks. Without it,
you’d just see three nearly equally spaced quotation marks in a row.

TEX has three kinds of dashes:

Short ones (hyphens) like this (-). You get them by typing ‘-’.

Medium ones (en-dashes) like this (–). You get them by typing ‘--’.

Long ones (em-dashes) like this (—). You get them by typing ‘---’.

TEX for the Impatient No 35

3 Jan 2020 2:18 p.m.

Preparing an input file 15

Typically you’d use hyphens to indicate compound words like “will-o’-
the-wisp”, en-dashes to indicate page ranges such as “pages 81–87”, and
em-dashes to indicate a break in continuity—like this.

Special characters

Certain characters have special meaning to TEX, so you shouldn’t use
them in ordinary text. They are:

$ # & % _ ^ ~ { } \

In order to produce them in your typeset document, you need to use
circumlocutions. For the first five, you should instead type:

\$ \# \& \% _

For the others, you need something more elaborate:

\^{ } \~{ } $\{$ $\}$ \backslash

Groups

A group consists of material enclosed in matching left and right braces ({
and }). By placing a command within a group, you can limit its effects
to the material within the group. For instance, the \bf command tells
TEX to set something in boldface type. If you were to put \bf into your
input and do nothing else to counteract it, everything in your document
following the \bf would be set in boldface. By enclosing \bf in a group,
you limit its effect to the group. For example, if you type:

We have {\bf a few boldface words} in this sentence.

you’ll get:

We have a few boldface words in this sentence.

You can also use a group to limit the effect of an assignment to one of
TEX’s parameters. These parameters contain values that affect how TEX
typesets your document. For example, the value of the \parindent pa-
rameter specifies the indentation at the beginning of a paragraph. The as-
signment \parindent = 15pt sets the indentation to 15 printer’s points.
By placing this assignment at the beginning of a group containing a few
paragraphs, you can change the indentation of just those paragraphs. If
you don’t enclose the assignment in a group, the changed indentation
will apply to the rest of the document (or up to the next assignment to
\parindent, if there’s a later one).

Not all pairs of braces indicate a group. In particular, the braces as-
sociated with an argument for which the braces are not required don’t

TEX for the Impatient No 36

3 Jan 2020 2:18 p.m.

16 Using TEX \ §2

indicate a group—they just serve to delimit the argument. Of those com-
mands that do require braces for their arguments, some treat the braces
as defining a group and the others interpret the argument in some special
way that depends on the command.1

Math formulas

A math formula can appear in text (text math) or set off on a line by
itself with extra vertical space around it (display math). You enclose a
text formula in single dollar signs ($) and a displayed formula in double
dollar signs ($$). For example:

If $a<b$, then the relation $$e^a < e^b$$ holds.

This input produces:

If a < b, then the relation
ea < eb

holds.

TEX does its own spacing inside math, ignoring any spaces in the input.
Section 8 describes the commands that are useful in math formulas.

How TEX works

In order to use TEX effectively, it helps to have some idea of how TEX
goes about its activity of transmuting input into output. You can imagine
TEX as a kind of organism with “eyes”, “mouth”, “gullet”, “stomach”,
and “intestines”. Each part of the organism transforms its input in some
way and passes the transformed input to the next stage.

The eyes transform an input file into a sequence of characters. The
mouth transforms the sequence of characters into a sequence of tokens,
where each token is either a single character or a control sequence. The
gullet expands the tokens into a sequence of primitive commands, which
are also tokens. The stomach carries out the operations specified by
the primitive commands, producing a sequence of pages. Finally, the
intestines transform each page into the form required for the .dvi file
and send it there. These actions are described in more detail in Section 4
under “anatomy of TEX” (p. 46).

1 More precisely, for primitive commands either the braces define a group or they
enclose tokens that aren’t processed in TEX’s stomach. For \halign and \valign the
group has a trivial effect because everything within the braces either doesn’t reach the
stomach (because it’s in the template) or is enclosed in a further inner group.

TEX for the Impatient No 37

3 Jan 2020 2:18 p.m.

How TEX works 17

The real typesetting goes on in the stomach. The commands instruct
TEX to typeset such-and-such a character in such-and-such a font, to
insert an interword space, to end a paragraph, and so on. Starting with
individual typeset characters and other simple typographic elements, TEX
builds up a page as a nest of boxes within boxes within boxes (see “box”,
p. 51). Each typeset character occupies a box, and so does an entire page.
A box can contain not just smaller boxes but also glue (p. 66) and a few
other things. The glue produces space between the smaller boxes. An
important property of glue is that it can stretch and shrink; thus TEX can
make a box larger or smaller by stretching or shrinking the glue within it.

Roughly speaking, a line is a box containing a sequence of character
boxes, and a page is a box containing a sequence of line boxes. There’s
glue between the words of a line and between the lines of a page. TEX
stretches or shrinks the glue on each line so as to make the right margin
of the page come out even and the glue on each page so as to make the
bottom margins of different pages be equal. Other kinds of typograph-
ical elements can also appear in a line or in a page, but we won’t go
into them here.

As part of the process of assembling pages, TEX needs to break para-
graphs into lines and lines into pages. The stomach first sees a paragraph
as one long line, in effect. It inserts line breaks in order to transform
the paragraph into a sequence of lines of the right length, performing a
rather elaborate analysis in order to choose the set of breaks that makes
the paragraph look best (see “line break”, p. 74). The stomach carries out
a similar but simpler process in order to transform a sequence of lines into
a page. Essentially the stomach accumulates lines until no more lines can
fit on the page. It then chooses a single place to break the page, putting
the lines before the break on the current page and saving the lines after
the break for the next page (see “page break”, p. 85).

When TEX is assembling an entity from a list of items (boxes, glue,
etc.), it is in one of six modes (p. 81). The kind of entity it is assembling
defines the mode that it is in. There are two ordinary modes: ordinary
horizontal mode for assembling paragraphs (before they are broken into
lines) and ordinary vertical mode for assembling pages. There are two
restricted modes: restricted horizontal mode for appending items hori-
zontally to form a horizontal box and internal vertical mode for append-
ing items vertically to form a vertical box (other than a page). Finally,
there are two math modes: text math mode for assembling math formulas
within a paragraph and display math mode for assembling math formulas
that are displayed on lines by themselves (see “Math formulas”, p. 16).

TEX for the Impatient No 38

3 Jan 2020 2:18 p.m.

18 Using TEX \ §2

New TEX versus old TEX

In 1989 Knuth made a major revision to TEX in order to adapt it to
the character sets needed to support typesetting for languages other than
English. The revision included a few minor extra features that could
be added without disturbing anything else. This book describes “new
TEX”. If you’re still using an older version of TEX (version 2.991 or
earlier), you’ll want to know what features of new TEX you can’t use. The
following features aren’t available in the older versions:

\badness (p. 170)
\emergencystretch (p. 124)
\errorcontextlines (p. 262)
\holdinginserts (p. 149)
\language, \setlanguage, and \newlanguage (pp. 128, 244)
\lefthyphenmin and \righthyphenmin (p. 128)
\noboundary (p. 101)
\topglue (p. 156)
The ^^xy notation for hexadecimal digits (p. 55)

We recommend that you obtain new TEX if you can.

Resources

A number of resources are available to help you in using TEX. The
TEXbook is the definitive source of information on TEX:

Knuth, Donald E., The TEXbook. Reading, Mass.: Addison-Wesley,
1984.

Be sure to get the seventeenth printing (January 1990) or later; the earlier
printings don’t cover the features of new TEX.

LATEX is a very popular collection of commands designed to simplify
the use of TEX. It is described in:

Lamport, Leslie, The LATEXDocument Preparation System. Reading,
Mass.: Addison-Wesley, 1986.

AMS-TEX is the collection of commands adopted by the American Math-
ematical Society as a standard for submitting mathematical manuscripts
electronically. It is described in:

Spivak, Michael D., The Joy of TEX. Providence, R.I.: American
Mathematical Society, 1986.

TEX for the Impatient No 39

3 Jan 2020 2:18 p.m.

Using TEX 19

You can join the TEX Users Group (TUG), which publishes a newslet-
ter called TUGBoat. TUG is an excellent source not only for informa-
tion about TEX but also for collections of macros, including AMS-TEX.
Its address is:

TEX Users Group
c/o American Mathematical Society
P.O. Box 9506
Providence, RI 02940
U.S.A.

Finally, you can obtain copies of the eplain.tex macros described in
Section 12 as well as the macros used in typesetting this book. They
are available through the Internet network by anonymous ftp from the
following hosts:

labrea.stanford.edu [36.8.0.47]

ics.uci.edu [128.195.1.1]

june.cs.washington.edu [128.95.1.4]

The electronic version includes additional macros that format input for
the BIBTEX computer program, written by Oren Patashnik at Stanford
University, and print the output from that program. If you find bugs in
the macros, or think of improvements, you can send electronic mail to
Karl at karl@cs.umb.edu.

The macros are also available for US $10.00 on 51/4˝ or 31/2˝ PC-
format diskettes from:

Paul Abrahams
214 River Road
Deerfield, MA 01342

Email: Abrahams%Wayne-MTS@um.cc.umich.edu

These addresses are correct as of June 1990; please be aware that they
may change after that, particularly the electronic addresses.

TEX for the Impatient No 40

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 41

3 Jan 2020 2:18 p.m.

3 Examples

This section of the book contains a set of examples to help get you started
and to show you how to do various things with TEX. Each example has
TEX output on the left-hand page and the TEX input that led to that
output on the right-hand page. You can use these examples both as
forms to imitate and as a way of finding the TEX commands that you
need in order to achieve a particular effect. However, these examples can
illustrate only a few of the about 900 TEX commands.

Some of the examples are self-descriptive—that is, they discuss the
very features of TEX that they are illustrating. These discussions are
necessarily sketchy because there isn’t room in the examples for all the
information you’d need. The capsule summary of commands (Section 13)
and the index will help you locate the complete explanation of every TEX
feature shown in the examples.

Because we’ve designed the examples to illustrate many things at once,
some examples contain a great variety of typographical effects. These
examples generally are not good models of typographical practice. For
instance, Example 8 has some of its equation numbers on the left and some
on the right. You’d never want to do that in a real publication.

Each example except for the first one starts with a macro (see p. 75)
named \xmpheader. We’ve used \xmpheader in order to conserve space
in the input, since without it each example would have several lines of
material you’d already seen. \xmpheader produces the title of an example
and the extra space that goes with it. You can see in the first example
what \xmpheader does, so you can imitate it if you wish. Except for
\xmpheader, every command that we use in these examples is defined
in plain TEX.

TEX for the Impatient No 42

3 Jan 2020 2:18 p.m.

22 Examples \ §3

Example 1: Entering simple text

It’s easy to prepare ordinary text for TEX since TEX usually doesn’t
care about how you break up your input into lines. It treats the end of a
line of text like a space.† If you don’t want a space there, put a percent
sign (the comment character) at the end of the line. TEX ignores spaces
at the start of a line, and treats more than one space as equivalent to
a single space, even after a period. You indicate a new paragraph by
skipping a line (or more than one line).

When TEX sees a period followed by a space (or the end of the line,
which is equivalent), it ordinarily assumes you’ve ended a sentence and
inserts a little extra space after the period. It treats question marks and
exclamation points the same way.

But TEX’s rules for handling periods sometimes need fine tuning.
TEX assumes that a capital letter before a period doesn’t end the sentence,
so you have to do something a little different if, say, you’re writing about
DNA. It’s a good idea to tie words together in references such as “see
Fig. 8” and in names such as V. I. Lenin and in . . . so that TEX will
never split them in an awkward place between two lines. (The three dots
indicate an ellipsis.)

You should put quotations in pairs of left and right single “quotes”
so that you get the correct left and right double quotation marks. “For
adjacent single and double quotation marks, insert a ‘thinspace’ ”. You
can get en-dashes–like so, and em-dashes—like so.

† TEX treats a tab like a space too, as we point out in this footnote.

TEX for the Impatient No 43

3 Jan 2020 2:18 p.m.

Example 1: Entering simple text 23

% TeX ignores anything on a line after a %

% The next two lines define fonts for the title

\font\xmplbx = cmbx10 scaled \magstephalf

\font\xmplbxti = cmbxti10 scaled \magstephalf

% Now here’s the title.

\leftline{\xmplbx Example 1:\quad\xmplbxti Entering simple text}

\vglue .5\baselineskip % skip an extra half line

It’s easy to prepare ordinary text for \TeX\ since

\TeX\ usually doesn’t care about how you break up your input into

lines. It treats the end of a line of text like a space.%

\footnote \dag{\TeX\ treats a tab like a space too, as we point

out in this {\it footnote}.} If you don’t want a space there,

put a per%

cent sign (the comment character) at the end of the line.

\TeX\ ignores spaces at the start of a line, and treats more

than one space as equivalent to a single space,

even after a period. You indicate a new paragraph by

skipping a line (or more than one line).

When \TeX\ sees a period followed by a space (or the end of the

line, which is equivalent), it ordinarily assumes you’ve ended a

sentence and inserts a little extra space after the period. It

treats question marks and exclamation points the same way.

But \TeX’s rules for handling periods sometimes need fine

tuning. \TeX\ assumes that a capital letter before a period

doesn’t end the sentence, so you have to do something a little

different if, say, you’re writing about DNA\null.

% The \null prevents TeX from perceiving the capital ‘A’

% as being next to the period.

It’s a good idea to tie words together in references such as

‘‘see Fig.~8’’ and in names such as V.~I\null. Lenin and in

\ldots so that \TeX\ will never split them in an awkward place

between two lines. (The three dots indicate an ellipsis.)

You should put quotations in pairs of left and right

single ‘‘quotes’’ so that you get the correct left and right

double quotation marks. ‘‘For adjacent single and double

quotation marks, insert a ‘thinspace’\thinspace’’. You can

get en-dashes--like so, and em-dashes---like so.

\bye % end the document

TEX for the Impatient No 44

3 Jan 2020 2:18 p.m.

24 Examples \ §3

Example 2: Indentation

Now let’s see how to control indentation. If an ordinary word processor
can do it, so surely can TEX. Note that this paragraph isn’t indented.

Usually you’ll either want to indent paragraphs or to leave extra
space between them. Since we haven’t changed anything yet, this para-
graph is indented.

Let’s do these two paragraphs a different way, with no indentation and
six printer’s points of extra space between paragraphs.

So here’s another paragraph that we’re typesetting without indentation.
If we didn’t put space between these paragraphs, you would have a hard
time knowing where one ends and the next begins.

It’s also possible to indent both sides of entire paragraphs. The next
three paragraphs illustrate this:

“We’ve indented this paragraph on both sides by the para-
graph indentation. This is often a good way to set long quota-
tions.

“You can do multiple paragraphs this way if you choose.
This is the second paragraph that’s singly indented.”

You can even make paragraphs doubly narrow if
that’s what you need. This is an example of a doubly
narrowed paragraph.

In this paragraph we’re back to the normal margins, as you can see
for yourself. We’ll let it run on a little longer so that the margins are
clearly visible.

Now we’ll indent the left margin by half an inch and leave
the right margin at its usual position.

Finally, we’ll indent the right margin by half an inch and
leave the left margin at its usual position.

TEX for the Impatient No 45

3 Jan 2020 2:18 p.m.

Example 2: Indentation 25

\xmpheader 2/{Indentation}% see p. 21

\noindent Now let’s see how to control indentation. If an

ordinary word processor can do it, so surely can \TeX. Note

that this paragraph isn’t indented.

Usually you’ll either want to indent paragraphs or to leave

extra space between them. Since we haven’t changed anything

yet, this paragraph is indented.

{\parindent = 0pt \parskip = 6pt

% The left brace starts a group containing the unindented text.

Let’s do these two paragraphs a different way,

with no indentation and six printer’s points of extra space

between paragraphs.

So here’s another paragraph that we’re typesetting without

indentation. If we didn’t put space between these paragraphs,

you would have a hard time knowing where one ends

and the next begins.

\par % The paragraph *must* be ended within the group.

}% The right brace ends the group containing unindented text.

It’s also possible to indent both sides of entire paragraphs.

The next three paragraphs illustrate this:

\smallskip % Provide a little extra space here.

% Skips like this and \vskip below end a paragraph.

{\narrower

‘‘We’ve indented this paragraph on both sides by the paragraph

indentation. This is often a good way to set long quotations.

‘‘You can do multiple paragraphs this way if you choose. This

is the second paragraph that’s singly indented.’’\par}

{\narrower \narrower You can even make paragraphs doubly narrow

if that’s what you need. This is an example of a doubly

narrowed paragraph.\par}

\vskip 1pc % Skip down one pica for visual separation.

In this paragraph we’re back to the normal margins, as you can

see for yourself. We’ll let it run on a little longer so that

the margins are clearly visible.

{\leftskip .5in Now we’ll indent the left margin by half

an inch and leave the right margin at its usual position.\par}

{\rightskip .5in Finally, we’ll indent the right margin by half

an inch and leave the left margin at its usual position.\par}

\bye % end the document

TEX for the Impatient No 46

3 Jan 2020 2:18 p.m.

26 Examples \ §3

Example 3: Fonts and special characters

Here are a few words in an italic font, a few words in a boldface
font, and a mixture of the two, with two roman words inserted. Where
an italic font is followed by a nonitalic font, we’ve inserted an “italic
correction” (\/) to make the spacing look right. Here’s a smaller word—
but the standard TEX fonts won’t give you anything smaller than this.

If you need any of the ten characters:

$ & # % ˆ ˜ { } \

you’ll need to write them a special way. Look at the facing page to see
how to do it.

TEX has the accents and letters that you’ll need for French words
such as rôle and élève, for German words such as Schuß , and for words
in several other languages as well. You’ll find a complete list of TEX’s
accents and letters of European languages on pages 97 and 100.

You can also get Greek letters such as “α” and “Ω” for use in math,
card suits such as “♠” and “♦”, music symbols such as “]” and “[”, and
many other special symbols that you’ll find listed on page 188. TEX will
only accept these sorts of special symbols in its “math mode”, so you’ll
need to enclose them within ‘$’ characters.

TEX for the Impatient No 47

3 Jan 2020 2:18 p.m.

Example 3: Fonts and special characters 27

\xmpheader 3/{Fonts and special characters}% see p. 21

\chardef \\ = ‘\\ % Let \\ denote a backslash.

{\it Here are a few words in an italic font}, {\bf a

few words in a boldface font}, {\it and a\/ {\bf mixture}

of the two, with two\/ {\rm roman words} inserted}.

Where an italic font is followed by a nonitalic font, we’ve

inserted an ‘‘italic correction’’ ({\tt \\/}) to make the

spacing look right.

Here’s a {\sevenrm smaller} word---but the standard \TeX\

fonts won’t give you anything smaller than {\fiverm this}.

If you need any of the ten characters:

\medskip

\centerline{\$ \quad \& \quad \# \quad _ \quad \% \quad

\char ‘\^ \quad \char ‘\~ \quad $\{$ \quad

$\}$ \quad \backslash}

% The \quad inserts an em space between characters.

\medskip

\noindent you’ll need to write them a special way. Look at

the facing page to see how to do it.

\TeX\ has the accents and letters that you’ll need

for French words such as {\it r\^ ole\/} and {\it \’

el\‘ eve\/}, for German words such as {\it Schu\ss\/},

and for words in several other languages as well.

You’ll find a complete list of \TeX’s accents and letters

of European languages on pages~97 and~100.

You can also get Greek letters such as ‘‘α’’ and

‘‘Ω’’ for use in math, card suits such as

‘‘\spadesuit’’ and ‘‘\diamondsuit’’, music symbols

such as ‘‘\sharp’’ and ‘‘\flat’’, and many other special

symbols that you’ll find listed on page 188.

\TeX\ will only accept these sorts of special symbols in its

‘‘math mode’’, so you’ll need to enclose them

within ‘{\tt \$}’ characters.

\bye % end the document

TEX for the Impatient No 48

3 Jan 2020 2:18 p.m.

28 Examples \ §3

Example 4: Interline spacing

Once in a while you may want to print a document with extra

space between the lines. For instance, bills before Congress are printed

this way so that the legislators can mark them up. For the same reason,

book publishers usually insist that manuscripts be double-spaced. Double

spacing is rarely appropriate for finished documents, however.

A baseline is an imaginary line that acts like the lines on a pad

of ruled paper. You can control the interline spacing—what printers call

“leading”—by setting the amount of space between baselines. Take a

look at the input to see how to do it. You could use the same method for

1 1/2 spacing as well, using 1.5 instead of 2. (You can also write 11/2 a

nicer way.)

For this example we’ve also increased the paragraph indentation

and skipped an extra line between paragraphs.

TEX for the Impatient No 49

3 Jan 2020 2:18 p.m.

Example 4: Interline spacing 29

\xmpheader 4/{Interline spacing}% see p. 21

\baselineskip = 2\baselineskip % double spacing

\parskip = \baselineskip % Skip a line between paragraphs.

\parindent = 3em % Increase indentation of paragraphs.

% The following macro definition gives us nice inline

% fractions. You’ll find it in our eplain macros.

\def\frac#1/#2{\leavevmode

\kern.1em \raise .5ex \hbox{\the\scriptfont0 #1}%

\kern-.1em $/$%

\kern-.15em \lower .25ex \hbox{\the\scriptfont0 #2}%

}%

Once in a while you may want to print a document with extra

space between the lines. For instance, bills before Congress

are printed this way so that the legislators can mark them up.

For the same reason, book publishers usually insist that

manuscripts be double-spaced. Double spacing is rarely

appropriate for finished documents, however.

A baseline is an imaginary line that acts like the lines

on a pad of ruled paper. You can control the interline

spacing---what printers call ‘‘leading’’---%

by setting the amount of space between baselines. Take a

look at the input to see how to do it. You could use

the same method for $1\;1/2$ spacing as well, using {\tt 1.5}

instead of {\tt 2}. (You can also write $1\frac 1/2$

a nicer way.)

% Here we’ve used the macro definition given above.

For this example we’ve also increased the paragraph indentation

and skipped an extra line between paragraphs.

\bye % end the document

TEX for the Impatient No 50

3 Jan 2020 2:18 p.m.

30 Examples \ §3

Example 5: Spacing, rules, and boxes

Here’s an example of a “description list”. In practice you’d be better
off using a macro to avoid the repetitive constructs and to make sure that
the subhead widths are wide enough:

Queen of Hearts An ill-tempered woman, prone to saying “Off with
his head!” at the slightest provocation.

Cheshire Cat A cat with an enormous smile that Alice found in
a tree.

Mock Turtle A lachrymose creature, quite a storyteller, who was
a companion to the Gryphon. Reputedly the prin-
cipal ingredient of Mock Turtle Soup.

Here’s an example of some words in a ruled box, just as Lewis Carroll
wrote them:

Who would not give all else for twop
ennyworth only of Beautiful Soup?

* * * * * * * * * * * * * * * * * *

Here we’ve gotten the effect of a revision bar on the material in this
paragraph. The revision bar might indicate a change.

TEX for the Impatient No 51

3 Jan 2020 2:18 p.m.

Example 5: Spacing, rules, and boxes 31

\xmpheader 5/{Spacing, rules, and boxes}% see p. 21

Here’s an example of a ‘‘description list’’. In practice you’d

be better off using a macro to avoid the repetitive constructs

and to make sure that the subhead widths are wide enough:

\bigskip

% Call the indentation for descriptions \descindent

% and set it to 8 picas.

\newdimen\descindent \descindent = 8pc

% Indent paragraphs by \descindent.

% Skip an additional half line between paragraphs.

{\noindent \leftskip = \descindent \parskip = .5\baselineskip

% Move the description to the left of the paragraph.

\llap{\hbox to \descindent{\bf Queen of Hearts\hfil}}%

An ill-tempered woman, prone to saying ‘‘Off with his

head!’’\ at the slightest provocation.\par

\noindent\llap{\hbox to \descindent{\bf Cheshire Cat\hfil}}%

A cat with an enormous smile that Alice found

in a tree.\par

\noindent\llap{\hbox to \descindent{\bf Mock Turtle\hfil}}%

A lachrymose creature, quite a storyteller, who was a

companion to the Gryphon. Reputedly the principal ingredient

of Mock Turtle Soup.

\par}

\bigskip\hrule\bigskip % A line with vertical space around it.

Here’s an example of some words in a ruled box, just as

Lewis Carroll wrote them:

\bigskip

% Put 8pt of space between the text and the surrounding rules.

\hbox{\vrule\vbox{\hrule

\hbox spread 8pt{\hfil\vbox spread 8pt{\vfil

\hbox{Who would not give all else for twop}%

\hbox{ennyworth only of Beautiful Soup?}%

\vfil}\hfil}

\hrule}\vrule}%

\bigskip\line{\hfil\hbox to 3in{\leaders\hbox{ * }\hfil}\hfil}

\bigskip

\line{\hskip -4pt\vrule\hfil\vbox{

Here we’ve gotten the effect of a revision bar on the material

in this paragraph. The revision bar might indicate a change.}}

\bye % end the document

TEX for the Impatient No 52

3 Jan 2020 2:18 p.m.

32 Examples \ §3

Example 6: Odds and ends

TEX knows how to hyphenate words, but it isn’t infallible. If you are
discussing the chemical 5 -[p-(Flourosulfonyl)benzoyl]-l,N6-ethenoadeno-
sine and TEX complains to you about an “overfull hbox”, try inserting
some “discretionary hyphens”. The notation ‘\-’ tells TEX about a dis-
cretionary hyphen, that is, one that it might not have inserted otherwise.

You can typeset text unjustified, i.e., with an uneven right margin.
In the old days, before word processors were common, typewritten doc-
uments were unjustified because there was no convenient alternative.
Some people prefer text to be unjustified so that the spacing between
words can be uniform. Most books are set with justified margins, but
not all.

Assertion 27. There is an easy way to typeset the headings of assertions,
lemmas, theorems, etc.

Here’s an example of how to typeset an itemized list two levels deep.
If you need more levels, you’ll have to program it yourself, alas.

1. This is the first item.
2. This is the second item. It consists of two paragraphs. We’ve in-

dented the second paragraph so that you can easily see where it
starts.

The second paragraph has three subitems underneath it.
(a) This is the first subitem.
(b) This is the second subitem.
(c) This is the third subitem.

• This is a strange-looking item because it’s completely different from
the others.

Here’s a left-justified line.⇐
⇒Here’s a right-justified line.

⇒Here’s a centered line.⇐

- 32 -

TEX for the Impatient No 53

3 Jan 2020 2:18 p.m.

Example 6: Odds and ends 33

\xmpheader 6/{Odds and ends}% see p. 21

\chardef \\ = ‘\\ % Let \\ denote a backslash.

\footline{\hfil{\tenit - \folio -}\hfil}

% \footline provides a footer line.

% Here it’s a centered, italicized page number.

\TeX\ knows how to hyphenate words, but it isn’t infallible.

If you are discussing the chemical

${\it 5}$-[p-(Flouro\-sul\-fonyl)ben\-zoyl]-l,%

N^6-ethe\-no\-adeno\-sine

and \TeX\ complains to you about an ‘‘overfull hbox’’, try

inserting some ‘‘discretionary hyphens’’. The notation

‘{\tt \\-}’ tells \TeX\ about a dis\-cre\-tion\-ary hyphen,

that is, one that it might not have inserted otherwise.

\medskip

{\raggedright You can typeset text unjustified, i.e., with

an uneven right margin. In the old days, before word

processors were common, typewritten documents were

unjustified because there was no convenient alternative.

Some people prefer text to be unjustified so that the

spacing between words can be uniform. Most books are set

with justified margins, but not all. \par}

\proclaim Assertion 27. There is an easy way to typeset

the headings of assertions, lemmas, theorems, etc.

Here’s an example of how to typeset an itemized list two

levels deep. If you need more levels, you’ll have to

program it yourself, alas.

\smallskip

\item {1.} This is the first item.

\item {2.} This is the second item. It consists of two

paragraphs. We’ve indented the second paragraph so that

you can easily see where it starts.

\item{} \indent The second paragraph has three subitems

underneath it.

\itemitem {(a)} This is the first subitem.

\itemitem {(b)} This is the second subitem.

\itemitem {(c)} This is the third subitem.

\item {\bullet} This is a strange-looking item because it’s

completely different from the others.

\smallskip

\leftline{Here’s a left-justified line.\Leftarrow}

\rightline{\RightarrowHere’s a right-justified line.}

\centerline{\RightarrowHere’s a centered line.\Leftarrow}

% Don’t try to use these commands within a paragraph.

\bye % end the document

TEX for the Impatient No 54

3 Jan 2020 2:18 p.m.

34 Examples \ §3

Example 7: Using fonts from other sources

You aren’t restricted to using the Computer Modern fonts that come
with TEX. Other fonts are available from many sources, and you may
prefer them. For instance, we’ve set this page in 10-point Palatino Roman.
Palatino was designed by Hermann Zapf, considered to be one of the
greatest type designers of the twentieth century. This page will give you
some idea of what it looks like.

Fonts can be provided either as outlines or as bitmaps. An outline
font describes the shapes of the characters, while a bitmap font specifies
each pixel (dot) that makes up each character. A font outline can be
used to generate many different sizes of the same font. The Metafont
program that’s associated with TEX provides a particularly powerful
way of generating bitmap fonts, but it’s not the only way.

The fact that a single outline can generate a great range of point sizes
for a font tempts many vendors of digital typefaces to provide just one
set of outlines for a typeface such as Palatino Roman. This may be a
sensible economic decision, but it is an aesthetic sacrifice. Fonts cannot
be scaled up and down linearly without loss of quality. Larger sizes of
letters should not, in general, have the same proportions as smaller sizes;
they just don’t look right. For example, a font that’s linearly scaled down
will tend to have too little space between strokes, and its x-height will be
too small.

A type designer can compensate for these changes by providing dif-
ferent outlines for different point sizes, but it’s necessary to go to the
expense of designing these different outlines. One of the great advan-
tages of Metafont is that it’s possible to parameterize the descriptions of
characters in a font. Metafont can then maintain the typographical qual-
ity of characters over a range of point sizes by adjusting the character
shapes accordingly.

TEX for the Impatient No 55

3 Jan 2020 2:18 p.m.

Example 7: Using fonts from other sources 35

\xmpheader 7/{Using fonts from other sources}% see p. 21

\font\tenrm = pplr % Palatino

% Define a macro for invoking Palatino.

\def\pal{\let\rm = \tenrm \baselineskip=12.5pt \rm}

\pal % Use Palatino from now on.

You aren’t restricted to using the Computer Modern fonts that

come with \TeX. Other fonts are available from many sources,

and you may prefer them. For instance, we’ve set this page

in 10-point Palatino Roman. Palatino was designed by

Hermann Zapf, considered to be one of the greatest type

designers of the twentieth century. This page will

give you some idea of what it looks like.

Fonts can be provided either as outlines or as bitmaps. An

outline font describes the shapes of the characters, while a

bitmap font specifies each pixel (dot) that makes up each

character. A font outline can be used to generate many

different sizes of the same font. The Metafont program

that’s associated with \TeX\ provides a particularly

powerful way of generating bitmap fonts, but it’s not the

only way.

The fact that a single outline can generate a great range of

point sizes for a font tempts many vendors of digital

typefaces to provide just one set of outlines for a typeface

such as Palatino Roman. This may be a sensible economic

decision, but it is an aesthetic sacrifice. Fonts cannot be

scaled up and down linearly without loss of quality.

Larger sizes of letters should not, in general, have the

same proportions as smaller sizes; they just don’t look

right. For example, a font that’s linearly scaled down will

tend to have too little space between strokes, and its

x-height will be too~small. % tie added to avoid widow word

A type designer can compensate for these changes by

providing different outlines for different point sizes, but

it’s necessary to go to the expense of designing these

different outlines. One of the great advantages of Metafont

is that it’s possible to parameterize the descriptions of

characters in a font. Metafont can then maintain the

typographical quality of characters over a range of point

sizes by adjusting the character shapes accordingly.

\bye % end the document

TEX for the Impatient No 56

3 Jan 2020 2:18 p.m.

36 Examples \ §3

Example 8: A ruled table

Some Choice Edible Mushrooms

Botanical Common Identifying
Name Name Characteristics

Pleurotus
ostreatus

Oyster mushroom Grows in shelf like clusters
on stumps or logs, pink-gray
oyster-shaped caps, stem
short or absent.

Lactarius
hygrophoroides

Milky hygroph Butterscotch-brown cap and
stem, copious white latex,
often on ground in woods
near streams.

Morchella
esculenta

White morel Conical cap with black pits
and white ridges; no gills.
Often found near old apple
trees and dying elms in the
spring.

Boletus edulus King bolete Reddish-brown to tan cap
with yellow pores (white
when young), bulbous stem,
often near conifers, birch,
or aspen.

TEX for the Impatient No 57

3 Jan 2020 2:18 p.m.

Example 8: A ruled table 37

\xmpheader 8/{A ruled table}% see p. 21

\bigskip

\offinterlineskip % So the vertical rules are connected.

% \tablerule constructs a thin rule across the table.

\def\tablerule{\noalign{\hrule}}

% \tableskip creates 9pt of space between entries.

\def\tableskip{\omit&height 9pt&&&\omit\cr}

% & separates templates for each column. TeX substitutes

% the text of the entries for #. We must have a strut

% present in every row of the table; otherwise, the boxes

% won’t butt together properly, and the rules won’t join.

\halign{\tabskip = .7em plus 1em % glue between columns

% Use \vtop for whole paragraphs in the first column.

% Typeset the lines ragged right, without hyphenation.

\vtop{\hsize=6pc\pretolerance = 10000\hbadness = 10000

\normalbaselines\noindent\it#\strut}%

&\vrule #&#\hfil &\vrule #% the rules and middle column

% Use \vtop for whole paragraphs in the last column.

&\vtop{\hsize=11pc \parindent=0pt \normalbaselineskip=12pt

\normalbaselines \rightskip=3pt plus2em #}\cr

% The table rows begin here.

\noalign{\hrule height2pt depth2pt \vskip3pt}

% The header row spans all the columns.

\multispan5\bf Some Choice Edible Mushrooms\hfil\strut\cr

\noalign{\vskip3pt} \tablerule

\omit&height 3pt&\omit&&\omit\cr

\bf Botanical&&\bf Common&&\omit \bf Identifying \hfil\cr

\noalign{\vskip -2pt}% close up lines of heading

\bf Name&&\bf Name &&\omit \bf Characteristics \hfil\cr

\tableskip Pleurotus ostreatus&&Oyster mushroom&&

Grows in shelf\kern 1pt like clusters on stumps or logs,

% Without the kern, the ‘f’ and ‘l’ would be a ligature.

pink-gray oyster-shaped caps, stem short or absent.\cr

\tableskip Lactarius hygrophoroides&&Milky hygroph&&

Butterscotch-brown cap and stem, copious white latex,

often on ground in woods near streams.\cr

\tableskip Morchella esculenta&&White morel&&Conical cap

with black pits and white ridges; no gills. Often found

near old apple trees and dying elms in the spring.\cr

\tableskip Boletus edulus&&King bolete&&Reddish-brown to

tan cap with yellow pores (white when young),

bulbous stem, often near conifers, birch, or~aspen.\cr

\tableskip \tablerule \noalign{\vskip 2pt} \tablerule

}\bye

TEX for the Impatient No 58

3 Jan 2020 2:18 p.m.

38 Examples \ §3

Example 9: Typesetting mathematics

For a spherical triangle with sides a, b, and c, and opposite angles α,
β, and γ, we have:

cosα = − cosβ cos γ + sinβ sin γ cosα (Law of Cosines)

and:

tan
α

2
=

√
− cosσ · cos(σ − α)

cos(σ − β) · cos(σ − γ)
, where σ = 1

2 (a+ b+ c)

We also have:

sinx =
eix − e−ix

2i

and: ∫ ∞
0

sin ax sin bx

x2
dx =

πa

2
, if a < b

The number of combinations nCr of n things taken r at a time is:

C(n, r) = nCr =

(
n

r

)
=
n(n− 1) · · · (n− r + 1)

r(r − 1) · · · (1)
=

n!

r!(n− r)!

The value of the determinant D of order n:

D =

∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣
is defined as the sum of n! terms:∑

(±) a1ia2j . . . ank

where i, j, . . . , k take on all possible values between 1 and n, and the
sign of the product is + if the sequence i, j, . . . , k is an even permutation
and − otherwise. Moreover:

Q(ξ) = λ1y
2
1

n∑
i=2

n∑
j=2

yibijyj , B = ‖bij‖ = B′

TEX for the Impatient No 59

3 Jan 2020 2:18 p.m.

Example 9: Typesetting mathematics 39

\xmpheader 9/{Typesetting mathematics}% see p. 21

For a spherical triangle with sides a, b, and c, and

opposite angles α, β, and γ, we have:

$$\cos \alpha = -\cos \beta \cos \gamma +

\sin \beta \sin \gamma \cos \alpha \quad

\hbox{(Law of Cosines)}$$

and:

$$\tan {\alpha \over 2} = \sqrt{

{- \cos \sigma \cdot \cos(\sigma - \alpha)} \over

{\cos (\sigma - \beta) \cdot \cos (\sigma - \gamma)}},\quad

\hbox{where $\sigma = {1 \over 2}(a+b+c)$}$$

We also have:$$\sin x = {{e^{ix}-e^{-ix}}\over 2i}$$

and:

$$\int _0 ^\infty {{\sin ax \sin bx}\over{x^2}}\,dx

% The \, above produces a thin space

= {\pi a\over 2}, \quad \hbox{if $a < b$}$$

\noindent The number of combinations ${}_nC_r$ of n

things taken r at a time is:

$$C(n,r) = {}_nC_r = {n \choose r} =

{{n(n-1) \cdots (n-r+1)} \over {r(r-1) \cdots (1)}} =

{{n!}\over {r!(n-r)!}}$$

\noindent

The value of the determinant D of order n:

$$D = \left|\matrix{a_{11}&a_{12}&\ldots&a_{1n}\cr

a_{21}&a_{22}&\ldots&a_{2n}\cr

\vdots&\vdots&\ddots&\vdots\cr

a_{n1}&a_{n2}&\ldots&a_{nn}\cr}\right| $$

is defined as the sum of $n!$ terms:

$$\sum\>(\pm)\>a_{1i}a_{2j} \ldots a_{nk}$$

% The \> above produces a medium space.

where i, j, \dots,~k\/ take on all possible values

between 1 and n, and the sign of the product is

$+$ if the sequence i, j, \dots,~k\/ is an

even permutation and $-$ otherwise. Moreover:

$$Q(\xi) = \lambda_1 y_1^2 \sum_{i=2}^n \sum_{j=2}^n y_i

b_{ij} y_j,\qquad B = \Vert b_{ij} \Vert = B’$$

\bye

TEX for the Impatient No 60

3 Jan 2020 2:18 p.m.

40 Examples \ §3

Example 10: More mathematics

The absolute value of X, |x|, is defined by:

|x| =
{
x, if x ≥ 0;
−x, otherwise.

Now for some numbered equations. It is the case that for k ≥ 0:

xk
2

=

2k times︷ ︸︸ ︷
x x · · · x (1)

Here’s an example that shows some spacing controls, with a number
on the left:

(2a) [u][v][w] [x] [y] [z]

The amount of space between the items in brackets gradually increases
from left to right. (We’ve made the space between the first two items be
less than the natural space.) It is sometimes the case that

u′1 + tu′′2 = u′2 + tu′′1(2b)

ı̂ 6= ̂(2c)

~a ≈ ~b

The result is of order O(n log log n). Thus

n∑
i=1

xi = x1 + x2 + · · ·+ xn = Sum(x1, x2, . . . , xn). (3)

and
dx dy = r dr dθ. (4)

The set of all q such that q ≤ 0 is written as:

{ q | q ≤ 0 }

Thus
∀x∃y P (x, y)⇒ ∃x∃y P (x, y)

where

P (x, y)
def≡ any predicate in x and y.

TEX for the Impatient No 61

3 Jan 2020 2:18 p.m.

Examples 41

\xmpheader 10/{More mathematics}% see p. 21

The absolute value of X, $|x|$, is defined by:

$$|x| = \cases{x, &if $x\ge 0$;\cr

-x,&otherwise.\cr}$$

Now for some numbered equations.

It is the case that for $k \ge 0$:

$$x^{k^2}=\overbrace{x\>x\>\cdots\> x}^{2k\ \rm times}

\eqno (1)$$

Here’s an example that shows some spacing controls, with

a number on the left:

$$[u]\![v][w]\,[x]\>[y]\;[z]\leqno(2a)$$

The amount of space between the items in brackets

gradually increases from left to right. (We’ve made

the space between the first two items be {\it less\/}

than the natural space.)

It is sometimes the case that $$\leqalignno{

u’_1 + tu’’_2 &= u’_2 + tu’’_1&(2b)\cr

\hat\imath &\ne \hat \jmath&(2c)\cr

\vec {\vphantom{b}a}&\approx \vec b\cr}$$

% The \vphantom is an invisible rule as tall as a ‘b’.

The result is of order $O(n \log\log n)$. Thus

$$\sum_{i=1}^n x_i = x_1+x_2+\cdots+x_n

= {\rm Sum}(x_1,x_2,\ldots,x_n). \eqno(3)$$

and

$$dx\,dy = r\,dr\,d\theta\!.\eqno(4)$$

The set of all q such that $q\le0$ is written as:

$$\{\,q\mid q\le0\, \}$$

Thus

$$\forall x\exists y\;P(x,y)\Rightarrow

\exists x\exists y\;P(x,y)$$

where

$$P(x,y) \buildrel \rm def \over \equiv

\hbox{\rm any predicate in x and y} . $$

\bye

TEX for the Impatient No 62

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 63

3 Jan 2020 2:18 p.m.

4 Concepts

This part of the book contains definitions and explanations of the concepts
that we use in describing TEX. The concepts include both technical terms
that we use in explaining the commands and important topics that don’t
fit elsewhere in the book.

The concepts are arranged alphabetically. The inside back cover of the
book contains a complete list of concepts and the pages on which they are
explained. We suggest that you make a copy of the inside back cover and
keep it nearby so that you’ll be able to identify and look up an unfamiliar
concept immediately. As far as possible, we’ve kept our terminology
consistent with that of The TEXbook.

active character. An active character is a character that has a def-
inition, e.g., a macro definition, associated with it. You can think of
an active character as a special kind of control sequence. When TEX en-
counters an active character, it executes the definition associated with the
character. If TEX encounters an active character that does not have an as-
sociated definition, it will complain about an undefined control sequence.

An active character has a category code of 13 (the value of \active).
To define an active character, you should first use the \catcode command
(p. 251) to make it active and then provide the definition of the character,
using a command such as \def, \let, or \chardef. The definition of an
active character has the same form as the definition of a control sequence.
If you try to define the macro for an active character before you make the
character active, TEX will complain about a missing control sequence.

For example, the tilde character (~) is defined as an active character in
plain TEX. It produces a space between two words but links those words

TEX for the Impatient No 64

3 Jan 2020 2:18 p.m.

44 Concepts \ §4

so that TEX will not turn the space into a line break. Plain TEX defines
‘~’ by the commands:

\catcode ‘~ = \active \def~{\penalty10000\ }

(The \penalty inhibits a line break and the ‘\ ’ inserts a space.)

alignment. An alignment is a construct for aligning material, such as a
table, in columns or rows. To form an alignment you need to (a) describe
the layout of the columns or rows and (b) tell TEX what material goes
into the columns or rows. A tabbing alignment or a horizontal alignment
is organized as a sequence of rows; a vertical alignment is organized as a
sequence of columns. We first describe tabbing and horizontal alignments
and then more briefly describe vertical alignments.

Tabbing alignments are defined by plain TEX. They are simpler but less
flexible than horizontal alignments. Tabbing and horizontal alignments
differ principally in how you describe their layouts.

To construct a tabbing alignment you first issue a \settabs command
(p. 176) that specifies how TEX should divide the available horizontal
space into columns. Then you provide a sequence of rows for the table.
Each row consists of a \+ control sequence (p. 176) followed by a list of
“entries”, i.e., row/column intersections. Adjacent entries in a row are
separated by an ampersand (&). The end of a row is indicated by \cr

after its last entry. If a row has fewer entries than there are columns in
the alignment, TEX effectively fills out the row with blank entries.

As long as it’s preceded by a \settabs command, you can put a row
of a tabbing alignment anywhere in your document. In particular, you
can put other things between the rows of a tabbing alignment or describe
several tabbing alignments with a single \settabs. Here’s an example of
a tabbing alignment:

{\hsize = 1.7 in \settabs 2 \columns

\+cattle&herd\cr

\+fish&school\cr

\+lions&pride\cr}

The \settabs 2 \columns command in this example (p. 176) tells TEX
to produce two equally wide columns. The line length is 1.7 inches. The
typeset alignment looks like this:

cattle herd
fish school
lions pride

There’s another form of tabbing alignment in which you specify the
column widths with a template. The column widths in the template
determine the column widths in the rest of the alignment:

{\settabs\+cattle\quad&school\cr

TEX for the Impatient No 65

3 Jan 2020 2:18 p.m.

alignment 45

\+cattle&herd\cr

\+fish&school\cr

\+lions&pride\cr}

Here’s the result:

cattle herd
fish school
lions pride

Horizontal alignments are constructed with \halign (p. 178). TEX ad-
justs the column widths of a horizontal alignment according to what is in
the columns. When TEX encounters the \halign command that begins a
horizontal alignment, it first examines all the rows of the alignment to see
how wide the entries are. It then sets each column width to accommodate
the widest entry in that column.

A horizontal alignment governed by \halign consists of a “preamble”
that indicates the row layout followed by the rows themselves.

The preamble consists of a sequence of templates, one for each col-
umn. The template for a column specifies how the text for that
column should be typeset. Each template must include a single #

character to indicate where TEX should substitute the text of an en-
try into the template. The templates are separated by ampersands
(&), and the end of the preamble is indicated by \cr. By providing
an appropriate template you can obtain effects such as centering a
column, left or right justifying a column, or setting a column in a
particular font.

The rows have the same form as in a tabbing alignment, except that
you omit the \+ at the beginning of each row. As before, entries
are separated by & and the end of the row is indicated by \cr. TEX
treats each entry as a group, so any font-setting command or other
assignment in a column template is in effect only for the entries in
that column.

The preamble and the rows must all be enclosed in the braces that follow
\halign. Each \halign alignment must include its own preamble.

For example, the horizontal alignment:

\tabskip=2pc

\halign{\hfil#\hfil &\hfil#\hfil &\hfil#\hfil \cr

&&\it Table\cr

\noalign{\kern -2pt}

\it Creature&\it Victual&\it Position\cr

\noalign{\kern 2pt}

Alice&crumpet&left\cr

Dormouse&muffin&middle\cr

Hatter&tea&right\cr}

TEX for the Impatient No 66

3 Jan 2020 2:18 p.m.

46 Concepts \ §4

produces the result:
Table

Creature Victual Position

Alice crumpet left
Dormouse muffin middle

Hatter tea right

The \tabskip (p. 184) in this example tells TEX to insert 2pc of glue
between the columns. The \noalign (p. 183) commands tell TEX to insert
vertical mode material between two rows. In this example we’ve used
\noalign to produce some extra space between the title rows and the
data rows, and also to bring “Table” and “Position” closer together. (You
can also use \noalign before the first row or after the last row.)

You can construct a vertical alignment with the \valign command
(p. 179). A vertical alignment is organized as a series of columns rather
than as a series of rows. A vertical alignment follows the same rules
as a horizontal alignment except that the roles of rows and columns are
interchanged. For example, the vertical alignment:

{\hsize=0.6in \parindent=0pt

\valign{#\strut&#\strut&#\strut\cr

one&two&three\cr

four&five&six\cr

seven&eight&nine\cr

ten&eleven\cr}}

yields:

one
two
three

four
five
six

seven
eight
nine

ten
eleven

The \strut commands (p. 167) in the template are necessary to get the
entries in each row to line up properly, i.e., to have a common baseline,
and to keep the distance between baselines uniform.

anatomy of TEX. The TEXbook describes the way that TEX processes
its input in terms of TEX’s “digestive tract”—its “eyes”, “mouth”, “gul-
let”, “stomach”, and “intestines”. Knowing how this processing works
can be helpful when you’re trying to understand subtle aspects of TEX’s
behavior as it’s digesting a document.

Using its “eyes”, TEX reads characters from input files and passes
them to its mouth. Since an input file can contain \input commands
(p. 247), TEX can in effect “shift its gaze” from one file to another.

Using its “mouth”, TEX assembles the characters into tokens and
passes them to its gullet. Each token is either a control sequence or
a single character. A control sequence always starts with an escape

TEX for the Impatient No 67

3 Jan 2020 2:18 p.m.

anatomy of TEX 47

character. Note that spaces and ends-of-line are characters in their
own right, although TEX compresses a sequence of input spaces into
a single space token. See pages 46–47 of The TEXbook for the rules
by which TEX assembles characters into tokens.

Using its “gullet”, TEX expands any macros, conditionals, and similar
constructs that it finds (see pages 212–216 of The TEXbook) and
passes the resulting sequence of tokens to TEX’s stomach. Expanding
one token may yield other tokens that in turn need to be expanded.
TEX carries out this expansion from left to right unless the order is
modified by a command such as \expandafter (p. 233). In other
words, TEX’s gullet always expands the leftmost unexpanded token
that it has not yet sent to TEX’s stomach.

Using its “stomach”, TEX processes the tokens in groups. Each group
contains a primitive command followed by its arguments, if any.
Most of the commands are of the “typeset this character” variety,
so their groups consist of just one token. Obeying the instructions
given by the commands, TEX’s stomach assembles larger and larger
units, starting with characters and ending with pages, and passes the
pages to TEX’s intestines. TEX’s stomach handles the tasks of line
breaking—i.e., breaking each paragraph into a sequence of lines—
and of page breaking—i.e., breaking a continuous sequence of lines
and other vertical mode material into pages.

Using its “intestines”, TEX transforms the pages produced by its
stomach into a form intended for processing by other programs. It
then sends the transformed output to the .dvi file.

Most of the time you can think of the processes that take place in TEX’s
eyes, mouth, gullet, stomach, and intestines as happening one after the
other. But the truth of the matter is that commands executed in TEX’s
stomach can influence the earlier stages of digestion. For instance, when
TEX’s stomach encounters the \input command (p. 247), its eyes start
reading from a different file; when TEX’s stomach encounters a \catcode

command (p. 251) specifying a category code for a character c, the in-
terpretation of c by TEX’s mouth is affected. And when TEX’s stomach
encounters a macro definition, the expansions carried out in TEX’s gul-
let are affected.

You can understand how the processes interact by imagining that each
process eagerly gobbles up the output of its predecessor as soon as it
becomes available. For instance, once TEX’s stomach has seen the last
character of the filename in an \input command, TEX’s gaze immediately
shifts to the first character of the specified input file.

TEX for the Impatient No 68

3 Jan 2020 2:18 p.m.

48 Concepts \ §4

argument. An argument contains text that is passed to a command.
The arguments of a command complete the description of what the com-
mand is supposed to do. The command can either be a primitive com-
mand or a macro.

Each primitive command has its own convention about the form of its
arguments. For instance, the sequence of tokens:

\hskip 3pc plus 1em

consists of the command ‘\hskip’ and the arguments ‘3pc plus 1em’.
But if you were to write:

\count11 3pc plus 1em

you’d get an entirely different effect. TEX would treat ‘\count11’ as a
command with argument ‘3’, followed by the ordinary text tokens ‘pc
plus 1em’ (because count registers expect a number to be assigned to
them)—probably not what you intended. The effect of the command, by
the way, would be to assign 3 to count register 11 (see the discussion of
\count, p. 242).

Macros, on the other hand, all follow the same convention for their ar-
guments. Each argument passed to a macro corresponds to a parameter
in the definition of that macro. A macro parameter is either “delimited”
or “undelimited”. The macro definition determines the number and na-
ture of the macro parameters and therefore the number and nature of the
macro arguments.

The difference between a delimited argument and an undelimited argu-
ment lies in the way that TEX decides where the argument ends.

A delimited argument consists of the tokens from the start of the
argument up to, but not including, the particular sequence of to-
kens that serves as the delimiter for that argument. The delimiter
is specified in the macro definition. Thus you supply a delimited
argument to a macro by writing the argument itself followed by the
delimiter. A delimited argument can be empty, i.e., have no text at
all in it. Any braces in a delimited argument must be paired prop-
erly, i.e., every left brace must have a corresponding right brace and
vice versa.

An undelimited argument consists of a single token or a sequence
of tokens enclosed in braces, like this: ‘{Here is {the} text.}’.
Despite appearances, the outer braces don’t form a group—TEX uses
them only to determine what the argument is. Any inner braces, such
as the ones around ‘the’, must be paired properly. If you make a
mistake and put in too many right braces, TEX will complain about
an unexpected right brace. TEX will also complain if you put in too
many left braces, but you’ll probably get that complaint long after
the place where you intended to end the argument (see p. 275).

TEX for the Impatient No 69

3 Jan 2020 2:18 p.m.

ASCII 49

See “macro” (p. 75) for more information about parameters and argu-
ments. You’ll find the precise rules pertaining to delimited and undelim-
ited arguments in pages 203–204 of The TEXbook.

ASCII. ASCII is the abbreviation of “American Standard Code for In-
formation Interchange”. There are 256 ASCII characters, each with its
own code number, but the meanings of only the first 128 have been stan-
dardized. You can find these meanings in an ASCII “code table” such as
the one on page 367 of The TEXbook. Characters 32–126 are “printable
characters”, such as letters, numbers, and punctuation marks. The re-
maining characters are “control characters” that are typically used (in the
computer industry, not in TEX) to control input/output and data commu-
nications devices. For instance, ASCII code 84 corresponds to the letter
‘T’, while ASCII code 12 corresponds to the “form feed” function (in-
terpreted by most printers as “start a new page”). Although the ASCII

standard specifies meanings for the control characters, many manufac-
turers of equipment such as modems and printers have used the control
characters for purposes other than the standard ones.

The meaning of a character in TEX is usually consistent with its mean-
ing in standard ASCII, and fonts that contain ASCII printable characters
usually have those characters in the same positions as their ASCII coun-
terparts. But some fonts, notably those used for math, replace the ASCII

printable characters by other characters unrelated to the ASCII charac-
ters. For instance, the Computer Modern math font cmsy10 has the math
symbol ‘∀’ in place of the ASCII digit ‘8’.

assignment. An assignment is a construct that tells TEX to assign
a value to a register, to one of its internal parameters, to an entry in
one of its internal tables, or to a control sequence. Some examples of
assignments are:

\tolerance = 2000

\advance\count12 by 17

\lineskip = 4pt plus 2pt

\everycr = {\hskip 3pt \relax}

\catcode\‘@ = 11

\let\graf = \par

\font\myfont = cmbx12

The first assignment indicates that TEX should assign the numeric
value 2000 to the numeric parameter \tolerance, i.e., make the value
of \tolerance be 2000. The other assignments are similar. The ‘=’
and the spaces are optional, so you could also write the first assignment
more tersely as:

\tolerance2000

TEX for the Impatient No 70

3 Jan 2020 2:18 p.m.

50 Concepts \ §4

See pages 276–277 of The TEXbook for the detailed syntax of assign-
ments.

badness. The badness of a line is a measure of how far the interword
spaces in the line deviate from their natural values, i.e., the values speci-
fied in the fonts used in the line. The greater the deviation, the greater
the badness. Similarly, the badness of a page is a measure of how far the
spaces between the boxes that make up the page deviate from their ideal
values. (Ordinarily, most of these boxes are single lines of paragraphs.)

More precisely, the badness is a measure of how much the glue associ-
ated with these spaces needs to stretch or shrink to fill the line or page
exactly. TEX computes the badness as approximately 100 times the cube
of the ratio by which it must stretch or shrink the glue in order to compose
a line or a page of the required size. For example, stretching the glue by
twice its stated stretch yields a ratio of 2 and a badness of 800; stretching
it by half its stated stretch yields a ratio of .5 and a badness of 13. TEX
treats a badness greater than 10000 as equal to 10000.

TEX uses the badness of a line when it’s breaking a paragraph into lines
(see “line break”, p. 74). It uses this information in two stages:

1) When TEX is choosing line breaks, it will eventually accept lines
whose badness is less than or equal to the value of \tolerance

(p. 123). If TEX cannot avoid setting a line whose badness exceeds
this value, it will set it as an underfull or overfull hbox. TEX will set
an overfull or underfull hbox only as a last resort, i.e., only if there’s
no other way to break the paragraph into lines.

2) Assuming that all lines are tolerably bad, TEX uses the badness of
lines in order to evaluate the different ways of breaking the paragraph
into lines. During this evaluation it associates “demerits” with each
potential line. The badness increases the number of demerits. TEX
then breaks the paragraph into lines in a way that minimizes the total
demerits for the paragraph. Most often TEX arranges the paragraph
in a way that minimizes the badness of the worst line. See pages 97–
98 of The TEXbook for the details of how TEX breaks a paragraph
into lines.

TEX’s procedure for assembling a sequence of lines and other vertical
mode material into pages is similar to its procedure for line breaking.
However, assembling pages is not as complicated because TEX only con-
siders one page at a time when it looks for page breaks. Thus the only
decision it must make is where to end the current page. In contrast, when
TEX is choosing line breaks it considers several of them simultaneously.
(Most word processors choose line breaks one at a time, and thus don’t
do as good a job at it as TEX does.) See pages 111–113 of The TEXbook
for the details of how TEX chooses its page breaks.

TEX for the Impatient No 71

3 Jan 2020 2:18 p.m.

baseline 51

baseline. The baseline of a box is an imaginary line that runs across the
box. When TEX is assembling the boxes of a horizontal list into a larger
box, it lines up the boxes in the list so that their baselines coincide. As
an analogy, think of writing on a pad of ruled paper. Each letter that you
write has an implicit baseline. In order to line up the letters horizontally,
you place them on the pad so that their baselines agree with the light
guidelines that are printed on the pad.

A box can and often does extend below its baseline. For instance, the
letter ‘g’ extends below the baseline of its box because it has a descender
(the bottom loop of the ‘g’).

box. A box is a rectangle of material to be typeset. A single character
is a box by itself, and an entire page is also a box. TEX forms a page as a
nest of boxes within boxes within boxes. The outermost box is the page
itself, the innermost boxes are mostly single characters, and single lines
are boxes that are somewhere in the middle.

TEX carries out most of its box-building activities implicitly as it con-
structs paragraphs and pages. You can construct boxes explicitly using
a number of TEX commands, notably \hbox (p. 160), \vbox (p. 161), and
\vtop (p. 161). The \hbox command constructs a box by appending
smaller boxes horizontally from left to right; it operates on a horizontal
list and yields an hbox (horizontal box). The \vbox and \vtop commands
construct a box by appending smaller boxes vertically from top to bot-
tom; they operate on a vertical list and yield a vbox (vertical box). These
horizontal and vertical lists can include not just smaller boxes but several
other kinds of entities as well, e.g., glue and kerns.

A box has height, depth, and width, like this:

baseline

x
heighty

reference point −→• x
depthy

←−− width −−→

The baseline is like one of the light guidelines on a pad of ruled paper.
The boxes for letters such as ‘g’ extend below the baseline; the boxes for
letters such as ‘h’ don’t. The height of a box is the distance that the box
extends above its baseline, while its depth is the distance that it extends
below its baseline. The reference point of a box is the place where its
baseline intersects its left edge.

TEX builds an hbox H from a horizontal list by assuming a reference
point for H and then appending the items in the list to H one by one from

TEX for the Impatient No 72

3 Jan 2020 2:18 p.m.

52 Concepts \ §4

left to right. Each box in the list is placed so that its baseline coincides
with the baseline ofH, i.e., the component boxes are lined up horizontally.1

The height of H is the height of the tallest box in the list, and the depth of
H is the depth of the deepest box in the list. The width of H is the sum of
the widths of all the items in the list. If any of these items are glue and TEX
needs to stretch or shrink the glue, the width of H will be larger or smaller
accordingly. See page 77 of The TEXbook for the details.

Similarly, TEX builds a vbox V from a vertical list by assuming a
temporary reference point for V and then appending the items in the list
to V one by one from top to bottom. Each box in the list is placed so
that its reference point is lined up vertically with the reference point of
V.2 As each box other than the first one is added to V, TEX puts interline
glue just above it. (This interline glue has no analogue for hboxes.) The
width of V is the width of the widest box in the list, and the vertical
extent (height plus depth) of V is the sum of the vertical extents of all
the items in the list.

The difference between \vbox and \vtop is in how they partition the
vertical extent of V into a height and a depth. Choosing the reference
point of V determines that partition.

For \vbox, TEX places the reference point on a horizontal line with
the reference point of the last component box or rule of V, except
that if the last box (or rule) is followed by glue or a kern, TEX places
the reference point at the very bottom of V.3

For \vtop, TEX places the reference point on a horizontal line with
the reference point of the first component box or rule of V, except
that if the first box (or rule) is preceded by glue or a kern, TEX places
the reference point at the very top of V.

Roughly speaking, then, \vbox puts the reference point near the bottom
of the vbox and \vtop puts it near the top. When you want to align a
row of vboxes so that their tops line up horizontally, you should usually
use \vtop rather than \vbox. See pages 78 and 80–81 of The TEXbook
for the details of how TEX builds vboxes.

You have quite a lot of freedom in constructing boxes. The typeset
material in a box can extend beyond the boundaries of the box as it does
for some letters (mostly italic or slanted ones). The component boxes of a
larger box can overlap. A box can have negative width, depth, or height,
though boxes like that are not often needed.

You can save a box in a box register and retrieve it later. Before
using a box register, you should reserve it and give it a name with the

1 If a box is moved up or down with \raise or \lower, TEX uses its reference point
before the move when placing it.
2 If a box is moved left or right with \moveleft or \moveright, TEX uses its reference

point before the move when placing it.
3 The depth is limited by the parameter \boxmaxdepth (p. 163).

TEX for the Impatient No 73

3 Jan 2020 2:18 p.m.

category code 53

\newbox command (p. 244). See “register” (p. 89) for more information
about box registers.

category code. The category code of a character determines that char-
acter’s role in TEX. For instance, TEX assigns a certain role to letters,
another to space characters, and so forth. TEX attaches a code to each
character that it reads. When TEX reads the letter ‘r’, for example, it
ordinarily attaches the category code 11 (letter) to it. For simple TEX ap-
plications you won’t need to worry about category codes, but they become
important when you are trying to achieve special effects.

Category codes apply only to characters that TEX reads from input
files. Once a character has gotten past TEX’s gullet (see “anatomy of
TEX”, p. 46) and been interpreted, its category code no longer matters.
A character that you produce with the \char command (p. 99) does not
have a category code because \char is an instruction to TEX to produce
a certain character in a certain font. For instance, the ASCII code for ‘\’
(the usual escape character) is 92. If you type ‘\char92 grok’, it is not
equivalent to \grok. Instead it tells TEX to typeset ‘cgrok’, where c is the
character in position 92 of the code table for the current font.

You can use the \catcode command (p. 251) to reassign the category
code of any character. By changing category codes you can change the
roles of various characters. For instance, if you type ‘\catcode‘\@ = 11’,
the category code of the at sign (@) will be set to “letter”. You then can
use ‘@’ in the name of a control sequence.

Here is a list of the category codes defined by TEX, (see p. 55 for an
explanation of the ^^ notation), together with the characters in each
category (as assigned by TEX and plain TEX):

Code Meaning

0 Escape character \

1 Beginning of group {

2 End of group }

3 Math shift $

4 Alignment tab &

5 End of line ^^M≡ ASCII 〈return〉
6 Macro parameter #

7 Superscript ^ and ^^K

8 Subscript _ and ^^A

9 Ignored character ^^@≡ ASCII 〈null〉
10 Space and ^^I≡ ASCII 〈horizontal tab〉
11 Letter A . . . Z and a . . . z
12 Other character (everything not listed above or below)
13 Active character ~ and ^^L≡ ASCII 〈form feed〉
14 Comment character %

15 Invalid character ^^?≡ ASCII 〈delete〉

TEX for the Impatient No 74

3 Jan 2020 2:18 p.m.

54 Concepts \ §4

Except for categories 11–13, all the characters in a particular category
produce the same effect. For instance, suppose that you type:

\catcode‘\[= 1 \catcode‘\] = 2

Then the left and right bracket characters become beginning-of-group
and end-of-group characters equivalent to the left and right brace char-
acters. With these definitions ‘[a b]’ is a valid group, and so are ‘[a b}’
and ‘{a b]’.

The characters in categories 11 (letter) and 12 (other character) act
as commands that mean “typeset the character with this code from the
current font”. The only distinction between letters and “other” characters
is that letters can appear in control words but “other” characters can’t.

A character in category 13 (active) acts like a control sequence all by
itself. TEX complains if it encounters an active character that doesn’t
have a definition associated with it.

If TEX encounters an invalid character (category 15) in your input, it
will complain about it.

The ‘^^K’ and ‘^^A’ characters have been included in categories 8 (sub-
script) and 9 (superscript), even though these meanings don’t follow the
standard ASCII interpretation. That’s because some keyboards, notably
some at Stanford University where TEX originated, have down arrow and
up arrow keys that generate these characters.

There’s a subtle point about the way TEX assigns category codes that
can trip you up if you’re not aware of it. TEX sometimes needs to look
at a character twice as it does its initial scan: first to find the end of
some preceding construct, e.g., a control sequence, and later to turn that
character into a token. TEX doesn’t assign the category code until its
second look at the character. For example:

\def\foo{\catcode‘\$ = 11 }% Make $ be a letter.

\foo$ % Produces a ‘$’.

\foo$ % Undefined control sequence ‘\foo$’.

This bit of TEX code produces ‘$’ in the typeset output. When TEX first
sees the ‘$’ on the second line, it’s looking for the end of a control sequence
name. Since the ‘$’ isn’t yet a letter, it marks the end of ‘\foo’. Next,
TEX expands the ‘\foo’ macro and changes the category code of ‘$’ to 11
(letter). Then TEX reads the ‘$’ “for real”. Since ‘$’ is now a letter, TEX
produces a box containing the ‘$’ character in the current font. When
TEX sees the third line, it treats ‘$’ as a letter and thus considers it to
be part of the control sequence name. As a result it complains about an
undefined control sequence \foo$.

TEX behaves this way even when the terminating character is an end
of line. For example, suppose that the macro \fum activates the end-of-
line character. Then if \fum appears on a line ` by itself, TEX will first

TEX for the Impatient No 75

3 Jan 2020 2:18 p.m.

character 55

interpret the end of line of ` as the end of the \fum control sequence and
then will reinterpret the end of line of ` as an active character.

character. TEX works with characters in two contexts: as input char-
acters, which it reads, and as output characters, which it typesets. TEX
transforms most input characters into the output characters that depict
them. For example, it normally transforms the input letter ‘h’ into the
letter ‘h’ typeset in the current font. That is not the case, however, for an
input character such as ‘$’ that has a special meaning.

TEX gets its input characters by reading them from input files (or
from your terminal) and by expanding macros. These are the only ways
that TEX can acquire an input character. Each input character has a
code number corresponding to its position in the ASCII code table. For
instance, the letter ‘T’ has ASCII code 84.

When TEX reads a character, it attaches a category code to it. The
category code affects how TEX interprets the character once it has been
read in. TEX determines (and remembers) the category codes of the
characters in a macro when it reads the macro’s definition. As TEX
reads characters with its eyes (see “anatomy of TEX”, p. 46) it does some
“filtering”, such as condensing sequences of spaces to a single space. See
pages 46–48 of The TEXbook for the details of this filtering.

The ASCII “control characters” have codes 0–31 and 127–255. They
either don’t show up or cause strange behavior on most terminals if you
try to display them. Nonetheless they are sometimes needed in TEX in-
put, so TEX has a special notation for them. If you type ‘^^c’, where
c is any character, you get the character whose ASCII code is either 64
greater or 64 less than c’s ASCII code. The largest acceptable code value
using this notation is 127, so the notation is unambiguous. Three par-
ticularly common instances of this notation are ‘^^M’ (the ASCII 〈return〉
character), ‘^^J’ (the ASCII 〈line feed〉 character) and ‘^^I’ (the ASCII

〈horizontal tab〉 character).
TEX also has another notation for indicating ASCII code values that

works for all character codes from 0 to 255. If you type ‘^^xy’, where x
and y are any of the hexadecimal digits ‘0123456789abcdef’, you get the
single character with the specified code. (Lowercase letters are required
here.) TEX opts for the “hexadecimal digits” interpretation whenever it
has a choice, so you must not follow a character like ‘^^a’ with a lowercase
hexadecimal digit—if you do, you’ll get the wrong interpretation. If you
need to use this notation you’ll find it handy to have a table of ASCII codes.

An output character is a character to be typeset. A command for pro-
ducing an output character has the meaning “Typeset character number
n from the current font”, where n is determined by the command. TEX
produces your typeset document by combining such characters with other
typographical elements in boxes, and arranging them on the page.

TEX for the Impatient No 76

3 Jan 2020 2:18 p.m.

56 Concepts \ §4

An input character whose category code is 11 (letter) or 12 (other)
acts as a command to produce the corresponding output character. In
addition you can get TEX to produce character n by issuing the com-
mand ‘\char n’ (p. 99), where n is a number between 0 and 255. The
commands ‘h’, \char‘h, and \char104 all have the same effect. (104 is
the ASCII code for ‘h’.)

class. The class of a character specifies that character’s role in math
formulas. The class of a character is encoded in its mathcode. For exam-
ple, the equals sign ‘=’ has class 3 (Relation). TEX uses its knowledge of
character classes to decide how much space to put between different com-
ponents of a math formula. For example, here’s a math formula shown
first as TEX normally prints it and then with the class of each character
randomly changed:

a+ (b− a) = a a+ (b− a)=a

See page 218 of this book for a list of the classes and page 154 of The
TEXbook for their meanings.

command. A command instructs TEX to carry out a certain action. Every
token that reaches TEX’s stomach (see “anatomy of TEX”, p. 46) acts
as a command, except for those that are parts of arguments to other
commands (see below). A command can be invoked by a control sequence,
by an active character, or by an ordinary character. It might seem odd
that TEX treats an ordinary character as a command, but in fact that’s
what it does: when TEX sees an ordinary character it constructs a box
containing that character typeset in the current font.

A command can have arguments. The arguments of a command are
single tokens or groups of tokens that complete the description of what
the command is supposed to do. For example, the command ‘\vskip
1in’ tells TEX to skip 1 inch vertically. It has an argument ‘1in’, which
consists of three tokens. The description of what \vskip is supposed to
do would be incomplete without specifying how far it is supposed to skip.
The tokens in the arguments to a command are not themselves considered
to be commands.

Some examples of different kinds of TEX commands are:

Ordinary characters, such as ‘W’, which instructs TEX to produce a
box containing a typeset ‘W’
Font-setting commands, such as \bf, which begins boldface type
Accents, such as \‘, which produces a grave accent as in ‘è’
Special symbols and ligatures, such as \P (¶) and \ae (æ)
Parameters, such as \parskip, the amount of glue that TEX puts
between paragraphs
Math symbols, such as \alpha (α) and \in (∈)
Math operators, such as \over, which produces a fraction

TEX for the Impatient No 77

3 Jan 2020 2:18 p.m.

conditional test 57

conditional test. A conditional test is a command that tests whether
or not a certain condition is true and causes TEX either to expand or
to skip some text, depending on the outcome. The general form of a
conditional test is either:

\ifα〈true text〉\else〈false text〉\fi

or:

\ifα〈true text〉\fi

where α specifies the particular test. For example, \ifvmode tests the
condition that TEX is currently in a vertical mode. If the condition is
true, TEX expands 〈true text〉. If the condition is false, TEX expands
〈false text〉 (if it’s present). Conditional tests are interpreted in TEX’s
gullet (see “anatomy of TEX”, p. 46), so any expandable tokens in the in-
terpreted text are expanded after the test has been resolved. The various
conditional tests are explained in “Conditional tests” (p. 235).

control sequence. A control sequence is a name for a TEX command.
A control sequence always starts with an escape character, usually a back-
slash (\). A control sequence takes one of two forms:

A control word is a control sequence consisting of an escape character
followed by one or more letters. The control word ends when TEX
sees a nonletter. For instance, when TEX reads ‘\hfill , the’, it
sees six tokens: the control sequence ‘\hfill’, comma, space, ‘t’,
‘h’, ‘e’. The space after ‘\hfill’ ends the control sequence and is
absorbed by TEX when it scans the control sequence. (For the text
‘\hfill, the’, on the other hand, the comma both ends the control
sequence and counts as a character in its own right.)

A control symbol is a control sequence consisting of an escape char-
acter followed by any character other than a letter—even a space or
an end of line. A control symbol is self-delimited, i.e., TEX knows
where it ends without having to look at what character comes after
it. The character after a control symbol is never absorbed by the
control symbol.

See page 12 for more information about spaces after control sequences.
TEX provides a great many predefined control sequences. The primitive

control sequences are built into the TEX computer program and thus are
available in all forms of TEX. Other predefined control sequences are
provided by plain TEX, the form of TEX described in this book.

You can augment the predefined control sequences with ones of your
own, using commands such as \def and \let to define them. Section 12
of this book contains a collection of control sequence definitions that
you may find useful. In addition, your computing facility may be able to
provide a collection of locally developed TEX macros.

TEX for the Impatient No 78

3 Jan 2020 2:18 p.m.

58 Concepts \ §4

control symbol. A control symbol is a control sequence that consists
of an escape character followed by any character other than a letter—even
a space or end of line.

control word. A control word is a control sequence that consists of
an escape character followed by one or more letters.4 TEX ignores any
spaces or ends-of-line that follow a control word, except to note that they
end the control word.

decimal constant. See “number” (p. 82).

delimiter. A delimiter is a character that is intended to be used as a
visible boundary of a math formula. The essential property of a delimiter
is that TEX can adjust its size according to the vertical size (height plus
depth) of the subformula. However, TEX performs the adjustment only
if the delimiter appears in a “delimiter context”, namely, as an argument
to one of the commands \left, \right, \overwithdelims, \atopwith-
delims, or \abovewithdelims (see pp. 201, 204). The delimiter contexts
also include any argument to a macro that uses the argument in a de-
limiter context.

For example, the left and right parentheses are delimiters. If you use
parentheses in a delimiter context around a formula, TEX makes the
parentheses big enough to enclose the box that contains the formula (as
long as the fonts you’re using have big enough parentheses). For example:

$$ \left(a \over b \right) $$

yields: (a
b

)
Here TEX has made the parentheses big enough to accommodate the
fraction. But if you write, instead:

$$({a \over b})$$

you’ll get:

(
a

b
)

Since the parentheses aren’t in a delimiter context, they are not enlarged.
Delimiters come in pairs: an opening delimiter at the left of the sub-

formula and a closing delimiter at its right. You can explicitly choose a
larger height for a delimiter with the commands \bigl, \bigr, and their
relatives (p. 211).5 For instance, in order to get the displayed formula:(

f(x)− x
)(
f(y)− y

)
4 A “letter” here has the strict meaning of a character with category code 11.
5 Plain TEX defines the various \big commands by using \left and \right to pro-

vide a delimiter context. It sets the size by constructing an empty formula with
the desired height.

TEX for the Impatient No 79

3 Jan 2020 2:18 p.m.

delimiter 59

in which the outer parentheses are a little bigger than the inner ones,
you should write:

$$\bigl(f(x) - x \bigr) \bigl(f(y) - y \bigr)$$

The 22 plain TEX delimiters, shown at their normal size, are:

() [] { } b c d e 〈 〉 / \ | ‖ ↑ ↓ l ⇑ ⇓ m
Here they are at the largest size provided explicitly by plain TEX (the
\Biggl, \Biggr, etc., versions):() [] {} ⌊ ⌋ ⌈ ⌉ 〈〉 /∖ ∣∣∣∣∣

∥∥∥∥∥
x
y
xy
~wwww
wwww�
~www�

The delimiters (except for ‘(’, ‘)’, and ‘/’) are among the symbols listed on
pages 191–192. They are listed in one place on page 146 of The TEXbook.

A delimiter can belong to any class. For a delimiter that you en-
large with \bigl, \bigr, etc., the class is determined by the command:
“opener” for l-commands, “closer” for r-commands, “relation” for m-
commands, and “ordinary symbol” for g-commands, e.g., \Big.

You can obtain a delimiter in two different ways:

1) You can make a character be a delimiter by assigning it a nonnegative
delimiter code (see below) with the \delcode command (p. 251).
Thereafter the character acts as a delimiter whenever you use it in a
delimiter context.6

2) You can produce a delimiter explicitly with the \delimiter com-
mand (p. 204), in analogy to the way that you can produce an ordi-
nary character with the \char command or a math character with
the \mathchar command. The \delimiter command uses the same
delimiter codes that are used in a \delcode table entry, but with an
extra digit in front to indicate a class. It’s rare to use \delimiter

outside of a macro definition.

A delimiter code tells TEX how to search for an appropriate output
character to represent a delimiter. The rules for this search are rather
complicated (see pages 156 and 442 of The TEXbook). A complete under-
standing of these rules requires knowing about the organization of font
metrics files, a topic that is not just beyond the scope of this book but
beyond the scope of The TEXbook as well.

In essence the search works like this. The delimiter code specifies
a “small” output character and a “large” output character by provid-
ing a font position and a font family for each (see p. 251). Using this
information, TEX can find (or construct) larger and larger versions of
the delimiter. TEX first tries different sizes (from small to large) of the

6 It’s possible to use a character with a nonnegative delimiter code in a context where
it isn’t a delimiter. In this case TEX doesn’t perform the search; instead it just uses
the character in the ordinary way (see page 156 of The TEXbook).

TEX for the Impatient No 80

3 Jan 2020 2:18 p.m.

60 Concepts \ §4

“small” character in the “small” font and then different sizes (also from
small to large) of the “large” character in the “large” font, seeking one
whose height plus depth is sufficiently large. If none of the characters it
finds are large enough, it uses the largest one that it finds. It’s possi-
ble that the small character, the large character, or both have been left
unspecified (indicated by a zero in the appropriate part of the delimiter
code). If only one character has been specified, TEX uses that one. If
neither has been specified, it replaces the delimiter by a space of width
\nulldelimiterspace.

demerits. TEX uses demerits as a measure of how undesirable a line is
when it’s breaking a paragraph into lines (see “line break”, p. 74). The
demerits of a line are affected both by the badness of the line and by
penalties associated with the line. TEX’s goal in choosing a particular
arrangement of lines is to minimize the total demerits for the paragraph,
which it computes by adding up the demerits for the individual lines.
See pages 97–98 of The TEXbook for the details of how TEX breaks a
paragraph into lines. TEX does not use demerits when it’s choosing page
breaks; instead, it uses a similar measure known as the “cost” of a par-
ticular page break.

depth. The depth of a box is the distance that the box extends be-
low its baseline.

dimension. A dimension specifies a distance, that is, a linear measure
of space. You use dimensions to specify sizes of things, such as the length
of a line. Printers in English-speaking countries traditionally measure
distance in points and picas, while printers in continental Europe tradi-
tionally measure distance in didôt points and ciceros. You can use these
units or others, such as inches, that may be more familiar to you. The
font-independent units of measure that TEX understands are:

pt point (72.27 points = 1 inch)
pc pica (1 pica = 12 points)
bp big point (72 big points = 1 inch)
in inch
cm centimeter (2.54 centimeters = 1 inch)
mm millimeter (10 millimeters = 1 centimeter)
dd didôt point (1157 didôt points = 1238 points)
cc cicero (1 cicero = 12 didôt points)
sp scaled point (65536 scaled points = 1 point)

Two additional units of measure are associated with every font: ‘ex’,
a vertical measure usually about the height of the letter ‘x’ in the font,
and ‘em’, a horizontal measure usually equal to the point size of the font
and about the width of the letter ‘M’ in the font. Finally, TEX provides

TEX for the Impatient No 81

3 Jan 2020 2:18 p.m.

display math 61

three “infinite” units of measure: ‘fil’, ‘fill’, and ‘filll’, in increasing
order of strength.

A dimension is written as a factor, i.e, a multiplier, followed by a
unit of measure. The factor can be either a whole number or a decimal
constant containing a decimal point or decimal comma. The factor can
be preceded by a plus or minus sign, so a dimension can be positive or
negative. The unit of measure must be there, even if the number is zero.
Spaces between the number and the unit of measure are permitted but
not required. You’ll find a precise definition of a dimension on page 270
of The TEXbook. Here are some examples of dimensions:

5.9in 0pt -2,5 pc 2fil

The last of these represents a first-order infinite distance.
An infinite distance outweighs any finite distance or any weaker infinite

distance. If you add 10in to .001fil, you get .001fil; if you add 2fil

to -1fill you get -1fill; and so forth. TEX accepts infinite distances
only when you are specifying the stretch and shrink of glue.

TEX multiplies all dimensions in your document by a magnification
factor f/1000, where f is the value of the \mag parameter. Since the
default value of \mag is 1000, the normal case is that your document
is typeset just as specified. You can specify a dimension as it will be
measured in the final document independent of magnification by putting
‘true’ in front of the unit. For instance, ‘\kern 8 true pt’ produces a
kern of 8 points whatever the magnification.

display math. The term display math refers to a math formula that
TEX places on a line by itself with extra space above and below so as to
set it off from the surrounding text. A display math formula is enclosed
by ‘$$’s. TEX reads display math in display math mode.

escape character. An escape character introduces a control sequence.
The escape character in plain TEX is the backslash (\). You can change
the escape character from c1 to c2 by reassigning the category codes of
c1 and c2 with the \catcode command (p. 251). You can also define
additional escape characters similarly. If you want to typeset material
containing literal escape characters, you must either (a) define a control
sequence that stands for the printed escape character or (b) temporarily
disable the escape character by changing its category code, using the
method shown on page 2. The definition:

\def\\{\backslash}

is one way of creating a control sequence that stands for ‘\’ (a backslash
typeset in a math font).

You can use the \escapechar parameter (p. 226) to specify how the es-
cape character is represented in synthesized control sequences, e.g., those
created by \string and \message.

TEX for the Impatient No 82

3 Jan 2020 2:18 p.m.

62 Concepts \ §4

family. A family is a group of three related fonts used when TEX is
in math mode. Outside of math mode, families have no effect. The
three fonts in a family are used for normal symbols (text size), subscripts
and superscripts (script size), and sub-subscripts, super-superscripts, etc.
(scriptscript size). For example, the numeral ‘2’ set in these three fonts
would give you ‘2’, ‘2’, and ‘2’ (in plain TEX). Ordinarily you would set
up the three fonts in a family as different point sizes of the same typeface,
but nothing prevents you from using different typefaces for the three fonts
as well or using the same font twice in a family.

TEX provides for up to sixteen families, numbered 0–15. For example,
family 0 in plain TEX consists of 10-point roman for text, 7-point roman for
script, and 5-point roman for scriptscript. Plain TEX also defines family
1 to consist of math italic fonts and reserves families 2 and 3 for special
symbols and math extensions respectively.7 If you need to define a family
for yourself, you should use the \newfam command (p. 244) to get the num-
ber of a family that isn’t in use, and the \textfont, \scriptfont, and
\scriptscriptfont commands (p. 210) to assign fonts to that family.

file. A file is a stream of information that TEX interprets or creates.
Files are managed by the operating system that supervises your TEX run.
TEX deals with files in four different contexts:

1) A “source file” is one that TEX reads with its “eyes” (see “anatomy
of TEX”, p. 46) and interprets according to its ordinary rules. Your
primary input file—the one you specify after ‘**’ or on the command
line when you invoke TEX—is a source file, and so is any file that you
call for with an \input command (p. 247).

2) A “result file” is one that contains the results of running TEX. A
TEX run creates two result files: the .dvi file and the log file. The
.dvi file contains the information needed to print your document;
the log file contains a record of what happened during the run, in-
cluding any error messages that TEX generated. If your primary
source file is named screed.tex, your .dvi file and log file will be
named screed.dvi and screed.log.8

3) To read from a file with the \read command (p. 248) you need to
associate the file with an input stream. You can have up to 16 input
streams active at once, numbered 0–15. The \read command reads
a single line and makes it the value of a designated control sequence,
so reading with \read is very different from reading with \input

(which brings in an entire file). TEX takes any input stream number

7 Families 2 and 3 are special in that their font metric files must include parameters
for math spacing.
8 This is the usual convention, but particular implementations of TEX are free to

change it.

TEX for the Impatient No 83

3 Jan 2020 2:18 p.m.

file name 63

not between 0 and 15 to refer to the terminal, so ‘\read16’, say, reads
the next line that you type at the terminal.

4) To write to a file with the \write command (p. 249) you need to
associate the file with an output stream. You can have up to 16
output streams active at once, numbered 0–15. Input and output
streams are independent. Anything sent to an output stream with
a negative number goes to the log file; anything sent to an output
stream with a number greater than 15 goes both to the log file and
to the terminal. Thus ‘\write16’, say, writes a line on the terminal
and also sends that line to the log file.

You must open a stream file before you can use it. An input stream file
is opened with an \openin command (p. 247) and an output stream file
is opened with an \openout command (p. 249). For tidiness you should
close a stream file when you’re done with it, although TEX will do that
at the end of the run if you don’t. The two commands for closing a
stream file are \closein (p. 248) and \closeout (p. 249). An advantage
of closing a stream when you’re done with it is that you can then reuse
the stream for a different file. Doing this can be essential when you’re
reading a long sequence of files.

Although you can assign numbers yourself to input and output streams,
it’s better to do it with the \newread and \newwrite (p. 244) commands.
You can have more than one stream associated with a particular file, but
you’ll get (probably undiagnosed) garbage unless all of the streams are
input streams. Associating more than one stream with an input file can be
useful when you want to use the same input file for two different purposes.

TEX ordinarily defers the actions of opening, writing to, or closing an
output stream until it ships out a page with \shipout (see page 227 of The
TEXbook for the details). This behavior applies even to messages written
to the terminal with \write. But you can get TEX to perform an action
on an output stream immediately by preceding the action command with
\immediate (p. 250). For example:

\immediate\write16{Do not pass GO! Do not collect $200!}

file name. A file name names a file that is known to the operating
system that in turn supervises your TEX run. The syntax of a file name
does not follow the usual rules of TEX syntax, and in fact it is different in
different implementations of TEX. In particular, most TEX implementa-
tions consider a file name to be terminated by a blank or an end of line.
Thus TEX is likely to misinterpret ‘{\input chapter2}’ by taking the
right brace as part of the file name. As a general rule, you should follow
a file name by a blank or the end of the line as in ‘{\input chapter2 }’.

TEX for the Impatient No 84

3 Jan 2020 2:18 p.m.

64 Concepts \ §4

font. A font in TEX is a collection of up to 256 output characters,
usually having the same typeface design, style (roman, italic, bold, con-
densed, etc.), and point size.9 The Computer Modern fonts that generally
come with TEX have only 128 characters. The colophon on the last page
of this book describes the typefaces that we used to set this book.

For instance, here is the alphabet in the Palatino Roman 10 point font:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

And here it is in the Computer Modern Bold Extended 12 point font:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

The characters in a font are numbered. The numbering usually agrees
with the ASCII numbering for those characters that exist in the ASCII

character set. The code table for each font indicates what the character
with code n looks like in that font. Some fonts, such as the ones used for
mathematical symbols, have no letters at all in them. You can produce
a box containing the character numbered n, typeset in the current font,
by writing ‘\char n’ (p. 99).

In order to use a font in your document, you must first name it with
a control sequence and load it. Thereafter you can select it by typing
that control sequence whenever you want to use it. Plain TEX provides a
number of fonts that are already named and loaded.

You name and load a font as a single operation, using a command such
as ‘\font\twelvebf=cmbx12’. Here ‘\twelvebf’ is the control sequence
that you use to name the font and ‘cmbx12’ identifies the font metrics file
cmbx12.tfm in your computer’s file system. You then can start to use
the font by typing ‘\twelvebf’. After that, the font will be in effect until
either (a) you select another font or (b) you terminate the group, if any,
in which you started the font. For example, the input:

{\twelvebf white rabbits like carrots}

will cause the cmbx12 font to be in effect just for the text ‘white rabbits

like carrots’.
You can use TEX with fonts other than Computer Modern (look at the

example on page 34 and at the page headers). The files for such fonts need
to be installed in your computer’s file system in a place where TEX can
find them. TEX and its companion programs generally need two files for
each font: one to give its metrics (cmbx12.tfm, for example) and another
to give the shape of the characters (cmbx12.pk, for example). TEX itself
uses only the metrics file. Another program, the device driver, converts

9 Plain TEX uses a special font for constructing math symbols in which the char-
acters have different sizes. Other special fonts are often useful for applications such
as typesetting logos.

TEX for the Impatient No 85

3 Jan 2020 2:18 p.m.

footer 65

the .dvi file produced by TEX to a form that your printer or other output
device can handle. The driver uses the shape file (if it exists).

The font metrics file contains the information that TEX needs in order
to allocate space for each typeset character. Thus it includes the size
of each character, the ligatures and kerns that pertain to sequences of
adjacent characters, and so on. What the metrics file doesn’t include is
any information about the shapes of the characters in the font.

The shape (pixel) file may be in any of several formats. The extension
part of the name (the part after the dot) tells the driver which format the
shape file is in. For example, cmbx12.pk might be the shape file for font
cmbx12 in packed format, while cmbx12.gf might be the shape file for font
cmbx12 in generic font format. A shape file may not be needed for a font
that’s resident in your output device.

footer. A footer is material that TEX puts at the bottom of every page,
below the text of that page. The default footer in plain TEX is a centered
page number. Ordinarily a footer consists of a single line, which you can
set by assigning a token list to \footline (p. 143). See page 274 for a
method of producing multiline footers.

format file. A format file is a file that contains an image of TEX’s
memory in a form in which it can be reloaded quickly. A format file can be
created with the \dump command (p. 263). The image contains a complete
record of the definitions (of fonts, macros, etc.) that were present when
the dump took place. By using virtex, a special “virgin” form of TEX,
you can then reload the format file at high speed and continue in the same
state that TEX was in at the time of the dump. The advantage of a format
file over an ordinary input file containing the same information is that TEX
can load it much faster.

Format files can only be created by initex, another special form of
TEX intended just for that purpose. Neither virtex nor initex has any
facilities other than the primitives built into the TEX program itself.

A preloaded form of TEX is one that has a format file already loaded
and is ready to accept user input. The form of TEX that’s called tex often
has the plain TEX definitions preloaded. (Plain TEX is ordinarily available
in two other forms as well: as a format file and as a TEX source file. In
some environments, tex is equivalent to calling virtex and then loading
plain.) Creating preloaded forms of TEX requires a special program; it
cannot be done using only the facilities of TEX itself.

global. A global definition is effective until the end of the document
or until it is overridden by another definition, even when it occurs within
a group. Thus a global definition is unaffected by group boundaries. You
can make any definition global by prefixing it with the \global command
(p. 228) unless \globaldefs (p. 228) is negative.

TEX for the Impatient No 86

3 Jan 2020 2:18 p.m.

66 Concepts \ §4

There’s a special way of making a macro definition global. Normally
you define a macro using either the \def command or the \edef command
(p. 230). If you use \gdef or \xdef instead of \def and \edef respec-
tively, the macro definition will be global. That is, ‘\gdef’ is equivalent
to ‘\global\def’ and ‘\xdef’ is equivalent to ‘\global\edef’.

glue. Glue is blank space that can stretch or shrink. Glue gives TEX
the flexibility that it needs in order to produce handsome documents.
Glue comes in two flavors: horizontal glue and vertical glue. Horizon-
tal glue occurs within horizontal lists, while vertical glue occurs within
vertical lists. You can produce a glue item either implicitly, e.g., with
an interword space, or explicitly, e.g., with the \hskip command. TEX
itself produces many glue items as it typesets your document. We’ll just
describe horizontal glue—vertical glue is analogous.

When TEX assembles a list of boxes and glue into a larger unit, it ad-
justs the size of the glue to meet the space requirements of the larger
unit. For instance, TEX ensures that the right margin of a page is uni-
form by adjusting the horizontal glue within lines. Similarly, it ensures
that different pages have the same bottom margin by adjusting the glue
between blocks of text such as paragraphs and math displays (where the
change is least likely to be conspicuous).

A glue item has a natural space—the size it “wants to be”. Glue also
has two other attributes: its stretch and its shrink. You can produce
a specific amount of horizontal glue with the \hskip command (p. 155).
The command \hskip 6pt plus 2pt minus 3pt produces a horizontal
glue item whose natural size is 6 points, whose stretch is 2 points, and
whose shrink is 3 points. Similarly, you can produce a specific amount of
vertical glue with the \vskip command (p. 155).

The best way to understand what stretch and shrink are about is to see
an example of glue at work. Suppose you’re constructing an hbox from
three boxes and two glue items, as in this picture:

box

width 4

glue︷ ︸︸ ︷
size 6

stretch 4
shrink 1
width 6︸ ︷︷ ︸

box

width 5

glue︷ ︸︸ ︷
size 10

stretch 8
shrink 3
width 10︸ ︷︷ ︸

box

width 4

←−−−−−−−−−−−−−−−−−− width 29 −−−−−−−−−−−−−−−−−−→
The units of measurement here could be points, millimeters, or anything
else. If the hbox is allowed to assume its natural width, then each glue
item in the box also assumes its natural width. The total width of the
hbox is then the sum of the widths of its parts, namely, 29 units.

Next, suppose that the hbox is required to be wider than 29 units,
say 35 units. This could happen, for example, if the hbox is required to

TEX for the Impatient No 87

3 Jan 2020 2:18 p.m.

glue 67

occupy an entire line and the line width is 35 units. Since the boxes can’t
change their width, TEX produces the necessary extra space by making
the glue items wider. The picture now looks like this:

box

width 4

glue︷ ︸︸ ︷
size 6

stretch 4
shrink 2
width 8︸ ︷︷ ︸

box

width 5

glue︷ ︸︸ ︷
size 10

stretch 8
shrink 6
width 14︸ ︷︷ ︸

box

width 4

←−−−−−−−−−−−−−−−−−−−−−−− width 35 −−−−−−−−−−−−−−−−−−−−−−−→

The glue items don’t become wider equally; they became wider in pro-
portion to their stretch. Since the second glue item has twice as much
stretch as the first one, it gets wider by four units while the first glue item
gets wider by only two units. Glue can be stretched as far as necessary,
although TEX is somewhat reluctant to stretch it beyond the amount of
stretch given in its definition.

Finally, suppose that the hbox is required to be narrower than 29 units,
say 25 units. In this case TEX makes the glue items narrower. The picture
looks like this:

box

width 4

glue︷ ︸︸ ︷
size 6

stretch 4
shrink 2
width 5︸ ︷︷ ︸

box

width 5

glue︷ ︸︸ ︷
size 10

stretch 8
shrink 6
width 7︸ ︷︷ ︸

box

width 4

←−−−−−−−−−−−−−−− width 25 −−−−−−−−−−−−−−−→

The glue items become narrower in proportion to their shrink. The
first glue item becomes narrower by one unit, while the second glue item
becomes narrower by three units. Glue cannot shrink by a distance less
than the amount of shrink given in its definition even though the distance
it can stretch is unlimited. In this important sense the shrink and the
stretch behave differently.

A good rule of thumb for glue is to set the natural size to the amount
of space that looks best, the stretch to the largest amount of space that
TEX can add before the document starts to look bad, and the shrink to
the largest amount of space that TEX can take away before the document
starts to look bad. You may need to set the values by experiment.

You can produce glue that is infinitely stretchable by specifying its
stretch in units of ‘fil’, ‘fill’, or ‘filll’. Glue measured in ‘fill’ is
infinitely more stretchable than glue measured in ‘fil’, and glue measured
in ‘filll’ is infinitely more stretchable than glue measured in ‘fill’. You
should rarely have any need for ‘filll’ glue. Glue whose stretch is 2fil

TEX for the Impatient No 88

3 Jan 2020 2:18 p.m.

68 Concepts \ §4

has twice as much stretch as glue whose stretch is 1fil, and similarly for
the other kinds of infinitely stretchable glue.

When TEX is apportioning extra space among glue items, the infinitely
stretchable ones, if there are any, get all of it. Infinitely stretchable glue is
particularly useful for setting text flush left, flush right, or centered:

To set text flush left, put infinitely stretchable horizontal glue to
the right of it. That glue will consume all the extra space that’s
available on the line. You can use the \leftline command (p. 108)
or the \raggedright command (p. 116) to do this.
To set text flush right, put infinitely stretchable horizontal glue to
the left of it. As before, that glue will consume all the extra space on
the line. You can use the \rightline command (p. 108) to do this.
To set centered text, put identical infinitely stretchable horizontal
glue items on both sides of it. These two glue items will divide all
the extra space on the line equally between them. You can use the
\centerline command (p. 108) to do this.

You can also specify infinitely shrinkable glue in a similar way. Infinitely
shrinkable glue can act as negative space. Note that fil, etc., can be
used only to specify the stretch and shrink of glue—they can’t be used
to specify its natural size.

group. A group is a part of your manuscript that TEX treats as a unit.
You indicate a group by enclosing it in the braces ‘{’ and ‘}’ (or any other
characters with the appropriate category codes).

The most important property of a group is that any nonglobal definition
or assignment that you make inside a group disappears when the group
ends. For instance, if you write:

Please don’t pour {\it any} more tea into my hat.

the \it control sequence causes TEX to set the word ‘any’ in italic type
but does not affect the rest of the text. As another example, if you
use the \hsize parameter (p. 114) to change the line length within a
group, the line length reverts to its previous value once TEX has gotten
past the group.

Groups are also useful as a way of controlling spacing. For instance,
if you write:

\TeX for the Impatient and the Outpatient too.

you’ll get:

TEXfor the Impatient and the Outpatient too.

since the control sequence \TeX (which produces the TEX logo) absorbs
the following space. What you probably want is:

TEX for the Impatient and the Outpatient too.

TEX for the Impatient No 89

3 Jan 2020 2:18 p.m.

hbox 69

One way to get it is to enclose ‘\TeX’ in a group:

{\TeX} for the Impatient and the Outpatient too.

The right brace prevents the control sequence from absorbing the space.

hbox. An hbox (horizontal box) is a box that TEX constructs by placing
the items of a horizontal list one after another, left to right. An hbox,
taken as a unit, is neither inherently horizontal nor inherently vertical,
i.e., it can appear as an item of either a horizontal list or a vertical list.
You can construct an hbox with the \hbox command (p. 160).

header. A header is material that TEX puts at the top of every page,
above the text of that page. The header for a simple report might consist
of the title on the left side of the page and the text “Page n” on the right
side of the page. Ordinarily a header consists of a single line, which you
can set by assigning a token list to \headline (p. 143). The default plain
TEX header is blank. It’s possible to produce multiline headers too; see
page 274 for how to do it.

height. The height of a box is the distance that the box extends above
its baseline.

horizontal list. A horizontal list is a list of items that TEX has
produced while it is in one of its horizontal modes, i.e., assembling either
a paragraph or an hbox. See “horizontal mode” below.

horizontal mode. When TEX is assembling a paragraph or an hbox,
it is in one of two horizontal modes: ordinary horizontal mode for assem-
bling paragraphs and restricted horizontal mode for assembling hboxes.
Whenever TEX is in a horizontal mode its stomach (see “anatomy of TEX”,
p. 46) is constructing a horizontal list of items (boxes, glue, penalties,
etc.). TEX typesets the items in the list one after another, left to right.

A horizontal list can’t contain any items produced by inherently vertical
commands, e.g., \vskip.

If TEX is assembling a horizontal list in ordinary horizontal mode and
encounters an inherently vertical command, TEX ends the paragraph
and enters vertical mode.

If TEX is assembling a horizontal list in restricted horizontal mode
and encounters an inherently vertical command, it complains.

Two commands that you might at first think are inherently horizontal
are in fact inherently vertical: \halign (p. 178) and \hrule (p. 172). See
page 286 of The TEXbook for a list of the inherently vertical commands.

You should be aware of a subtle but important property of restricted
horizontal mode: you can’t enter ordinary horizontal mode when you’re in

TEX for the Impatient No 90

3 Jan 2020 2:18 p.m.

70 Concepts \ §4

restricted horizontal mode. What this means in practice is that when TEX is
assembling an hbox it won’t handle paragraph-like text, i.e., text for which
it does line breaking. You can get around this restriction by enclosing the
paragraph-like text in a vbox within the hbox. The same method works if
you want to put, say, a horizontal alignment inside an hbox.

hyphenation. TEX automatically hyphenates words as it is processing
your document. TEX is not eager to insert hyphens, preferring instead to
find good line breaks by adjusting the spacing between words and moving
words from one line to another. TEX is clever enough to understand
hyphens that are already in words.

You can control TEX’s hyphenation in several ways:

You can tell TEX to allow a hyphen in a particular place by inserting
a discretionary hyphen with the \- command (p. 126).

You can tell TEX how to hyphenate particular words throughout your
document with the \hyphenation command (p. 127).

You can enclose a word in an hbox, thus preventing TEX from hy-
phenating it.

You can set the value of penalties such as \hyphenpenalty (p. 125).

If a word contains an explicit or discretionary hyphen, TEX will never
break it elsewhere.

input stream. See “file” (p. 62).

insertion. An insertion is a vertical list containing material to be in-
serted into a page when TEX has finished building that page.10 Examples
of such insertions are footnotes and figures. The plain TEX commands
for creating insertions are \footnote, \topinsert, \midinsert, and
\pageinsert, as well as the primitive \insert command itself (pp. 145–
148). TEX’s mechanism for handling insertions is rather complicated; see
pages 122–125 of The TEXbook for the details.

interline glue. Interline glue is the glue that TEX inserts in front of
every box in a vertical list except for the first one. The interline glue is or-
dinarily specified so as to maintain a constant distance between the base-
lines of the boxes. Its value is jointly determined by the \baselineskip,
\lineskip, and \lineskiplimit parameters (p. 133).

10 TEX itself doesn’t insert the material—it just makes the material available to the
output routine, which is then responsible for transferring it to the composed page. The
only immediate effect of the \insert command (p. 147) is to change TEX’s page break
calculations so that it will leave room on the page for the inserted material. Later,
when TEX actually breaks the page, it divides the inserted material into two groups:
the material that fits on the current page and the material that doesn’t. The material
that fits on the page is placed into box registers, one per insertion, and the material that
doesn’t fit is carried over to the next page. This procedure allows TEX to do such things
as distributing parts of a long footnote over several consecutive pages.

TEX for the Impatient No 91

3 Jan 2020 2:18 p.m.

item 71

item. The term item is often used to refer to a component of a horizon-
tal, vertical, or math list, i.e., a list of items that TEX is building while it
is in a horizontal, vertical, or math mode.

justified text. Justified text is text that has been typeset so that
both margins are even. Unjustified text, on the other hand, has been
typeset with “ragged” margins on one or both sides. Documents typed
on old-fashioned typewriters almost always have ragged right margins.
Although documents produced by TEX are justified by default, you can
if you wish produce documents (or sequences of lines) that have ragged
right—or ragged left—margins. You can also get TEX to center a se-
quence of lines, thus making both margins ragged. You can use the
\leftskip, \rightskip, and \raggedright commands (pp. 115, 116)
for these purposes.

When TEX is producing justified text, it usually needs to stretch or
shrink the glue within each line to make the margins come out even.
When TEX is producing unjustified text, on the other hand, it usually
leaves the glue within each line at its natural width. Many typographers
prefer unjustified text because its interword spacing is more uniform.

kern. A kern indicates a change to the normal spacing between the
items of a vertical or horizontal list. A kern can be either positive or
negative. By putting a positive kern between two items, you push them
further apart by the amount of the kern. By putting a negative kern
between two items, you bring them closer together by the amount of the
kern. For instance, this text:

11\quad 1\kern1pt 1\quad 1\kern-.75pt 1

produces letter pairs that look like this:

11 11 11

You can use kerns in vertical mode to adjust the space between partic-
ular pairs of lines.

A kern of size d is very similar to a glue item that has size d and no
stretch or shrink. Both the kern and the glue insert or remove space be-
tween neighboring items. The essential difference is that TEX considers
two boxes with only kerns between them to be tied together. That is,
TEX won’t break a line or a page at a kern unless the kern is immedi-
ately followed by glue. Bear this difference in mind when you’re deciding
whether to use a kern or a glue item for a particular purpose.

TEX automatically inserts kerns between particular pairs of adjacent
letters, thus adjusting the space between those letters and enhancing
the appearance of your typeset document. For instance, the Computer
Modern 10-point roman font contains a kern for the pair ‘To’ that brings
the left edge of the ‘o’ under the ‘T’. Without the kern, you’d get “Top”

TEX for the Impatient No 92

3 Jan 2020 2:18 p.m.

72 Concepts \ §4

rather than “Top”—the difference is slight but noticeable. The metrics
file (.tfm file) for each font specifies the placement and size of the kerns
that TEX automatically inserts when it is setting text in that font.

leaders. You can use leaders to fill a space with copies of a pattern,
e.g., to put repeated dots between a title and a page number in a table
of contents. A leader is a single copy of the pattern. The specification of
leaders contains three pieces of information:

1) what a single leader is
2) how much space needs to be filled
3) how the copies of the pattern should be arranged within the space

TEX has three commands for specifying leaders: \leaders, \cleaders,
and \xleaders (p. 174). The argument of each command specifies the
leader. The command must be followed by glue; the size of the glue specifies
how much space is to be filled. The choice of command determines how
the leaders are arranged within the space.

Here’s an example showing how \leaders works:

\def\dotting{\leaders\hbox to 1em{\hfil.\hfil}\hfil}

\line{The Political Process\dotting 18}

\line{Bail Bonds\dotting 26}

Here we’ve put the leaders and their associated glue into a macro def-
inition so that we can conveniently use them in two places. This in-
put produces:

The Political Process 18
Bail Bonds . 26

The hbox following \leaders specifies the leader, namely, an hbox 1 em
wide containing a dot at its center. The space is filled with copies of this
box, effectively filling it with dots whose centers are 1 em apart. The fol-
lowing \hfil (the one at the end of the macro definition) is glue that spec-
ifies the space to be filled. In this case it’s whatever space is needed to fill
out the line. By choosing \leaders rather than \cleaders or \xleaders
we’ve insured that the dots on different lines line up with each other.

In general, the space to be filled acts as a window on the repeated
copies of the leader. TEX inserts as many copies as possible, but some
space is usually left over—either because of where the leaders fall within
the window or because the width of the window isn’t an exact multiple of
the width of the leader. The difference among the three commands is in
how they arrange the leaders within the window and how they distribute
any leftover space:

For \leaders, TEX first produces a row of copies of the leader. It
then aligns the start of this row with the left end of the innermost
box B that is to contain the result of the \leaders command. In
the two-line example above, B is a box produced by \line. Those

TEX for the Impatient No 93

3 Jan 2020 2:18 p.m.

ligature 73

leaders that fit entirely in the window are placed into B, and the
leftover space at the left and right ends is left empty. The picture
is like this:

. .
⇓

The Political Process
window

18
⇓

The Political Process 18

This procedure ensures that in the two-line example on the previous
page, the dots in the two lines are vertically aligned (since the reference
points of the hboxes produced by \line are vertically aligned).

For \cleaders, TEX centers the leaders within the window by di-
viding the leftover space between the two ends of the window. The
leftover space is always less than the width of a single leader.

For \xleaders, TEX distributes the leftover space evenly within the
window. In other words, if the leftover space is w and the leader
is repeated n times, TEX puts space of width w/(n + 1) between
adjacent leaders and at the two ends of the leaders. The effect is
usually to spread out the leaders a little bit. The leftover space for
\xleaders, like that for \cleaders, is always less than the width of
a single leader.

So far we’ve assumed that the leaders consist of hboxes arranged hori-
zontally. Two variations are possible:

1) You can use a rule instead of an hbox for the leader. TEX makes the
rule as wide as necessary to extend across the glue (and the three
commands are equivalent).

2) You can produce vertical leaders that run down the page by including
them in a vertical list rather than a horizontal list. In this case you
need vertical glue following the leaders.

See pages 223–225 of The TEXbook for the precise rules that TEX uses in
typesetting leaders.

ligature. A ligature is a single character that replaces a particular
sequence of adjacent characters in a typeset document. For example,
the word ‘office’ is typeset as “office”, not “office”, by high-quality
typesetting systems. Knowledge of ligatures is built into the fonts that
you use, so there’s nothing explicit you need do in order to get TEX
to produce them. (You could defeat the ligature in “office”, as we did
just above, by writing ‘of{f}ice’ in your input.) TEX is also capable of
using its ligature mechanism to typeset the first or last letter of a word
differently than the same letter as it would appear in the middle of a

TEX for the Impatient No 94

3 Jan 2020 2:18 p.m.

74 Concepts \ §4

word. You can defeat this effect (if you ever encounter it) by using the
\noboundary command (p. 101).

Sometimes you may need a ligature from a European language. TEX
won’t produce these automatically unless you’re using a font designed
for that language. A number of these ligatures, e.g., ‘Æ’, are available as
commands (see “Letters and ligatures for European alphabets”, p. 97).

line break. A line break is a place in your document where TEX ends
a line as it typesets a paragraph. When TEX processes your document,
it collects the contents of each paragraph in a horizontal list. When it
has collected an entire paragraph, it analyzes the list to find what it
considers to be the best possible line breaks. TEX associates “demerits”
with various symptoms of unattractive line breaks—lines that have too
much or too little space between words, consecutive lines that end in
hyphens, and so forth. It then chooses the line breaks so as to minimize
the total number of demerits. See pages 96–101 of The TEXbook for a
full description of TEX’s line-breaking rules.

You can control TEX’s choice of line breaks in several ways:

You can insert a penalty (p. 121) somewhere in the horizontal list that
TEX builds as it forms a paragraph. A positive penalty discourages
TEX from breaking the line there, while a negative penalty—a bonus,
in other words—encourages TEX to break the line there. A penalty
of 10000 or more prevents a line break, while a penalty of −10000 or
less forces a line break. You can get the same effects with the \break
and \nobreak commands (pp. 120, 121).

You can tell TEX to allow a hyphen in a particular place by insert-
ing a discretionary hyphen with the \- command (p. 126), or oth-
erwise control how TEX hyphenates your document (see “hyphen-
ation”, p. 70).

You can tell TEX to allow a line break after a solidus (/) between
two words by inserting \slash (p. 122) between them, e.g., ‘fur-
longs\slash fortnight’.

You can tell TEX not to break a line between two particular words
by inserting a tie (~) between those words.

You can adjust the penalties associated with line breaking by assign-
ing different values to TEX’s line-breaking parameters.

You can enclose a word or sequence of words in an hbox, thus pre-
venting TEX from breaking the line anywhere within the hbox.

It’s useful to know the places where TEX can break a line:

at glue, provided that:

1) the item preceding the glue is one of the following: a box, a
discretionary item (e.g., a discretionary hyphen), the end of a

TEX for the Impatient No 95

3 Jan 2020 2:18 p.m.

list 75

math formula, a whatsit, or vertical material produced by \mark

or \vadjust or \insert

2) the glue is not part of a math formula

When TEX breaks a line at glue, it makes the break at the left edge
of the glue space and forgets about the rest of the glue.

at a kern that’s immediately followed by glue, provided that this kern
isn’t within a math formula

at the end of a math formula that’s immediately followed by glue

at a penalty, even one within a math formula

at a discretionary break

When TEX breaks a line, it discards any sequence of glue, kerns, and
penalty items that follows the break point. If such a sequence is followed
by the beginning of a math formula, it also discards any kern produced
by the beginning of the formula.

list. A list is a sequence of items (boxes, glue, kerns, etc.) that com-
prise the contents of an hbox, a vbox, or a math formula. See “horizontal
list” (p. 69), “vertical list” (p. 94).

log file. See “file” (p. 62).

macro. A macro is a definition that gives a name to a pattern of TEX
input text.11 The name can be either a control sequence or an active
character. The pattern is called the “replacement text”. The primary
command for defining macros is the \def control sequence.

As a simple example, suppose that you have a document in which the
sequence ‘cos θ+ i sin θ’ occurs many times. Instead of writing it out each
time, you can define a macro for it:

\def\arctheta{\cos \theta + i \sin \theta}

Now whenever you need this sequence, you can just “call” the macro by
writing ‘\arctheta’ and you’ll get it. For example, ‘e^{\arctheta}’
will give you ‘ecos θ+i sin θ’.

But the real power of macros lies in the fact that a macro can have
parameters. When you call a macro that has parameters, you provide
arguments that are substituted for those parameters. For example, sup-
pose you write:

\def\arc#1{\cos #1 + i \sin #1}

The notation #1 indicates the first parameter of the macro, which in
this case has only one parameter. You now can produce a similar form,
such as ‘cos 2t+i sin 2t’, with the macro call ‘\arc {2t}’.

11 More precisely, the definition gives a name to a sequence of tokens.

TEX for the Impatient No 96

3 Jan 2020 2:18 p.m.

76 Concepts \ §4

More generally, a macro can have up to nine parameters, which you in-
dicate as ‘#1’, ‘#2’, etc. in the macro definition. TEX provides two kinds of
parameters: delimited parameters and undelimited parameters. Briefly,
a delimited parameter has an argument that’s delimited, or ended, by a
specified sequence of tokens (the delimiter), while an undelimited parame-
ter has an argument that doesn’t need a delimiter to end it. First we’ll ex-
plain how macros work when they have only undelimited parameters, and
then we’ll explain how they work when they have delimited parameters.

If a macro has only undelimited parameters, those parameters must ap-
pear one after another in the macro definition with nothing between them
or between the last parameter and the left brace in front of the replacement
text. A call on such a macro consists of the macro name followed by the
arguments of the call, one for each parameter. Each argument is either:

a single token other than a left or right brace, or
a sequence of tokens enclosed between a left brace and a matching
right brace.12

When TEX encounters a macro, it expands the macro in its gullet (see
“anatomy of TEX”, p. 46) by substituting each argument for the corre-
sponding parameter in the replacement text. The resulting text may con-
tain other macro calls. When TEX encounters such an embedded macro
call, it expands that call immediately without looking at what follows the
call.13 When TEX’s gullet gets to a primitive command that cannot be
further expanded, TEX passes that command to TEX’s stomach. The or-
der of expansion is sometimes critical, so in order to help you understand
it we’ll give you an example of TEX at work.

Suppose you provide TEX with the following input:

\def\a#1#2{\b#2#1\kern 2pt #1}

\def\b{bb}

\def\c{\char49 cc}

\def\d{dd}

\a\c{e\d} % Call on \a.

Then the argument corresponding to #1 is \c, and the argument corre-
sponding to #2 is e\d. TEX expands the macro call in the following steps:

\b e\d\c\kern 2pt \c

bbe\d\c\kern 2pt \c

\d\c\kern 2pt \c (‘b’, ‘b’, ‘e’ sent to stomach)
dd\c\kern 2pt \c

\c\kern 2pt \c (‘d’, ‘d’ sent to stomach)

12 The argument can have nested pairs of braces within it, and each of these pairs can
indicate either a group or a further macro argument.
13 In computer science terminology, the expansion is “depth first” rather than “breadth
first”. Note that you can modify the order of expansion with commands such as
\expandafter.

TEX for the Impatient No 97

3 Jan 2020 2:18 p.m.

macro 77

\char49 cc\kern 2pt \c

\c (‘\char’, ‘4’, ‘9’, ‘c’, ‘c’, ‘\kern’, ‘2’, ‘p’, ‘t’ sent to stomach)
\char49 cc

(‘\char49’, ‘c’, ‘c’ sent to stomach)

Note that the letters ‘b’, ‘c’, ‘d’, and ‘e’ and the control sequences ‘\kern’
and ‘\char’ are all primitive commands that cannot be expanded further.

A macro can also have “delimited parameters”, which can be mixed
with the undelimited ones in any combination. The idea of a delimited
parameter is that TEX finds the corresponding argument by looking for
a certain sequence of tokens that marks the end of the argument—the
delimiter. That is, when TEX is looking for such an argument, it takes
the argument to be all the tokens from TEX’s current position up to but
not including the delimiter.

You indicate a delimited parameter by writing ‘#n’ (n must be between
0 and 9) followed by one or more tokens that act as the delimiter. The
delimiter extends up to the next ‘#’ or ‘{’—which makes sense since ‘#’
starts another parameter and ‘{’ starts the replacement text.

The delimiter can’t be ‘#’ or ‘{’, so you can tell a delimited parameter
from an undelimited one by looking at what comes after it.

If the character after the parameter is ‘#’ or ‘{’, you’ve got an undelim-
ited parameter; otherwise you’ve got a delimited one. Note the difference
in arguments for the two kinds of parameters—an undelimited parameter
is matched either by a single token or by a sequence of tokens enclosed
in braces, while a delimited parameter is matched by any number of to-
kens, even zero.

An example of a macro that uses two delimited parameters is:

\def\diet#1 #2.{On #1 we eat #2!}

Here the first parameter is delimited by a single space and the second
parameter is delimited by a period. If you write:

\diet Tuesday turnips.

you’ll get the text “On Tuesday we eat turnips!”. But if the delimiting
tokens are enclosed in a group, TEX doesn’t consider them as delimiting.
So if you write:

\diet {Sunday mornings} pancakes.

you’ll get the text ‘On Sunday mornings we eat pancakes!’ even though
there’s a space between ‘Sunday’ and ‘morning’. When you use a space as
a delimiter, an end-of-line character ordinarily also delimits the argument
since TEX converts the end-of-line to a space before the macro mechanism
ever sees it.

Once in a while you might need to define a macro that has ‘#’ as a
meaningful character within it. You’re most likely to need to do this
when you’re defining a macro that in turn defines a second macro. What

TEX for the Impatient No 98

3 Jan 2020 2:18 p.m.

78 Concepts \ §4

then do you do about the parameters of the second macro to avoid getting
TEX confused? The answer is that you write two ‘#’s for every one that
you want when the first macro is expanded. For example, suppose you
write the macro definition:

\def\first#1{\def\second##1{#1/##1}}

Then the call ‘\first{One}’ defines ‘\second’ as:

\def\second#1{One/#1}

and the subsequent call ‘\second{Two}’ produces the text ‘One/Two’.
A number of commands provide additional ways of defining macros (see

pp. 230–241). For the complete rules pertaining to macros, see Chapter 20
of The TEXbook.

magnification. When TEX typesets your document, it multiplies all
dimensions by a magnification factor f/1000, where f is the value of the
\mag parameter (p. 223). Since the default value of \mag is 1000, the
normal case is that your document is typeset just as specified. Increasing
the magnification is often useful when you’re typesetting a document that
will later be photoreduced.

You can also apply magnification to a single font so as to get a smaller
or larger version of that font than its “design size”. You need to provide
the device driver with a shape file (see “font”, p. 64) for each magnification
of a font that you’re using—unless the fonts are built into your printer
and your device driver knows about them. When you’re defining a font
with the \font command (p. 221), you can specify a magnification with
the word ‘scaled’. For example:

\font\largerbold = cmbx10 scaled 2000

defines ‘\largerbold’ as a font that is twice as big as cmbx10 (Computer
Modern Bold Extended 10-point) and has the character shapes uniformly
enlarged by a factor of 2.

Many computer centers find it convenient to provide fonts scaled by a
ratio of 1.2, corresponding to magnification values of 1200, 1440, etc. TEX
has special names for these values: ‘\magstep1’ for 1200, ‘\magstep2’ for
1440, and so forth up to ‘\magstep5’. The special value ‘\magstephalf’
corresponds to magnification by

√
1.2, which is visually halfway between

‘\magstep0’ (no magnification) and ‘\magstep1’. For example:

\font\bigbold = cmbx10 scaled \magstephalf

You can specify a dimension as it will be measured in the final document
independent of magnification by putting ‘true’ in front of the unit. For
instance, ‘\kern 8 true pt’ produces a kern of 8 points whatever the
magnification.

TEX for the Impatient No 99

3 Jan 2020 2:18 p.m.

margins 79

margins. The margins of a page define a rectangle that normally con-
tains the printed matter on the page. You can get TEX to print material
outside of this rectangle, but only by taking some explicit action that
moves the material there. TEX considers headers and footers to lie out-
side the margins.

The rectangle is defined in terms of its upper-left corner, its width,
and its depth. The location of the upper-left corner is defined by the
\hoffset and \voffset parameters (p. 140). The default is to place that
corner one inch from the top and one inch from the left side of the page,
corresponding to a value of zero for both \hoffset and \voffset.14 The
width of the rectangle is given by \hsize and the depth by \vsize.

The implications of these conventions are:

The left margin is given by \hoffset+1in.
The right margin is given by the width of the paper minus \hoffset
+ 1in + \hsize.
The top margin is given by \voffset+1in.
The bottom margin is given by the length of the paper minus \voff-
set+ 1in+ \vsize.

From this information you can see what parameters you need to change
in order to change the margins.

Any changes that you make to \hoffset, \voffset, or \vsize become
effective the next time TEX starts a page. In other words, if you change
them within a page, the change will affect only the following pages. If you
change \hsize, the change will become effective immediately.

mark. A mark is an item that you can insert into a horizontal, ver-
tical, or math list and later recover from within your output routine.
Marks are useful for purposes such as keeping track of topics to appear
in page headers. Each mark has a list of tokens—the “mark text”—
associated with it. The \mark command (p. 144) expects such a token
list as its argument, and appends an item containing that token list (af-
ter expansion) to whatever list TEX is currently building. The \topmark,
\firstmark, and \botmark commands (p. 144) can be used to retrieve
various marks on a page. These commands are most often used in page
headers and footers.

Here is a simplified example. Suppose you define a section heading
macro as follows:

\def\section#1{\medskip{\bf#1}\smallskip\mark{#1}}

% #1 is the name of the section

14 This seems to us to be an odd convention. It would have been more natural to have
the (0, 0) point for \hoffset and \voffset be at the upper-left corner of the paper
and to have set their default values to one inch.

TEX for the Impatient No 100

3 Jan 2020 2:18 p.m.

80 Concepts \ §4

This macro, when called, will produce a section heading in boldface and
will also record the name of the section as a mark. You can now define
the header for each printed page as follows:

\headline = {\ifodd\pageno \hfil\botmark\quad\folio

\else \folio\quad\firstmark\hfil \fi}

Each even (left-hand) page will now have the page number followed by the
name of the first section on that page, while each odd (right-hand) page
will have the page number followed by the name of the last section on
that page. Special cases, e.g., no sections starting on a page, will generally
come out correctly because of how \firstmark and \botmark work.

When you split a page using the \vsplit command (p. 149) you can
retrieve the mark texts of the first and last marks of the split-off portion
with the \splitfirstmark and \splitbotmark commands (p. 144).

See pages 258–260 of The TEXbook for a more precise explanation of
how to create and retrieve marks.

math mode. A math mode is a mode that TEX is in when it is building
a math formula. TEX has two different math modes: text math mode for
building a formula to be embedded within a line of text, and display math
mode for building a formula to appear on a line by itself. You indicate
text math mode by enclosing the formula in $’s, and display math mode by
enclosing the formula in $$’s. An important property of both math modes
is that input spaces don’t count. See pages 290–293 of The TEXbook for
details on how TEX responds to different commands in math mode.

mathcode. A mathcode is a number that TEX uses to identify and de-
scribe a math character, i.e., a character that has a particular role in a
math formula. A mathcode conveys three pieces of information about
a character: its font position, its family, and its class. Each of the 256
possible input characters has a mathcode, which is defined by the TEX
program but can be changed.

TEX has sixteen families of fonts, numbered 0–15. Each family contains
three fonts: one for text size, one for script size, and one for scriptscript
size. TEX chooses the size of a particular character, and therefore its font,
according to the context. The class of a character specifies its role in a
formula (see page 154 of The TEXbook). For example, the equals sign
‘=’ is in class 3 (Relation). TEX uses its knowledge of character classes
when it is deciding how much space to put between different components
of a math formula.

The best way to understand what mathcodes are all about is to see
how TEX uses them. So we’ll show you what TEX does with a character
token t of category code 11 or 12 in a math formula:

1) It looks up the character’s mathcode.
2) It determines a family f from the mathcode.

TEX for the Impatient No 101

3 Jan 2020 2:18 p.m.

mathematical unit 81

3) It determines the size s from the context.
4) It selects a font F by picking the font for size s in family f .
5) It determines a character number n from the mathcode.
6) It selects as the character c to be typeset the character at position

n of font F .
7) It adjusts the spacing around c according to the class of t and the

surrounding context.
8) It typesets the character c.

The context dependence in items (3) and (7) implies that TEX cannot
typeset a math character until it has seen the entire formula containing
the math character. For example, in the formula ‘$a\over b$’, TEX
doesn’t know what size the ‘a’ should be until it has seen the \over.

The mathcode of a character is encoded according to the formula 4096c+
256f + n, where c is the class of the character, f is its family, and n
is its ASCII character code within the family. You can change TEX’s
interpretation of an input character in math mode by assigning a value
to the \mathcode table entry (p. 251) for that character. The character
must have a category code of 11 (letter) or 12 (other) for TEX to look
at its \mathcode.

You can define a mathematical character to have a “variable” family
by giving it a class of 7. Whenever TEX encounters that character in a
math formula, it takes the family of the character to be the current value
of the \fam parameter (p. 210). A variable family enables you to specify
the font of ordinary text in a math formula. For instance, if the roman
characters are in family 0, the assignment \fam = 0 will cause ordinary
text in a math formula to be set in roman type rather than in something
else like math italic type. If the value of \fam is not in the range from 0 to
15, TEX takes the value to be 0, thus making classes 0 and 7 equivalent.
TEX sets \fam to −1 whenever it enters math mode.

mathematical unit. A mathematical unit , denoted by ‘mu’, is a unit
of distance that is used to specify glue in math formulas. See “muglue”
(p. 82).

mode. When TEX is processing your input in its stomach (see “anatomy
of TEX”, p. 46), it is in one of six modes:

ordinary horizontal mode (assembling a paragraph)
restricted horizontal mode (assembling an hbox)
ordinary vertical mode (assembling a page)
internal vertical mode (assembling a vbox)
text math mode (assembling a formula that appears in text)
display math mode (assembling a formula that appears on a line
by itself)

The mode describes the kind of entity that TEX is putting together.

TEX for the Impatient No 102

3 Jan 2020 2:18 p.m.

82 Concepts \ §4

Because you can embed one kind of entity within another, e.g., a vbox
within a math formula, TEX keeps track not just of one mode but of a
whole list of modes (what computer scientists call a “stack”). Suppose
that TEX is in mode M and encounters something that puts it into a new
mode M ′. When it finishes its work in mode M ′, it resumes what it was
doing in mode M.

muglue. Muglue is a kind of glue that you can use only in math formulas.
It is measured in mu (mathematical units). One mu is equal to 1/18 em,
where the size of an em is taken from family 2 of the math fonts. TEX
automatically adjusts the size of muglue according to the context. For
instance, a glue size of 2mu is normally smaller within a subscript than it
is within ordinary text. You must use the \mskip command to produce
muglue. For example, ‘\mskip 4mu plus 5mu’ produces mathematical
glue with natural space of four mu and stretch of five mu.

number. In TEX, a number is a positive or negative integer. You can
write a number in TEX in four different ways:

1) as an ordinary decimal integer, e.g., 52
2) as an octal number, e.g., ’14
3) as a hexadecimal number, e.g., "FF0
4) as the code for an ASCII character, e.g., ‘) or ‘\)

Any of these forms can be preceded by ‘+’ or ‘-’.
An octal number can have only the digits 0–7. A hexadecimal number

can have digits 0–9 and A–F, representing values from 0 to 15. You can’t,
alas, use lowercase letters when you write a hexadecimal number. If you
need an explanation of octal and hexadecimal numbers, you’ll find one
on pages 43–44 of The TEXbook.

A decimal, octal, or hexadecimal number ends at the first character
that can’t be part of the number. Thus a decimal number ends when
TEX sees, say, a letter, even though a letter between ‘A’ and ‘F’ would
not end a hexadecimal number. You can end a number with one or more
spaces and TEX will ordinarily ignore them.15

The fourth form above specifies a number as the ASCII code for a
character. TEX ignores spaces after this form of number also. You can
write a number in this form either as ‘c or as ‘\c. The second form,
though longer, has the advantage that you can use it with any character,
even ‘\’, ‘%’, or ‘^^M’. It does have one rather technical disadvantage:
when TEX is expanding a token sequence for a command such as \edef

or \write, occurrences of ‘\c’ within numbers will also be expanded if
they can be. That’s rarely the effect you want.

15 When you’re defining a macro that ends in a number, you should always put a space
after that number; otherwise TEX may later combine that number with something else.

TEX for the Impatient No 103

3 Jan 2020 2:18 p.m.

ordinary mode 83

The following are all valid representations of the decimal number 78:

78 +078 "4E ’116 ‘N ‘\N

You can’t use a number in text by itself since a number isn’t a com-
mand. However, you can insert the decimal form of a number in text by
putting a \number command (p. 224) in front of it or the roman numeral
form by putting a \romannumeral command in front of it.

You can also use decimal constants, i.e., numbers with a fractional part,
for specifying dimensions (see “dimension”, p. 60). A decimal constant
has a decimal point, which can be the first character of the constant. You
can use a comma instead of a period to represent the decimal point. A
decimal constant can be preceded by a plus or minus sign. Thus ‘.5in’,
‘-3.22pt’, and ‘+1,5\baselineskip’ are valid dimensions. You can’t,
however, use decimal constants in any context other than as the “factor”
part of a dimension, i.e., its multiplier.

ordinary mode. An ordinary mode is a mode that TEX is in when it
is assembling a paragraph into lines or assembling lines into a page. See
“horizontal mode” (p. 69), “vertical mode” (p. 94).

outer. An outer macro is one that you can’t use in certain contexts
where TEX is processing tokens at high speed. The purpose of making
a command outer is to enable TEX to catch errors before it’s gone too
far. When you define a macro, you can make it outer with the \outer

command (p. 232).
You cannot use an outer macro in any of the following contexts:

within an argument to a macro
in the parameter text or replacement text of a definition
in the preamble to an alignment
in the unexecuted part of a conditional test

An outer context is a context in which you can use an outer macro, i.e.,
it’s any context other than the ones just listed.

For example, the following input would be a forbidden use of an outer
macro:

\leftline{\proclaim Assertion 2. That which is not inner

is outer.}

The \proclaim macro (p. 131) is defined in plain TEX to be outer, but
it’s being used here in a macro argument to \leftline.

output routine. When TEX has accumulated at least enough material
to fill up a page, it chooses a breakpoint and places the material before
the breakpoint in \box255. It then calls the current output routine, which
processes the material and eventually sends it to the .dvi file. The out-
put routine can perform further processing, such as inserting headers,

TEX for the Impatient No 104

3 Jan 2020 2:18 p.m.

84 Concepts \ §4

footers, and footnotes. Plain TEX provides a default output routine that
inserts a centered page number at the bottom of each page. By providing
a different output routine you can achieve such effects as double-column
output. You can think of the output routine as having a single responsi-
bility: disposing of the material in \box255 one way or another.

The current output routine is defined by the value of \output (p. 148),
which is a list of tokens. When TEX is ready to produce a page, it just
expands the token list.

You can make some simple changes to the actions of the plain TEX
output routine without actually modifying it. For example, by assigning
a list of tokens to \headline or \footline (p. 143) you can have TEX
produce a different header or footer than it ordinarily would.

The output routine is also responsible for collecting any insertions; com-
bining those insertions and any “decorations” such as headers and footers
with the main contents of the page and packaging all of this material in a
box; and eventually sending that box to the .dvi file with the \shipout

command (p. 148). Although this is what an output routine most often
does, a special-purpose output routine might behave differently.

output stream. See “file” (p. 62).

page. TEX processes a document by assembling pages one at a time
and passing them to the output routine. As it proceeds through your
document, TEX maintains a list of lines and other items to be placed on
the page. (The lines are actually hboxes.) This list is called the “main
vertical list”. Periodically TEX goes through a process called “exercising
the page builder”. The items added to the main vertical list between
exercises of the page builder are called “recent contributions”.

The page builder first examines the main vertical list to see if it’s
necessary to ship out a page yet, either because the items on the main
vertical list won’t all fit on the page or because of an explicit item, such
as \eject (p. 137), that tells TEX to end the page. If it’s not necessary to
ship out a page, then the page builder is done for the time being.

Otherwise the page builder analyzes the main vertical list to find what
it considers to be the best possible page break. It associates penalties
with various kinds of unattractive page breaks—a break that would leave
an isolated line at the top or bottom of a page, a break just before a
math display, and so forth. It then chooses the least costly page break,
where the cost of a break is increased by any penalty associated with that
break and by the badness of the page that would result (see page 111 of
The TEXbook for the cost formula). If it finds several equally costly page
breaks, it chooses the last one.

Once the page builder has chosen a page break, it places the items on
the list that are before that break into \box255 and leaves the remaining
ones for the next page. It then calls the output routine. \box255 acts as

TEX for the Impatient No 105

3 Jan 2020 2:18 p.m.

page break 85

a mailbox, with the page builder as the sender and the output routine as
the receiver. Ordinarily the output routine processes \box255, adds other
items, such as insertions, headers, and footers, to the page, and ships out
the page to the .dvi file with a \shipout command. (Specialized output
routines may behave differently.) From TEX’s standpoint, it doesn’t matter
whether or not the output routine ships out a page; the only responsibility
of the output routine is to process \box255 one way or another.

It’s important to realize that the best place to break a page isn’t nec-
essarily the last possible place to break the page. Penalties and other
considerations may cause the page break to come earlier. Furthermore,
TEX appends items to the main vertical list in batches, not just singly.
The lines of a paragraph are an example of such a batch. For these reasons
the page builder usually has items left over when it breaks a page. These
leftover items then form the beginning of the main vertical list for the
next page (possibly in the middle of a batch). Because items are carried
over from one page to another, you can’t assume that as TEX is processing
input, the current page number accurately reflects the page on which the
corresponding output will appear. See pages 110–114 of The TEXbook for
a full description of TEX’s page-breaking rules.

page break. A page break is a place in your document where TEX
ends a page and (except at the end of the document) starts a new one.
See “page” (p. 84) for the process that TEX goes through in choosing
a page break.

You can control TEX’s choice of page breaks in several ways:

You can insert a penalty (p. 136) between two items in the main
vertical list. A positive penalty discourages TEX from breaking the
page there, while a negative penalty—a bonus, in other words—
encourages TEX to break the page there. A penalty of 10000 or more
prevents a page break, while a penalty of −10000 or less forces a page
break. You can get the same effects with the \break and \nobreak

commands (p. 136).

You can adjust the penalties associated with page breaking by as-
signing different values to TEX’s page-breaking parameters.

You can enclose a sequence of paragraphs or other items in the main
vertical list within a vbox, thus preventing TEX from breaking the
page anywhere within the sequence.

Once TEX has chosen a page break, it places the portion of the main
vertical list that precedes the break into \box255. It then calls the current
output routine to process \box255 and eventually ships its contents to
the .dvi file. The output routine must also handle insertions, such as
footnotes, that TEX has accumulated while processing the page.

It’s useful to know the places where TEX can break a page:

TEX for the Impatient No 106

3 Jan 2020 2:18 p.m.

86 Concepts \ §4

At glue, provided that the item preceding the glue is a box, a whatsit,
a mark, or an insertion. When TEX breaks a page at glue, it makes
the break at the top of the glue space and forgets about the rest
of the glue.

At a kern that’s immediately followed by glue.

At a penalty, possibly between the lines of a paragraph.

When TEX breaks a page, it discards any sequence of glue, kerns, and
penalty items that follows the break point.

page builder. See “page” (p. 84).

page layout. When you’re designing a document, you need to decide
on its page layout : the page size, the margins on all four sides, the headers
and footers, if any, that appear at the top and bottom of the page, and
the amount of space between the body of the text and the headers or
footers. TEX has defaults for all of these. It assumes an 81/2-by-11-inch
page with margins of approximately one inch on all four sides, no header,
and a footer consisting of a centered page number.

The margins are determined jointly by the four parameters \hoffset,
\voffset, \hsize, and \vsize (see “margins”, page 79, for advice on
how to adjust them). The header normally consists of a single line that
appears at the top of each page, within the top margin area. You can set it
by assigning a token list to the \headline parameter (p. 143). Similarly,
the footer normally consists of a single line that appears at the bottom of
each page, within the bottom margin area. You can set it by assigning a
token list to the \footline parameter (p. 143). For example, the input:

\headline = {Baby’s First Document\dotfill Page\folio}

\footline = {\hfil}

produces a header line like this on each page:

Baby’s First Document .Page 19

and no footer line.
You can use marks to place the current topic of a section of text into the

header or footer. See “mark” (p. 79) for an explanation of how to do this.

paragraph. Intuitively, a paragraph is a sequence of input lines that’s
ended by a blank line, by a \par command (p. 110), or by an intrinsically
vertical command, such as \vskip. More precisely, a paragraph is a
sequence of commands that TEX processes in ordinary horizontal mode.
When TEX has collected an entire paragraph, it forms it into a sequence
of lines by choosing line breaks (see “line break”, p. 74). The result is
a list of hboxes with glue, interline penalties, and interspersed vertical
material between them. Each hbox is a single line, and the glue is the
interline glue.

TEX for the Impatient No 107

3 Jan 2020 2:18 p.m.

parameter 87

TEX starts a paragraph when it’s in a vertical mode and encounters
an inherently horizontal command. In particular, it’s in a vertical mode
when it’s just finished a paragraph, so the horizontal material on the line
after a blank input line starts the next paragraph in a natural way. There
are many kinds of inherently horizontal commands, but the most common
kind is an ordinary character, e.g., a letter.

The \indent and \noindent commands (pp. 111, 112) are also inher-
ently horizontal commands that tell TEX either to indent or not to indent
the beginning of a paragraph. Any other horizontal command in verti-
cal mode causes TEX to do an implicit \indent. Once TEX has started
a paragraph, it’s in ordinary horizontal mode. It first obeys any com-
mands that are in \everypar. It then proceeds to collect items for the
paragraph until it gets a signal that the paragraph is ended. At the end
of the paragraph it resets the paragraph shape parameters \parshape,
\hangindent, and \looseness.

TEX ordinarily translates a blank line into \par. It also inserts a \par

into the input whenever it’s in horizontal mode and sees an intrinsically
vertical command. So ultimately the thing that ends a paragraph is
always a \par command.

When TEX receives a \par command, it first fills out16 the paragraph
it’s working on. It then breaks the paragraph into lines, adds the resulting
list of items to the enclosing vertical list, and exercises the page builder
(in the case where the enclosing vertical list is the main vertical list). If
the paragraph was ended by an intrinsically vertical command, TEX then
executes that command.

parameter. The term parameter has two different meanings—it can
refer either to a TEX parameter or to a macro parameter.

A TEX parameter is a control sequence that names a value. The value
of a parameter can be a number, a dimension, an amount of glue or
muglue, or a token list. For example, the \parindent parameter specifies
the distance that TEX skips at the start of an indented paragraph.

You can use the control sequence for a parameter either to retrieve the
value of the parameter or to set that value. TEX interprets the control
sequence as a request for a value if it appears in a context where a value
is expected, and as an assignment otherwise. For example:

\hskip\parindent

produces horizontal glue whose natural size is given by \parindent, while:

\parindent = 2pc % (or \parindent 2pc)

16 More precisely, it executes the commands:

\unskip \penalty10000 \hskip\parfillskip

thus appending items for these commands to the end of the current horizontal list.

TEX for the Impatient No 108

3 Jan 2020 2:18 p.m.

88 Concepts \ §4

sets \parindent to a length of two picas. The assignment:

\parindent = 1.5\parindent

uses \parindent in both ways. Its effect is to multiply the value of
\parindent by 1.5.

You can think of a parameter as a built-in register. You’ll find a com-
plete list of the TEX parameters on pages 272–275 of The TEXbook.

A macro parameter is a placeholder for text that is to be plugged into
the definition of a macro. See “macro” (p. 75) for more information about
this kind of parameter.

penalty. A penalty is an item that you can include in a horizontal,
vertical, or math list in order to discourage TEX from breaking the list at
that point or encourage TEX to break the list there. A positive penalty
indicates a bad break point, while a negative penalty indicates a good
break point. Breaking an ordinary horizontal list produces a line break,
while breaking an ordinary vertical list produces a page break. (A penalty
has no effect in restricted horizontal or internal vertical mode.)

You can use the \penalty command (pp. 121, 136) to insert a penalty
explicitly. A penalty of 10000 or more prevents a break, while a penalty
of −10000 or less forces a break.

plain TEX. Plain TEX is the form of TEX described in this book and in
The TEXbook. Plain TEX is part of the standard TEX system, so docu-
ments that use only the facilities of plain TEX can usually be transferred
from one installation to another without difficulty.

Plain TEX consists of the primitive commands together with a large
collection of macros and other definitions. These additional definitions
are given in Appendix B of The TEXbook. They should also be in the file
plain.tex somewhere in your computer system.

primitive. A primitive command is one whose definition is built into
the TEX computer program. In contrast, a command that is not primitive
is defined by a macro or some other form of definition written in TEX itself.
The commands in plain TEX consist of the primitive commands together
with other commands defined in terms of the primitive ones.

reference point. The reference point of a box is the point where the
left edge of the box intersects its baseline. When TEX is processing a
horizontal or vertical list, it uses the reference points of the boxes in the
list to line up those boxes horizontally or vertically (see “box”, p. 51).

TEX for the Impatient No 109

3 Jan 2020 2:18 p.m.

register 89

register. A register is a named location for storing a value. It is much
like a variable in a programming language. TEX has five kinds of registers,
as shown in the following table:

Register type Contents
box a box
count a number
dimen a dimension
muskip muglue
skip glue
toks a token list

The registers of each type are numbered from 0 to 255. You can access
register n of category c by using the form ‘\cn’, e.g., \muskip192. You
can use a register anywhere that information of the appropriate type is
called for. For instance, you can use \count12 in any context calling for
a number or \skip0 in any context calling for glue.

You put information into a register by assigning something to it:

\setbox3 = \hbox{lagomorphs are not mesomorphs}

\count255 = -1

The first assignment constructs an hbox and assigns it to box regis-
ter 3. You can subsequently use ‘\box3’ wherever a box is called for,
and you will get just that hbox.17 The second assignment assigns −1 to
count register 255.

A register of a given type, e.g., a glue register, behaves just like a
parameter of that type. You retrieve its value or assign to it just as
you would with a parameter. Some TEX parameters, e.g., \pageno, are
implemented as registers, in fact.

Plain TEX uses many registers for its own purposes, so you should not
just pick an arbitrary register number when you need a register. Instead
you should ask TEX to reserve a register by using one of the commands
\newbox, \newcount, \newdimen, \newmuskip, \newskip, or \newtoks

(p. 244). These commands are outer, so you can’t use them in a macro
definition. If you could, you’d use up a register every time the macro was
called and probably run out of registers before long.

Nonetheless you can with some caution use any register temporarily
within a group, even one that TEX is using for something else. After TEX
finishes executing the commands in a group, it restores the contents of
every register to what they were before it started executing the group.
When you use an explicitly numbered register inside a group, you must
be sure that the register isn’t modified by any macro that you might call

17 But note carefully: using a box register also empties it so that its contents become
void. The other kinds of registers don’t behave that way. You can use the \copy
command (p. 164) to retrieve the contents of a box register without emptying it.

TEX for the Impatient No 110

3 Jan 2020 2:18 p.m.

90 Concepts \ §4

within the group. Be especially careful about using arbitrary registers in
a group that calls macros that you didn’t write yourself.

TEX reserves certain registers for special purposes: \count0 through
\count9 for page numbering information and \box255 for the contents of
a page just before it is offered to the output routine. Registers \dimen0–
\dimen9, \skip0–\skip9, \muskip0–\muskip9, \box0–\box9, and the
255 registers other than \box255 are generally available as “scratch” reg-
isters. Thus plain TEX provides only one scratch register, \count255, for
counts. See pages 122 and 346 of The TEXbook for conventions to follow
in choosing register numbers.

You can examine the contents of registers during a TEX run with the
\showthe command (p. 253), e.g., with ‘\showthe\dimen0’.

restricted mode. A restricted mode is a mode that TEX is in when
it is assembling an hbox or a vbox. We follow The TEXbook in us-
ing the term “internal vertical mode” for what you might expect to be
“restricted vertical mode”. See “horizontal mode” (p. 69) and “vertical
mode” (p. 94).

rule. A rule is a solid black rectangle. A rule, like a box, has width,
height, and depth. The vertical dimension of the rectangle is the sum of
its height and its depth. An ordinary horizontal or vertical straight line
is a special case of a rule.

A rule can be either horizontal or vertical. The distinction between a
horizontal rule and a vertical one has to do with how you produce the
rule, since a vertical rule can be short and fat (and therefore look like
a horizontal line), while a horizontal rule can be tall and skinny (and
therefore look like a vertical line). TEX’s notion of a rule is more general
than that of typographers, who think of a rule as a line and would not
usually call a square black box a rule.

You can produce a horizontal rule using the \hrule command and
a vertical rule using the \vrule command (p. 172). For example, the
control sequence \hrule by itself produces a thin rule that runs across
the page, like this:

The command ‘\vrule height .25in’ produces a vertical rule that
runs .25 inches down the page like this:

There are two differences between horizontal rules and vertical rules:

1) For a horizontal rule, TEX defaults the width to the width of the
smallest box or alignment that encloses it. For a vertical rule, TEX
defaults the height and depth in the same way. (The default is the
size that you get if you don’t give a size explicitly for that dimension.)

TEX for the Impatient No 111

3 Jan 2020 2:18 p.m.

script size 91

2) A horizontal rule is an inherently vertical item that cannot participate
in a horizontal list, while a vertical rule is an inherently horizontal
item that cannot participate in a vertical list. This behavior may
seem strange at first but there is good reason for it: a horizontal rule
ordinarily runs visually from left to right and thus separates items in
a vertical list, while a vertical rule ordinarily runs visually from top to
bottom and thus separates items in a horizontal list.

If you construct a rule with three explicit dimensions, it will look the
same whether you make it a horizontal rule or a vertical rule. For exam-
ple, the command ‘\vrule height1pt depth2pt width3in’ produces this
horizontal-looking rule:

You’ll find a precise statement of TEX’s treatment of rules on pages 221–
222 of The TEXbook.

script size. Script size describes one of the three related fonts in a
family. Script size is smaller than text size but larger than scriptscript
size. TEX uses script size for subscripts and superscripts, as well as for
the numerators and denominators of fractions in text.

scriptscript size. Scriptscript size describes the smallest of the
three related fonts in a family. TEX uses scriptscript size for second-
order subscripts, superscripts, numerators, and denominators. For exam-
ple, TEX will use scriptscript size for a subscript on a subscript or for a
superscript on a scriptsize numerator.

shrink. See “glue” (p. 66).

space. You can cause TEX to put space between two items in sev-
eral ways:

1) You can write something that TEX treats as a space token: one or
more blank characters, the end of a line (the end-of-line character
acts like a space), or any command that expands into a space token.
TEX generally treats several consecutive spaces as equivalent to a
single one, including the case where the spaces include a single end-
of-line. (An empty line indicates the end of a paragraph; it causes
TEX to generate a \par token.) TEX adjusts the size of this kind of
space to suit the length required by the context.

2) You can write a skip command that produces the glue you specify in
the command. The glue can stretch or shrink, producing more or less
space. You can have vertical glue as well as horizontal glue. Glue
disappears whenever it is next to a line or page break.

3) You can write a kern. A kern produces a fixed amount of space that
does not stretch or shrink and does not disappear at a line or page

TEX for the Impatient No 112

3 Jan 2020 2:18 p.m.

92 Concepts \ §4

break (unless it is immediately followed by glue). The most common
use of a kern is to establish a fixed spatial relationship between two
adjacent boxes.

Glue and kerns can have negative values. Negative glue or a negative
kern between adjacent items brings those items closer together.

stretch. See “glue” (p. 66).

strut. A strut is an invisible box whose width is zero and whose height
and depth are slightly more than those of a “normal” line of type in the con-
text. Struts are useful for obtaining uniform vertical spacing when TEX’s
usual line spacing is disabled, e.g., within a math formula or within a hor-
izontal alignment where you’ve specified \offinterlineskip. Because a
strut is taller and deeper than everything else on its line, it determines the
height and depth of the line. You can produce a strut with the \strut

command (p. 167) or the \mathstrut command (p. 168). You can use
\strut anywhere, but you can only use \mathstrut when TEX is in math
mode. A strut in plain TEX has height 8.5 pt and depth 3.5 pt, while a
math strut has the height and depth of a left parenthesis in the current
style (so it’s smaller for subscripts and superscripts).

Here’s an example showing how you might use a strut:

\vbox{\hsize = 3in \raggedright

\strut Here is the first of two paragraphs that we’re

setting in a much narrower line length.\strut}

\vbox{\hsize = 3in \raggedright

\strut Here is the second of two paragraphs that we’re

setting in a much narrower line length.\strut}

This input yields:

Here is the first of two paragraphs that we’re
setting in a much narrower line length.

Here is the second of two paragraphs that
we’re setting in a much narrower line length.

Without the struts the vboxes would be too close together. Similarly,
in the formula:

$\overline{x\mathstrut} \otimes \overline{t\mathstrut}$

the math struts cause both bars to be set at the same height even though
the ‘x’ and the ‘t’ have different heights:

x⊗ t

style. Material in a math formula is set in one of eight styles, depending
on the context. Knowing about styles can be useful if you want to set
part of a formula in a different size of type than the one that TEX has
chosen according to its usual rules.

TEX for the Impatient No 113

3 Jan 2020 2:18 p.m.

TEX MEX 93

The four primary styles are:

display style (for formulas displayed on a line by themselves)
text style (for formulas embedded in ordinary text)
script style (for superscripts and subscripts)
scriptscript style (for superscripts on superscripts, etc.)

The other four styles are so-called cramped variants. In these variants
superscripts aren’t raised as high as usual, and so the formula needs
less vertical space than it otherwise would. See pages 140–141 of The
TEXbook for the details of how TEX selects the style.

TEX chooses a size of type according to the style:

Display style and text style are set in text size, like ‘this’.
Script style is set in script size, like ‘this’.
Scriptscript style is set in scriptscript size, like ‘this’.

See “family” (p. 62) for more information about these three sizes.
TEX doesn’t have a “scriptscriptscript” style because such a style would

usually have to be set in a size of type too small to read. TEX therefore
sets third-order subscripts, superscripts, etc., using the scriptscript style.

Once in a while you may find that TEX has set a formula in a different
style than the one you’d prefer. You can override TEX’s choice with the
\textstyle, \displaystyle, \scriptstyle, and \scriptscriptstyle

commands (p. 198).

TEX MEX. (a) A variant of TEX used for mathematical typesetting in
Central American countries. (b) A spicy cuisine favored by the TEXni-
cians of El Paso.

text math. We use the term text math to refer to a math formula
set within a line of text, i.e., enclosed in $’s. TEX sets text math in
text math mode.

text size. Text size describes the largest of the three related fonts in a
family. TEX uses text size for ordinary symbols appearing in math mode.

token. A token is either a single character tagged with a category code,
or a control sequence. TEX reads characters from a file using its eyes (see
“anatomy of TEX”, p. 46) and groups the characters into tokens using
its mouth. When a token reaches TEX’s stomach, TEX interprets it as a
command unless it’s part of an argument of a preceding command.

unit of measure. See “dimension” (p. 60).

TEX for the Impatient No 114

3 Jan 2020 2:18 p.m.

94 Concepts \ §4

vbox. A vbox (vertical box) is a box that TEX constructs by placing the
items of a vertical list one after another, top to bottom. A vbox, taken
as a unit, is neither inherently horizontal nor inherently vertical, i.e., it
can appear as an item of either a vertical list or a horizontal list. You can
construct a vbox with the \vbox or the \vtop command (p. 161). The
difference is that for \vbox, the reference point of the constructed vbox
is derived from that of the last (and usually bottommost) constituent
list item, but for \vtop, it’s that of the first (and usually topmost) con-
stituent list item.

vertical list. A vertical list is a list of items that TEX has produced
while it is in one of its vertical modes, i.e., assembling either a vbox or a
page. See “vertical mode” below.

vertical mode. When TEX is assembling either a vbox or the main
vertical list from which pages are derived, it is in one of two vertical
modes: ordinary vertical mode for assembling the main vertical list, and
internal vertical mode for assembling vboxes. Whenever TEX is in a
vertical mode its stomach (see “anatomy of TEX”, p. 46) is constructing a
vertical list of items (boxes, glue, penalties, etc.). TEX typesets the items
in the list one below another, top to bottom.

A vertical list can’t contain any items produced by inherently horizontal
commands, e.g., \hskip or an ordinary (nonspace) character. 18

If TEX is assembling a vertical list in ordinary vertical mode and
encounters an inherently horizontal command, it switches to ordinary
horizontal mode.

If TEX is assembling a vertical list in internal vertical mode and
encounters an inherently horizontal command, it complains.

Two commands that you might at first think are inherently vertical are
in fact inherently horizontal: \valign (p. 179) and \vrule (p. 172). See
page 283 of The TEXbook for a list of the inherently horizontal commands.

It’s particularly important to be aware that TEX considers an ordinary
character other than a space character to be inherently horizontal. If
TEX suddenly starts a new paragraph when you weren’t expecting it, a
likely cause is a character that TEX encountered while in vertical mode.
You can convince TEX not to treat that character as inherently horizontal
by enclosing it in an hbox since the \hbox command, despite its name, is
neither inherently horizontal nor inherently vertical.

whatsit. A whatsit is an item of information that tells TEX to carry out
some action that doesn’t fit into its ordinary scheme of things. A whatsit
can appear in a horizontal or vertical list, just like a box or a glue item.

18 TEX ignores any space characters that it encounters while it’s in a vertical mode.

TEX for the Impatient No 115

3 Jan 2020 2:18 p.m.

width 95

TEX typesets a whatsit as a box having zero width, height, and depth—in
other words, a box that contains nothing and occupies no space.

Three sorts of whatsits are built into TEX:

The \openout, \closeout, and \write commands (p. 249) produce a
whatsit for operating on an output file. TEX postpones the operation
until it next ships out a page to the .dvi file (unless the operation is
preceded by \immediate). TEX uses a whatsit for these commands
because they don’t have anything to do with what it’s typesetting
when it encounters them.

The \special command (p. 250) tells TEX to insert certain text di-
rectly into the .dvi file. As with the \write command, TEX post-
pones the insertion until it next ships out a page to the .dvi file. A
typical use of \special would be to name a graphics file that the
device driver should incorporate into your final output.

When you change languages with the \language or \setlanguage

commands (p. 128), TEX inserts a whatsit that instructs it to use a
certain set of hyphenation rules later on when it’s breaking a para-
graph into lines.

A particular implementation of TEX may provide additional whatsits.

width. The width of a box is the amount of horizontal space that it
occupies, i.e., the distance from its left edge to its right edge. The typeset
material in a box can be wider than the box itself.

TEX for the Impatient No 116

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 117

3 Jan 2020 2:18 p.m.

5 Commands
for composing
paragraphs

This section covers commands that deal with characters, words, lines,
and entire paragraphs. For an explanation of the conventions used in this
section, see “Descriptions of the commands” (p. 3).

Characters and accents

Letters and ligatures for European alphabets

\AA Scandinavian letter Å
\aa Scandinavian letter å
\AE Æ ligature
\ae æ ligature
\L Polish letter L
\l Polish letter l
\O Danish/Norwegian letter Ø
\o Danish/Norwegian letter ø
\OE Œ ligature
\oe œ ligature
\ss German letter ß

These commands produce various letters and ligatures from European
alphabets. They are useful for occasional words and phrases in these
languages—but if you need to typeset a large amount of text in a Euro-
pean language, you should probably be using a version of TEX adapted
to that language.1

1 The TEX Users Group (p. 18) can provide you with information about European
language versions of TEX.

TEX for the Impatient No 118

3 Jan 2020 2:18 p.m.

98 Commands for composing paragraphs \ §5

You’ll need a space after these commands when you use them within
a word, so that TEX will treat the following letters as part of the word
rather than as part of the command. You needn’t be in math mode to
use these commands.

Example:
{\it les \oe vres de Moli\‘ere}

produces:
les œvres de Molière

Special symbols

+ \# pound sign #
\$ dollar sign $
\% percent sign %
\& ampersand &
_ underscore
\lq left quote ‘
\rq right quote ’
\lbrack left bracket [
\rbrack right bracket]
\dag dagger symbol †
\ddag double dagger symbol ‡
\copyright copyright symbol c©
\P paragraph symbol ¶
\S section symbol §
These commands produce various special characters and marks. The first
five commands are necessary because TEX by default attaches special
meanings to the characters (#, $, %, &, _). You needn’t be in math mode
to use these commands.

You can use the dollar sign in the Computer Modern italic fonts to get
the pound sterling symbol, as shown in the example below.

Example:
\dag It’ll only cost you \$9.98 over here, but in England

it’s {\it \$}24.98.

produces:
†It’ll only cost you $9.98 over here, but in England it’s £24.98.

\TeX

This command produces the TEX logo. Remember to follow it by \ or
to enclose it in a group when you want a space after it.

TEX for the Impatient No 119

3 Jan 2020 2:18 p.m.

Characters and accents 99

Example:
A book about \TeX\ is in your hands.

produces:
A book about TEX is in your hands.

\dots

This command produces an ellipsis, i.e., three dots, in ordinary text. It’s
intended for use in mathematical writing; for an ellipsis between ordinary
words, you should use \ldots (p. 203) instead. Since \dots includes
its own space, you shouldn’t follow it by \ .

Example:
The sequence x_1, x_2, \dots, x_∞

does not terminate.

produces:
The sequence x1, x2, . . . , x∞ does not terminate.

See also: “Miscellaneous ordinary math symbols” (p. 188).

Arbitrary characters

\char 〈charcode〉
This command produces the character located at position 〈charcode〉 of
the current font.

Example:
{\char65} {\char ‘A} {\char ‘\A}

produces:
A A A

\mathchar 〈mathcode〉
This command produces the math character whose class, family, and font
position are given by 〈mathcode〉. It is only legal in math mode.

Example:
\def\digger{\mathchar "027F} % Like \spadesuit in plain TeX.

% Class 0, family 2, font position "7F.

\digger

produces:
♠

See also: \delimiter (p. 204).

TEX for the Impatient No 120

3 Jan 2020 2:18 p.m.

100 Commands for composing paragraphs \ §5

Accents

\’ acute accent as in é
\. dot accent as in ṅ
\= macron accent as in r̄
\^ circumflex accent as in ô
\‘ grave accent as in è
\" umlaut accent as in ö
\~ tilde accent as in ã
\c cedilla accent as in ç
\d underdot accent as in r.
\H Hungarian umlaut accent as in ő
\t tie-after accent as in �uu
\u breve accent as in r̆
\v check accent as in ǒ

These commands produce accent marks in ordinary text. You’ll usu-
ally need to leave a space after the ones denoted by a single letter (see
“Spaces”, p. 12).

Example:
Add a soup\c con of \’elan to my pin\~a colada.

produces:
Add a soupçon of élan to my pinã colada.

\i

\j

These commands produce dotless versions of the letters ‘i’ and ‘j’. You
should use them instead of the ordinary ‘i’ and ‘j’ when you are putting an
accent above those letters in ordinary text. Use the \imath and \jmath

commands (p. 188) for dotless ‘i’s and ‘j’s in math formulas.

Example:
long ‘i’ as in l\=\i fe \quad \v\j

produces:
long ‘i’ as in l̄ıfe ̌

\accent 〈charcode〉
This command puts an accent over the character following this command.
The accent is the character at position 〈charcode〉 in the current font. TEX
assumes that the accent has been designed to fit over a character 1 ex high
in the same font as the accent. If the character to be accented is taller
or shorter, TEX adjusts the position accordingly. You can change fonts

TEX for the Impatient No 121

3 Jan 2020 2:18 p.m.

Characters and accents 101

between the accent and the next character, thus drawing the accent char-
acter and the character to be accented from different fonts. If the accent
character isn’t really intended to be an accent, TEX won’t complain; it
will just typeset something ridiculous.

Example:
l’H\accent94 otel des Invalides

% Position 94 of font cmr10 has a circumflex accent.

produces:
l’Hôtel des Invalides

See also: Math accents (p. 199).

Defeating boundary ligatures

\noboundary

You can defeat a ligature or kern that TEX applies to the first or last
character of a word by putting \noboundary just before or just after the
word. Certain fonts intended for languages other than English contain
a special boundary character that TEX puts at the beginning and end
of each word. The boundary character occupies no space and is invisible
when printed. It enables TEX to provide different typographical treatment
to characters at the beginning or end of a word, since the boundary
character can be part of a sequence of characters to be kerned or replaced
by a ligature. (None of the standard TEX fonts contain this boundary
character.) The effect of \noboundary is to delete the boundary character
if it’s there, thus preventing TEX from recognizing the ligature or kern.

TEX for the Impatient No 122

3 Jan 2020 2:18 p.m.

102 Commands for composing paragraphs \ §5

Selecting fonts

Particular fonts

\fivebf use 5-point bold font

\fivei use 5-point math italic font

\fiverm use 5-point roman font

\fivesy use 5-point math symbol font

\sevenbf use 7-point bold font

\seveni use 7-point math italic font

\sevenrm use 7-point roman font

\sevensy use 7-point math symbol font

\tenbf use 10-point bold text font

\tenex use 10-point math extension font

\teni use 10-point math italic font

\tenrm use 10-point roman text font

\tensl use 10-point slanted roman font

\tensy use 10-point math symbol font

\tenit use 10-point italic font

\tentt use 10-point typewriter font

These commands cause TEX to typeset the following text in the specified
font. Normally you would enclose one of these font-selecting commands in
a group, together with the text to be set in the selected font. Outside of a
group a font-selecting command is effective until the end of the document
(unless you override it with another such command).

Example:
See how I’ve reduced my weight---from

120 lbs.\ to {\sevenrm 140 lbs}.

produces:
See how I’ve reduced my weight—from 120 lbs. to 140 lbs.

\nullfont

This command selects a font, built into TEX, that has no characters in
it. TEX uses it as a replacement for an undefined font in a family of
math fonts.

TEX for the Impatient No 123

3 Jan 2020 2:18 p.m.

Uppercase and lowercase 103

Type styles

+ \bf use boldface type
\it use italic type
\rm use roman type
\sl use slanted type
\tt use typewriter type

These commands select a type style without changing the typeface or the
point size.2 Normally you would enclose one of these type style commands
in a group, together with the text to be set in the selected font. Outside
of a group a type style command is effective until the end of the document
(unless you override it with another such command).

Example:
The Dormouse was {\it not} amused.

produces:
The Dormouse was not amused.

See also: “Fonts in math formulas” (p. 209).

Uppercase and lowercase

\lccode 〈charcode〉 [〈number〉 table entry]
\uccode 〈charcode〉 [〈number〉 table entry]

The \lccode and \uccode values for the 256 possible input characters
specify the correspondence between the lowercase and uppercase forms
of letters. These values are used by the \lowercase and \uppercase

commands respectively and by TEX’s hyphenation algorithm.
TEX initializes the values of \lccode and \uccode as follows:

The \lccode of a lowercase letter is the ASCII code for that letter.
The \lccode of an uppercase letter is the ASCII code for the corre-
sponding lowercase letter.
The \uccode of an uppercase letter is the ASCII code for that letter.
The \uccode of a lowercase letter is the ASCII code for the corre-
sponding uppercase letter.

2 TEX does not provide predefined commands for changing just the point size, e.g.,
\eightpoint. Supporting such commands would require a great number of fonts,
most of which would never be used. Such commands were, however, used in typeset-
ting The TEXbook.

TEX for the Impatient No 124

3 Jan 2020 2:18 p.m.

104 Commands for composing paragraphs \ §5

The \lccode and \uccode of a nonletter are both zero.

Most of the time there’s no reason to change these values, but you
might want to change them if you’re using a language that has more
letters than English.

Example:
\char\uccode‘s \char\lccode‘a \char\lccode‘M

produces:
Sam

\lowercase { 〈token list〉 }
\uppercase { 〈token list〉 }
These commands convert the letters in 〈token list〉, i.e., those tokens
with category code 11, to their lowercase and uppercase forms. The
conversion of a letter is defined by its \lccode (for lowercase) or \uccode
(for uppercase) table value. Tokens in the list that are not letters are
not affected—even if the tokens are macro calls or other commands that
expand into letters.

Example:
\def\x{Cd} \lowercase{Ab\x} \uppercase{Ab\x}

produces:
abCd ABCd

Interword spacing

+ \

This command explicitly produces an interword space called a “control
space”. A control space is useful when a letter occurs immediately after
a control sequence, or in any other circumstance where you don’t want
two tokens to be run together in the output. The amount of space pro-
duced by \ is independent of preceding punctuation, i.e., its space factor
(p. 107) is 1000.

Incidentally, if you want to print the ‘ ’ character that we’ve used here
to denote a space, you can get it by typing {\tt \char ‘\ }.

Example:
The Dormouse was a \TeX\ expert, but he never let on.

produces:
The Dormouse was a TEX expert, but he never let on.

TEX for the Impatient No 125

3 Jan 2020 2:18 p.m.

Interword spacing 105

\space

This command is equivalent to an input space character. It differs from
\ in that its width can be affected by preceding punctuation.

Example:
Yes.\space No.\space Maybe.\par

Yes.\ No.\ Maybe.

produces:
Yes. No. Maybe.
Yes. No. Maybe.

^^M

This construct produces the end of line character. It normally has two
effects when TEX encounters it in your input:

1) It acts as a command, producing either an input space (if it comes
at the end of a nonblank line) or a \par token (if it comes at the end
of a blank line).

2) It ends the input line, causing TEX to ignore the remaining characters
on the line.

However, ^^M does not end the line when it appears in the context ‘\^^M,
denoting the ASCII code for control-M (the number 13). You can change
the meaning of ^^M by giving it a different category code. See page 55 for
a more general explanation of the ^^ notation.

Example:
Hello.^^MGoodbye.

Goodbye again.\par

The \char ‘\^^M\ character.\par

% The fl ligature is at position 13 of font cmr10

\number ‘\^^M\ is the end of line code.\par

Again, \number ‘^^M is the end of line code,

isn’t it? % 32 is the ASCII code for a space

produces:
Hello. Goodbye again.
The fl character.
13 is the end of line code.
Again, 32isn’t it?

+ ~

The active character ‘~’, called a “tie”, produces a normal interword
space between two words and links those words so that a line break will
not occur between them. You should use a tie in any context where

TEX for the Impatient No 126

3 Jan 2020 2:18 p.m.

106 Commands for composing paragraphs \ §5

a line break would be confusing, e.g., before a middle initial, after an
abbreviation such as “Dr.”, or after “Fig.” in “Fig. 8”.

Example:
P.D.Q.~Bach (1807--1742), the youngest and most

imitative son of Johann~S. Bach, composed the

{\sl Concerto for Horn and Hardart}.

produces:
P.D.Q. Bach (1807–1742), the youngest and most imitative son of Jo-
hann S. Bach, composed the Concerto for Horn and Hardart.

+ \/

Every character in a TEX font has an “italic correction” associated with
it, although the italic correction is normally zero for a character in an
unslanted (upright) font. The italic correction specifies the extra space
that’s needed when you’re switching from a slanted font (not necessarily
an italic font) to an unslanted font. The extra space is needed because a
slanted character projects into the space that follows it, making the space
look too small when the next character is unslanted. The metrics file for
a font includes the italic correction of each character in the font.

The \/ command produces an italic correction for the preceding char-
acter. You should insert an italic correction when you’re switching from
a slanted font to an unslanted font, except when the next character is a
period or comma.

Example:
However, {\it somebody} ate {\it something}: that’s clear.

However, {\it somebody\/} ate {\it something\/}:

that’s clear.

produces:
However, somebody ate something: that’s clear.
However, somebody ate something : that’s clear.

\frenchspacing

\nonfrenchspacing

TEX normally adjusts the spacing between words to account for punc-
tuation marks. For example, it inserts extra space at the end of a sen-
tence and adds some stretch to the glue following any punctuation mark
there. The \frenchspacing command tells TEX to make the interword
spacing independent of punctuation, while the \nonfrenchspacing com-
mand tells TEX to use its normal spacing rules. If you don’t specify
\frenchspacing, you’ll get TEX’s normal spacing.

TEX for the Impatient No 127

3 Jan 2020 2:18 p.m.

Interword spacing 107

See page 13 for advice on how to control TEX’s treatment of punctua-
tion at the end of sentences.

Example:
{\frenchspacing An example: two sentences. Right? No.\par}

{An example: two sentences. Right? No. \par}%

produces:
An example: two sentences. Right? No.
An example: two sentences. Right? No.

\obeyspaces

TEX normally condenses a sequence of several spaces to a single space.
\obeyspaces instructs TEX to produce a space in the output for each
space in the input. \obeyspaces does not cause spaces at the beginning
of a line to show up, however; for that we recommend the \obeywhite-

space command defined in eplain.tex (p. 293). \obeyspaces is often
useful when you’re typesetting something, computer input for example, in
a monospaced font (one in which each character takes up the same amount
of space) and you want to show exactly what each line of input looks like.

You can use the \obeylines command (p. 122) to get TEX to follow the
line boundaries of your input. \obeylines is often used in combination
with \obeyspaces.

Example:
These spaces are closed up

{\obeyspaces but these are not }.

produces:
These spaces are closed up but these are not .

\spacefactor [〈number〉 parameter]
\spaceskip [〈glue〉 parameter]
\xspaceskip [〈glue〉 parameter]
\sfcode 〈charcode〉 [〈number〉 table entry]

These primitive parameters affect how much space TEX puts between two
adjacent words, i.e., the interword spacing. The normal interword spacing
is supplied by the current font. As TEX is processing a horizontal list, it
keeps track of the space factor f in \spacefactor. As it processes each
input character c, it updates f according to the value of fc, the space
factor code of c (see below). For most characters, fc is 1000 and TEX
sets f to 1000. (The initial value of f is also 1000.) When TEX sees an
interword space, it adjusts the size of that space by multiplying the stretch
and shrink of that space by f/1000 and 1000/f respectively. Thus:

1) If f = 1000, the interword space keeps its normal value.
2) If f < 1000, the interword space gets less stretch and more shrink.

TEX for the Impatient No 128

3 Jan 2020 2:18 p.m.

108 Commands for composing paragraphs \ §5

3) If f > 1000, the interword space gets more stretch and less shrink.

In addition, if f ≥ 2000 the interword space is further increased by the
“extra space” parameter associated with the current font.

Each input character c has an entry in the \sfcode (space factor code)
table. The \sfcode table entry is independent of the font. Usually TEX
just sets f to fc after it processes c. However:

If fc is zero, TEX leaves f unchanged. Thus a character such as ‘)’
in plain TEX, for which fc is zero, is essentially transparent to the
interword space calculation.

If f < 1000 < fc, TEX sets f to 1000 rather than to fc, i.e., it refuses
to raise f very rapidly.

The \sfcode value for a period is normally 3000, which is why TEX
usually puts extra space after a period (see the rule above for the case
f ≥ 2000). Noncharacter items in a horizontal list, e.g., vertical rules,
generally act like characters with a space factor of 1000.

You can change the space factor explicitly by assigning a different nu-
merical value to \spacefactor. You can also override the normal inter-
word spacing by assigning a different numerical value to \xspaceskip or
to \spaceskip:

\xspaceskip specifies the glue to be used when f ≥ 2000; in the case
where \xspaceskip is zero, the normal rules apply.

\spaceskip specifies the glue to be used when f < 2000 or when
\xspaceskip is zero; if \spaceskip is zero, the normal rules apply.
The stretch and shrink of the \spaceskip glue, like that of the ordi-
nary interword glue, is modified according to the value of f .

See page 76 of The TEXbook for the precise rules that TEX uses in cal-
culating interword glue, and pages 285–287 of The TEXbook for the ad-
justments made to \spacefactor after various items in a horizontal list.

Centering and justifying lines

+ \centerline 〈argument〉
\leftline 〈argument〉
\rightline 〈argument〉
The \centerline command produces an hbox exactly as wide as the cur-
rent line and places 〈argument〉 at the center of the box. The \leftline

and \rightline commands are analogous; they place 〈argument〉 at the
left end or at the right end of the box. If you want to apply one of
these commands to several consecutive lines, you must apply it to each
one individually. See page 306 for an alternate approach.

TEX for the Impatient No 129

3 Jan 2020 2:18 p.m.

Centering and justifying lines 109

Don’t use these commands within a paragraph—if you do, TEX prob-
ably won’t be able to break the paragraph into lines and will complain
about an overfull hbox.

Example:
\centerline{Grand Central Station}

\leftline{left of Karl Marx}

\rightline{right of Genghis Khan}

produces:
Grand Central Station

left of Karl Marx
right of Genghis Khan

+ \line 〈argument〉
This command produces an hbox containing 〈argument〉. The hbox is
exactly as wide as the current line, i.e., it extends from the right margin
to the left margin.

Example:
\line{ugly \hfil suburban \hfil sprawl}

% Without \hfil you’d get an ‘underfull box’ from this.

produces:
ugly suburban sprawl

\llap 〈argument〉
\rlap 〈argument〉
These commands enable you to produce text that overlaps whatever hap-
pens to be to the left or to the right of the current position. \llap back-
spaces by the width of 〈argument〉 and then typesets 〈argument〉. \rlap

is similar, except that it typesets 〈argument〉 first and then backspaces.
\llap and \rlap are useful for placing text outside of the current margins.
Both \llap and \rlap do their work by creating a box of zero width.

You can also use \llap or \rlap to construct special characters by
overprinting, but don’t try it unless you’re sure that the characters you’re
using have the same width (which is the case for a monospaced font such
as cmtt10, the Computer Modern 10-point typewriter font).

TEX for the Impatient No 130

3 Jan 2020 2:18 p.m.

110 Commands for composing paragraphs \ §5

Example:
\noindent\llap{off left }\line{\vrule \Leftarrow

left margin of examples\hfil right margin of examples

\Rightarrow\vrule}\rlap{ off right}

produces:
off left ⇐ left margin of examples right margin of examples ⇒ off right

See also: \hsize (p. 114).

Shaping paragraphs

Starting, ending, and indenting paragraphs

\par

This command ends a paragraph and puts TEX into vertical mode, ready
to add more items to the page. Since TEX converts a blank line in your
input file into a \par token, you don’t ordinarily need to type an explicit
\par in order to end a paragraph.

An important point is that \par doesn’t tell TEX to start a paragraph;
it only tells TEX to end a paragraph. TEX starts a paragraph when it
is in ordinary vertical mode (which it is after a \par) and encounters an
inherently horizontal item such as a letter. As part of its ceremony for
starting a paragraph, TEX inserts an amount of vertical space given by the
parameter \parskip (p. 141) and indents the paragraph by a horizontal
space given by \parindent (p. 113).

You can usually cancel any interparagraph space produced by a \par

by giving the command \vskip -\lastskip. It can often be helpful to
do this when you’re writing a macro that is supposed to work the same
way whether or not it is preceded by a blank line.

You can get TEX to take some special action at the start of each para-
graph by placing the instructions in \everypar (p. 113).

See pages 283 and 286 of The TEXbook for the precise effect of \par.

Example:
\parindent = 2em

‘‘Can you row?’’ the Sheep asked, handing Alice a pair of

knitting-needles as she was speaking.\par ‘‘Yes, a little%

---but not on land---and not with needles---’’ Alice was

starting to say, when suddenly the needles turned into oars.

TEX for the Impatient No 131

3 Jan 2020 2:18 p.m.

Shaping paragraphs 111

produces:
“Can you row?” the Sheep asked, handing Alice a pair of knitting-

needles as she was speaking.
“Yes, a little—but not on land—and not with needles—” Alice was

starting to say, when suddenly the needles turned into oars.

\endgraf

This command is a synonym for the \par primitive command. It is
useful when you’ve redefined \par but still want access to the original
definition of \par.

\parfillskip [〈glue〉 parameter]

This parameter specifies the horizontal glue that TEX inserts at the end
of a paragraph. The default value of \parfillskip is 0pt plus 1fil,
which causes the last line of a paragraph to be filled out with blank
space. A value of 0pt forces TEX to end the last line of a paragraph at
the right margin.

+ \indent

If TEX is in vertical mode, as it is after ending a paragraph, this command
inserts the \parskip interparagraph glue, puts TEX into horizontal mode,
starts a paragraph, and indents that paragraph by \parindent. If TEX is
already in horizontal mode, this command merely produces a blank space
of width \parindent. Two \indents in a row produce two indentations.

As the example below shows, an \indent at a point where TEX would
start a paragraph anyway is redundant. When TEX is in vertical mode
and sees a letter or some other inherently horizontal command, it starts
a paragraph by switching to horizontal mode, doing an \indent, and
processing the horizontal command.

TEX for the Impatient No 132

3 Jan 2020 2:18 p.m.

112 Commands for composing paragraphs \ §5

Example:
\parindent = 2em This is the first in a series of three

paragraphs that show how you can control indentation. Note

that it has the same indentation as the next paragraph.\par

\indent This is the second in a series of three paragraphs.

It has \indent an embedded indentation.\par

\indent\indent This doubly indented paragraph

is the third in the series.

produces:
This is the first in a series of three paragraphs that show how you

can control indentation. Note that it has the same indentation as the
next paragraph.

This is the second in a series of three paragraphs. It has an
embedded indentation.

This doubly indented paragraph is the third in the series.

+ \noindent

If TEX is in vertical mode, as it is after ending a paragraph, this command
inserts the \parskip interparagraph glue, puts TEX into horizontal mode,
and starts an unindented paragraph. It has no effect in horizontal mode,
i.e., within a paragraph. Starting a paragraph with \noindent thus can-
cels the indentation by \parindent that would normally occur there.

A common use of \noindent is to cancel the indentation of the first line
of a paragraph when the paragraph follows some displayed material.

Example:
\parindent = 1em

Tied round the neck of the bottle was a label with the

words \smallskip \centerline{EAT ME}\smallskip

\noindent beautifully printed on it in large letters.

produces:
Tied round the neck of the bottle was a label with the words

EAT ME

beautifully printed on it in large letters.

\textindent 〈argument〉
This command tells TEX to start a paragraph and indent it by \par-

indent, as usual. TEX then right-justifies 〈argument〉 within the indenta-
tion and follows it with an en space (half an em). Plain TEX uses this com-
mand to typeset footnotes (p. 145) and items in lists (see \item, p. 130).

TEX for the Impatient No 133

3 Jan 2020 2:18 p.m.

Shaping paragraphs 113

Example:
\parindent = 20pt \textindent{\raise 1pt\hbox{\bullet}}%

You are allowed to use bullets in \TeX\ even if

you don’t join the militia, and many peace-loving

typographers do so.

produces:
• You are allowed to use bullets in TEX even if you don’t join the

militia, and many peace-loving typographers do so.

\parindent [〈dimen〉 parameter]

This parameter specifies the amount by which the first line of each para-
graph is to be indented. As the example below shows, it’s a bad idea
to set both \parindent and \parskip to zero since then the paragraph
breaks are no longer apparent.

Example:
\parindent = 2em This paragraph is indented by 2 ems.

\par \parindent=0pt This paragraph is not indented at all.

\par Since we haven’t reset the paragraph indentation,

this paragraph isn’t indented either.

produces:
This paragraph is indented by 2 ems.

This paragraph is not indented at all.
Since we haven’t reset the paragraph indentation, this paragraph isn’t
indented either.

\everypar [〈token list〉 parameter]

TEX performs the commands in 〈token list〉 whenever it enters horizontal
mode, e.g., when it starts a paragraph. By default \everypar is empty,
but you can take extra actions at the start of every paragraph by putting
the commands for those actions into a token list and assigning that token
list to \everypar.

Example:
\everypar = {\Longrightarrow\enspace}

Now pay attention!\par

I said, ‘‘Pay attention!’’.\par

I’ll say it again! Pay attention!

produces:
=⇒ Now pay attention!
=⇒ I said, “Pay attention!”.
=⇒ I’ll say it again! Pay attention!

TEX for the Impatient No 134

3 Jan 2020 2:18 p.m.

114 Commands for composing paragraphs \ §5

Shaping entire paragraphs

+ \hsize [〈dimen〉 parameter]

This parameter specifies the current line length, i.e., the usual width
of lines in a paragraph starting at the left margin. A great many TEX
commands, e.g., \centerline (p. 108) and \hrule (p. 172), implicitly use
the value of \hsize. By changing \hsize within a group you can change
the width of the constructs produced by such commands.

If you set \hsize within a vbox that contains text, the vbox will have
whatever width you’ve given to \hsize.

Plain TEX sets \hsize to 6.5in.

Example:
{\hsize = 3.5in % Set this paragraph 3.5 inches wide.

The hedgehog was engaged in a fight with another hedgehog,

which seemed to Alice an excellent opportunity for

croqueting one of them with the other.\par}%

produces:
The hedgehog was engaged in a fight with another hedge-
hog, which seemed to Alice an excellent opportunity for
croqueting one of them with the other.

3.5 in

Example:
\leftline{\raggedright\vtop{\hsize = 1.5in

Here is some text that we put into a paragraph that is

an inch and a half wide.}\qquad

\vtop{\hsize = 1.5in Here is some more text that

we put into another paragraph that is an inch and a

half wide.}}

produces:
Here is some text that
we put into a paragraph
that is an inch and a
half wide.

Here is some more text
that we put into another
paragraph that is an
inch and a half wide.

+ \narrower

This command makes paragraphs narrower, increasing the left and right
margins by \parindent, the current paragraph indentation. It achieves
this by increasing both \leftskip and \rightskip by \parindent. Nor-
mally you place \narrower at the beginning of a group containing the
paragraphs that you want to make narrower. If you forget to enclose
\narrower within a group, you’ll find that all the rest of your document
will have narrow paragraphs.

TEX for the Impatient No 135

3 Jan 2020 2:18 p.m.

Shaping paragraphs 115

\narrower affects just those paragraphs that end after you invoke it. If
you end a \narrower group before you’ve ended a paragraph, TEX won’t
make that paragraph narrower.

Example:
{\parindent = 12pt \narrower\narrower\narrower

This is a short paragraph. Its margins are indented

three times as much as they would be

had we used just one ‘‘narrower’’ command.\par}

produces:
This is a short paragraph. Its margins are indented

three times as much as they would be had we used just
one “narrower” command.

\leftskip [〈glue〉 parameter]
\rightskip [〈glue〉 parameter]

These parameters tell TEX how much glue to place at the left and at the
right end of each line of the current paragraph. We’ll just explain how
\leftskip works since \rightskip is analogous.

You can increase the left margin by setting \leftskip to a fixed
nonzero dimension. If you give \leftskip some stretch, you can produce
ragged left text, i.e., text that has an uneven left margin.

Ordinarily, you should enclose any assignment to \leftskip in a group
together with the affected text in order to keep its effect from contin-
uing to the end of your document. However, it’s pointless to change
\leftskip’s value inside a group that is in turn contained within a
paragraph—the value of \leftskip at the end of a paragraph is what
determines how TEX breaks the paragraph into lines.

Example:
{\leftskip = 1in The White Rabbit trotted slowly back

again, looking anxiously about as it went, as if it had

lost something. {\leftskip = 10in % has no effect

It muttered to itself, ‘‘The Duchess! The Duchess! She’ll

get me executed as sure as ferrets are ferrets!’’}\par}%

produces:
The White Rabbit trotted slowly back again, looking
anxiously about as it went, as if it had lost something.
It muttered to itself, “The Duchess! The Duchess!
She’ll get me executed as sure as ferrets are ferrets!”

TEX for the Impatient No 136

3 Jan 2020 2:18 p.m.

116 Commands for composing paragraphs \ §5

Example:
\pretolerance = 10000 % Don’t hyphenate.

\rightskip = .5in plus 2em

The White Rabbit trotted slowly back again, looking

anxiously about as it went, as if it had lost something.

It muttered to itself, ‘‘The Duchess! The Duchess! She’ll

get me executed as sure as ferrets are ferrets!’’

produces:
The White Rabbit trotted slowly back again, looking anxiously
about as it went, as if it had lost something. It muttered to
itself, “The Duchess! The Duchess! She’ll get me executed as
sure as ferrets are ferrets!”

+ \raggedright

\ttraggedright

These commands cause TEX to typeset your document “ragged right”.
Interword spaces all have their natural size, i.e., they all have the same
width and don’t stretch or shrink. Consequently the right margin is
generally not even. The alternative, which is TEX’s default, is to typeset
your document justified, i.e., with uniform left and right margins. In
justified text, interword spaces are stretched in order to make the right
margin even. Some typographers prefer ragged right because it avoids
distracting “rivers” of white space on the printed page.

You should use the \ttraggedright command when typesetting text
in a monospaced font and the \raggedright command when typesetting
text in any other font.

Most of the time you’ll want to apply these commands to an entire
document, but you can limit their effects by enclosing them in a group.

Example:
\raggedright ‘‘You couldn’t have it if you {\it did\/}

want it,’’ the Queen said. ‘‘The rule is, jam tomorrow

and jam yesterday---but never jam {\it today\/}.’’

‘‘It {\it must\/} come sometimes to ‘jam today,%

thinspace’’ Alice objected. ‘‘No, it can’t’’, said the

Queen. ‘‘It’s jam every {\it other\/} day: today isn’t

any {\it other\/} day.’’

produces:
“You couldn’t have it if you did want it,” the Queen said. “The rule
is, jam tomorrow and jam yesterday—but never jam today .” “It must
come sometimes to ‘jam today,’ ” Alice objected. “No, it can’t”, said
the Queen. “It’s jam every other day: today isn’t any other day.”

TEX for the Impatient No 137

3 Jan 2020 2:18 p.m.

Shaping paragraphs 117

\hang

This command indents the second and subsequent lines of a paragraph
by \parindent, the paragraph indentation (p. 113). Since the first line
is already indented by \parindent (unless you’ve cancelled the inden-
tation with \noindent), the entire paragraph appears to be indented
by \parindent.

Example:
\parindent=24pt \hang ‘‘I said you {\it looked} like an

egg, Sir,’’ Alice gently explained to Humpty Dumpty. ‘‘And

some eggs are very pretty, you know,’’ she added.

produces:
“I said you looked like an egg, Sir,” Alice gently explained to
Humpty Dumpty. “And some eggs are very pretty, you know,”
she added.

\hangafter [〈number〉 parameter]
\hangindent [〈dimen〉 parameter]

These two parameters jointly specify “hanging indentation” for a para-
graph. The hanging indentation indicates to TEX that certain lines of
the paragraph should be indented and the remaining lines should have
their normal width. \hangafter determines which lines are indented,
while \hangindent determines the amount of indentation and whether it
occurs on the left or on the right:

Let n be the value of \hangafter. If n < 0, the first −n lines of the
paragraph will be indented. If n ≥ 0, all but the first n lines of the
paragraph will be indented.

Let x be the value of \hangindent. If x ≥ 0, the lines will be
indented by x on the left. If x < 0 the lines will be indented by −x
on the right.

When you specify hanging indentation, it applies only to the next para-
graph (if you’re in vertical mode) or to the current paragraph (if you’re in
horizontal mode). TEX uses the values of \hangafter and \hangindent

at the end of a paragraph, when it breaks that paragraph into lines.
Unlike most of the other paragraph-shaping parameters, \hangafter

and \hangindent are reset to their default values at the start of each
paragraph, namely, 1 for \hangafter and 0 for \hangindent. If you
want to typeset a sequence of paragraphs with hanging indentation, use
\everypar (p. 113). If you specify \hangafter and \hangindent as well
as \parshape, TEX ignores the \hangafter and \hangindent.

TEX for the Impatient No 138

3 Jan 2020 2:18 p.m.

118 Commands for composing paragraphs \ §5

Example:
\hangindent=6pc \hangafter=-2

This is an example of a paragraph with hanging indentation.

In this case, the first two lines are indented on the left,

but after that we return to unindented text.

produces:
This is an example of a paragraph with hanging in-
dentation. In this case, the first two lines are indented

on the left, but after that we return to unindented text.

Example:
\hangindent=-6pc \hangafter=1

This is another example of a paragraph with hanging

indentation. Here, all lines after the first have been

indented on the right. The first line, on the other

hand, has been left unindented.

produces:
This is another example of a paragraph with hanging indentation. Here,
all lines after the first have been indented on the right.
The first line, on the other hand, has been left unin-
dented.

\parshape n i1l1 i2l2 . . . inln
This command specifies the shape of the first n lines of a paragraph—
the next paragraph if you’re in vertical mode and the current paragraph
if you’re in horizontal mode. The i’s and l’s are all dimensions. The
first line is indented by i1 and has length l1, the second line is indented
by i2 and has length l2, and so forth. If the paragraph has more than
n lines, the last indentation/length pair is used for the extra lines. To
achieve special effects such as the one shown here, you usually have to
experiment a lot, insert kerns here and there, and choose your words
to fit the shape.
\parshape, like \hangafter and \hangindent, is effective only for one

paragraph. If you specify \hangafter and \hangindent as well as \par-
shape, TEX ignores the \hangafter and \hangindent.

By the way, the following example saves and restores \fontdimen val-
ues explicitly, using temporary registers, since \fontdimen changes are
always global (see p. 222).

TEX for the Impatient No 139

3 Jan 2020 2:18 p.m.

Shaping paragraphs 119

Example:
% A small font and close interline spacing make this work

\smallskip\font\sixrm=cmr6 \sixrm \baselineskip=7pt

\dimen0=\fontdimen3\font \dimen2=\fontdimen4\font

\fontdimen3\font=1.8pt \fontdimen4\font=.9pt

\noindent \hfuzz=.1pt

\parshape 30 0pt 120pt 1pt 118pt 2pt 116pt 4pt 112pt 6pt

108pt 9pt 102pt 12pt 96pt 15pt 90pt 19pt 84pt 23pt 77pt

27pt 68pt 30.5pt 60pt 35pt 52pt 39pt 45pt 43pt 36pt 48pt

27pt 51.5pt 21pt 53pt 16.75pt 53pt 16.75pt 53pt 16.75pt 53pt

16.75pt 53pt 16.75pt 53pt 16.75pt 53pt 16.75pt 53pt 16.75pt

53pt 14.6pt 48pt 24pt 45pt 30.67pt 36.5pt 51pt 23pt 76.3pt

The wines of France and California may be the best known,

but they are not the only fine wines. Spanish wines are

often underestimated, and quite old ones may be available at

reasonable prices. For Spanish wines the vintage is not so

critical, but the climate of the Bordeaux region varies

greatly from year to year. Some vintages are not as good as

others, so these years ought to be s\kern -.1pt p\kern -.1pt

e\kern -.1pt c\hfil ially n\kern .1pt o\kern .1pt

t\kern .1pt e\kern .1pt d\hfil: 1962, 1964, 1966. 1958,

1959, 1960, 1961, 1964, 1966 are also good California

vintages. Good luck finding them!

\fontdimen3\font=\dimen0 \fontdimen4\font=\dimen2

produces:
The wines of France and California
may be the best known, but they
are not the only fine wines. Span-
ish wines are often underestimated,
and quite old ones may be avail-
able at reasonable prices. For
Spanish wines the vintage is
not so critical, but the cli-
mate of the Bordeaux re-
gion varies greatly from
year to year. Some
vintages are not as

good as others,
so these years
ought to be

specially
noted:
1962,
1964,
1966.
1958,
1959,
1960,
1961,
1964,
1966

are also
good Cal-

ifornia vintages.
Good luck finding them!

TEX for the Impatient No 140

3 Jan 2020 2:18 p.m.

120 Commands for composing paragraphs \ §5

\prevgraf [〈number〉 parameter]

In horizontal mode, this parameter specifies the number of lines in the
paragraph so far; in vertical mode, it specifies the number of lines in
the previous paragraph. TEX only sets \prevgraf after it has finished
breaking some text into lines, i.e., at a math display or at the end of a
paragraph. See page 103 of The TEXbook for more details about it.

\vadjust { 〈vertical mode material〉 }
This command inserts the specified 〈vertical mode material〉 just after
the output line containing the position where the command occurs. You
can use it, for instance, to cause a page eject or to insert extra space
after a certain line.

Example:
Some of these words are \vadjust{\kern8pt\hrule} to be

found above the line and others are to be found below it.

produces:
Some of these words are to be found above the line and others are to

be found below it.

See also: \parindent (p. 113), \parskip (p. 141), \everypar (p. 113).

Line breaks

Encouraging or discouraging line breaks

\break

This command forces a line break. Unless you do something to fill out
the line, you’re likely to get an “underfull hbox” complaint. \break can
also be used in vertical mode.

Example:
Fill out this line\hfil\break and start another one.\par

% Use \hfil here to fill out the line.

This line is underfull---we ended it\break prematurely.

% This line causes an ‘underfull hbox’ complaint.

TEX for the Impatient No 141

3 Jan 2020 2:18 p.m.

Line breaks 121

produces:
Fill out this line
and start another one.
This line is underfull—we ended it
prematurely.

\nobreak

This command prevents a line break where it otherwise might occur.
\nobreak can also be used in vertical mode.

Example:
Sometimes you’ll encounter a situation where

a certain space\nobreak\qquad must not get lost.

produces:
Sometimes you’ll encounter a situation where a certain space must
not get lost.

\allowbreak

This command tells TEX to allow a line break where one could not ordinar-
ily occur. It’s most often useful within a math formula, since TEX is reluc-
tant to break lines there. \allowbreak can also be used in vertical mode.

Example:
Under most circumstances we can state with some confidence

that $2+2\allowbreak=4$, but skeptics may disagree.

\par For such moronic automata, it is not difficult to

analyze the input/\allowbreak output behavior in the limit.

produces:
Under most circumstances we can state with some confidence that 2+2
= 4, but skeptics may disagree.
For such moronic automata, it is not difficult to analyze the input/
output behavior in the limit.

\penalty 〈number〉
This command produces a penalty item. The penalty item makes TEX
more or less willing to break a line at the point where that item occurs. A
negative penalty, i.e., a bonus, encourages a line break; a positive penalty
discourages a line break. A penalty of 10000 or more prevents a break
altogether, while a penalty of −10000 or less forces a break. \penalty

can also be used in vertical mode.

TEX for the Impatient No 142

3 Jan 2020 2:18 p.m.

122 Commands for composing paragraphs \ §5

Example:
\def\break{\penalty -10000 } % as in plain TeX

\def\nobreak{\penalty 10000 } % as in plain TeX

\def\allowbreak{\penalty 0 } % as in plain TeX

\obeylines

TEX normally treats an end of line as a space. \obeylines instructs
TEX to treat each end of line as an end of paragraph, thus forcing a
line break. \obeylines is often useful when you’re typesetting verse or
computer programs. If any of your lines are longer than the effective line
length (\hsize−\parindent), however, you may get an extra line break
within those lines.

Because TEX inserts the \parskip glue (p. 141) between lines controlled
by \obeylines (since it thinks each line is a paragraph), you should
normally set \parskip to zero when you’re using \obeylines.

You can use the \obeyspaces command (p. 107) to get TEX to take
spaces within a line literally. \obeylines and \obeyspaces are often
used together.

Example:
\obeylines

‘‘Beware the Jabberwock, my son!

\quad The jaws that bite, the claws that catch!

Beware the Jubjub bird, and shun

\quad The frumious Bandersnatch!’’

produces:
“Beware the Jabberwock, my son!

The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun

The frumious Bandersnatch!”

+ \slash

This command produces a solidus (/) and also tells TEX that it can break
the line after the solidus, if necessary.

Example:
Her oldest cat, while apparently friendly to most people,

had a Jekyll\slash Hyde personality when it came to mice.

produces:
Her oldest cat, while apparently friendly to most people, had a Jekyll/
Hyde personality when it came to mice.

TEX for the Impatient No 143

3 Jan 2020 2:18 p.m.

Line breaks 123

Line breaking parameters

\pretolerance [〈number〉 parameter]
\tolerance [〈number〉 parameter]

These parameters determine the badness that TEX will tolerate on each
line when it is choosing line breaks for a paragraph. The badness is
a measure of how far the interword spacing deviates from the ideal.
\pretolerance specifies the tolerable badness for line breaks without
hyphenation; \tolerance specifies the tolerable badness for line breaks
with hyphenation. The tolerable badness can be exceeded in either of two
ways: a line is too tight (the interword spaces are too small) or it is too
loose (the interword spaces are too big).

If TEX must set a line too loosely, it complains about an “under-
full hbox”.

If TEX must set a line too rightly, it lets the line run past the right
margin and complains about an “overfull hbox”.

TEX chooses line breaks in the following steps:

1) It attempts to choose line breaks without hyphenating. If none of
the resulting lines have a badness exceeding \pretolerance, the line
breaks are acceptable and the paragraph can now be set.

2) Otherwise, it tries another set of line breaks, this time allowing hy-
phenation. If none of the resulting lines have a badness exceeding
\tolerance, the new set of line breaks is acceptable and the para-
graph can now be set.

3) Otherwise, it adds \emergencystretch (see below) to the stretch of
each line and tries again.

4) If none of these attempts have produced an acceptable set of line
breaks, it sets the paragraph with one or more overfull hboxes and
complains about them.

Plain TEX sets \tolerance to 200 and \pretolerance to 100. If you
set \tolerance to 10000, TEX becomes infinitely tolerant and accepts
any spacing, no matter how bad (unless it encounters a word that won’t
fit on a line, even with hyphenation). Thus by changing \tolerance

you can avoid overfull and underfull hboxes, but at the cost of making
the spacing worse. By making \pretolerance larger you can get TEX
to avoid hyphenation (and also run faster), again at the cost of possibly
worse spacing. If you set \pretolerance to −1, TEX will not even try to
set the paragraph without hyphenation.

The \hbadness parameter (p. 170) determines the level of badness that
TEX will tolerate before it complains, but \hbadness does not affect the
way that TEX typesets your document. The \hfuzz parameter (p. 171)

TEX for the Impatient No 144

3 Jan 2020 2:18 p.m.

124 Commands for composing paragraphs \ §5

determines the amount that an hbox can exceed its specified width before
TEX considers it to be erroneous.

\emergencystretch [〈dimen〉 parameter]

By setting this parameter to be greater than zero, you can make it easier
for TEX to typeset your document without generating overfull hboxes.
This is a better alternative than setting \tolerance=10000, since that
tends to produce really ugly lines. If TEX can’t typeset a paragraph with-
out exceeding \tolerance, it will try again, adding \emergencystretch

to the stretch of each line. The effect of the change is to scale down the
badness of each line, enabling TEX to make spaces wider than they would
otherwise be and thus choose line breaks that are as good as possible
under the circumstances.

\looseness [〈number〉 parameter]

This parameter gives you a way to change the total number of lines in a
paragraph from what they optimally would be. \looseness is so named
because it’s a measure of how loose the paragraph is, i.e., how much extra
space there is in it.

Normally, \looseness is 0 and TEX chooses line breaks in its usual way.
But if \looseness is, say, 3, TEX does the following:

1) It chooses line breaks normally, resulting in a paragraph of n lines.

2) It discards these line breaks and tries to find a new set of line breaks
that gives the paragraph n + 3 lines. (Without the previous step,
TEX wouldn’t know the value of n.)

3) If the previous attempt results in lines whose badness exceeds \tol-
erance, it tries to get n+ 2 lines—and if that also fails, n+ 1 lines,
and finally n lines again.

Similarly, if looseness is −n, TEX attempts to set the paragraph with n
fewer lines than normal. The easiest way for TEX to make a paragraph
one line longer is to put a single word on the excess line. You can prevent
this by putting a tie (p. 105) between the last two words of the paragraph.

Setting \looseness is the best way to force a paragraph to occupy a
given number of lines. Setting it to a negative value is useful when you’re
trying to increase the amount of text you can fit on a page. Similarly,
setting it to a positive value is useful when you’re trying to decrease the
amount of text on a page.

TEX sets \looseness to 0 when it ends a paragraph, after breaking
the paragraph into lines. If you want to change the looseness of several
paragraphs, you must do it individually for each one or put the change
into \everypar (p. 113).

TEX for the Impatient No 145

3 Jan 2020 2:18 p.m.

Line breaks 125

\linepenalty [〈number〉 parameter]

This parameter specifies the penalty that TEX assesses for each line break
when it is breaking a paragraph into lines. The penalty is independent of
where the line break occurs. Increasing the value of this parameter causes
TEX to try harder to set a paragraph with a minimum number of lines,
even at the cost of other aesthetic considerations such as avoiding overly
tight interword spacing. Demerits are in units of badness squared, so you
need to assign a rather large value to this parameter (in the thousands)
for it to have any effect. Plain TEX sets \linepenalty to 10.

\adjdemerits [〈number〉 parameter]

This parameter specifies additional demerits that TEX attaches to a break-
point between two adjacent lines that are “visually incompatible”. Such a
pair of lines makes a paragraph appear uneven. Incompatibility is evalu-
ated in terms of the tightness or looseness of lines:

1) A line is tight if its glue needs to shrink by at least 50%.
2) A line is decent if its badness is 12 or less.
3) A line is loose if its glue needs to stretch by more than 50%.
4) A line is very loose if its glue needs to stretch so much that its badness

exceeds 100.

Two adjacent lines are visually incompatible if their categories are not
adjacent, e.g., a tight line is next to a loose one or a decent line is next
to a very loose one.

Demerits are in units of badness squared, so you need to assign a rather
large value to this parameter (in the thousands) for it to have any effect.
Plain TEX sets \adjdemerits to 10000.

\exhyphenpenalty [〈number〉 parameter]

This parameter specifies the penalty that TEX attaches to a breakpoint
at an explicit hyphen such as the one in “helter-skelter”. Increasing this
parameter has the effect of discouraging TEX from ending a line at an
explicit hyphen. Plain TEX sets \exhyphenpenalty to 50.

\hyphenpenalty [〈number〉 parameter]

This parameter specifies the penalty that TEX attaches to a breakpoint
at an implicit hyphen. Implicit hyphens can come from TEX’s hyphen-
ation dictionary or from discretionary hyphens that you’ve inserted with
\- (p. 126). Increasing this parameter has the effect of discouraging TEX
from hyphenating words. Plain TEX sets \hyphenpenalty to 50.

\doublehyphendemerits [〈number〉 parameter]

This parameter specifies additional demerits that TEX attaches to a break-
point when that breakpoint leads to two consecutive lines that end in a

TEX for the Impatient No 146

3 Jan 2020 2:18 p.m.

126 Commands for composing paragraphs \ §5

hyphen. Increasing the value of this parameter has the effect of discour-
aging TEX from hyphenating two lines in a row. Demerits are in units
of badness squared, so you need to assign a rather large value to this
parameter (in the thousands) for it to have any effect. Plain TEX sets
\doublehyphendemerits to 10000.

\finalhyphendemerits [〈number〉 parameter]

This parameter specifies additional demerits that TEX attaches to a break-
point that causes the next to last line of a paragraph to end with a hyphen.
Such a hyphen is generally considered to be unaesthetic because of the pos-
sible blank space from a short last line beneath it. Increasing the value of
this parameter has the effect of discouraging TEX from ending the next to
the last line with a hyphen. Demerits are in units of badness squared, so
you need to assign a rather large value to this parameter (in the thousands)
for it to have any effect. Plain TEX sets \finalhyphendemerits to 5000.

\binoppenalty [〈number〉 parameter]

This parameter specifies the penalty for breaking a math formula after
a binary operator when the formula appears in a paragraph. Plain TEX
sets \binoppenalty to 700.

\relpenalty [〈number〉 parameter]

This parameter specifies the penalty for breaking a math formula after
a relation when the formula appears in a paragraph. Plain TEX sets
\relpenalty to 500.

Hyphenation

+ \-

The \- command inserts a “discretionary hyphen” into a word. The
discretionary hyphen allows TEX to hyphenate the word at that place.
TEX isn’t obliged to hyphenate there—it does so only if it needs to. This
command is useful when a word that occurs in one or two places in your
document needs to be hyphenated, but TEX can’t find an appropriate
hyphenation point on its own.

Example:
Alice was exceedingly reluctant to shake hands first

with either Twee\-dle\-dum or Twee\-dle\-dee, for

fear of hurting the other one’s feelings.

TEX for the Impatient No 147

3 Jan 2020 2:18 p.m.

Line breaks 127

produces:
Alice was exceedingly reluctant to shake hands first with either Twee-
dledum or Tweedledee, for fear of hurting the other one’s feelings.

\discretionary { 〈pre-break text〉 } { 〈post-break text〉 } { 〈no-break text〉
}

This command specifies a “discretionary break”, namely, a place where
TEX can break a line. It also tells TEX what text to put on either side
of the break.

If TEX does not break there, it uses the 〈no-break text〉.
If TEX does break there, it puts the 〈pre-break text〉 just before the
break and the 〈post-break text〉 just after the break.

Just as with \-, TEX isn’t obligated to break a line at a discretionary
break. In fact, \- is ordinarily equivalent to \discretionary{-}{}{}.

TEX sometimes inserts discretionary breaks on its own. For example, it
inserts \discretionary{}{}{} after an explicit hyphen or dash.

Example:
% An ordinary discretionary hyphen (equivalent to \-):

\discretionary{-}{}{}

% A place where TeX can break a line, but should not

% insert a space if the line isn’t broken there, e.g.,

% after a dash:

\discretionary{}{}{}

% Accounts for German usage: ‘flicken’, but ‘flik-

% ken’:

German ‘‘fli\discretionary{k-}{k}{ck}en’’

\hyphenation { 〈word〉 . . . 〈word〉 }
TEX keeps a dictionary of exceptions to its hyphenation rules. Each
dictionary entry indicates how a particular word should be hyphenated.
The \hyphenation command adds words to the dictionary. Its argument
is a sequence of words separated by blanks. Uppercase and lowercase
letters are equivalent. The hyphens in each word indicate the places
where TEX can hyphenate that word. A word with no hyphens in it will
never be hyphenated. However, you can still override the hyphenation
dictionary by using \- in a particular occurrence of a word. You need
to provide all the grammatical forms of a word that you want TEX to
handle, e.g., both the singular and the plural.

Example:
\hyphenation{Gry-phon my-co-phagy}

\hyphenation{man-u-script man-u-scripts piz-za}

TEX for the Impatient No 148

3 Jan 2020 2:18 p.m.

128 Commands for composing paragraphs \ §5

\uchyph [〈number〉 parameter]

A positive value of \uchyph (uppercase hyphenation) permits hyphen-
ation of words, such as proper names, that start with a capital letter.
A zero or negative value inhibits such hyphenation. Plain TEX sets
\uchyph to 1, so TEX normally tries to hyphenate words that start with
a capital letter.

\showhyphens { 〈word〉 . . . 〈word〉 }
This command isn’t normally used in documents, but you can use it
at your terminal to see how TEX would hyphenate some random set of
words. The words, with hyphenations indicated, appear both in the log
and at your terminal. You’ll get a complaint about an underfull hbox—
just ignore it.

Example:
\showhyphens{threshold quizzical draughts argumentative}

produces in the log:
Underfull \hbox (badness 10000) detected at line 0

[] \tenrm thresh-old quizzi-cal draughts ar-gu-men-ta-tive

\language [〈number〉 parameter]

Different languages have different sets of hyphenation rules. This param-
eter determines the set of hyphenation rules that TEX uses. By changing
\language you can get TEX to hyphenate portions of text or entire doc-
uments according to the hyphenation rules appropriate to a particular
language. Your local information about TEX will tell you if any addi-
tional sets of hyphenation rules are available (besides the ones for En-
glish) and what the appropriate values of \language are. The default
value of \language is 0.

TEX sets the current language to 0 at the start of every paragraph,
and compares \language to the current language whenever it adds a
character to the current paragraph. If they are not the same, TEX adds a
whatsit indicating the language change. This whatsit is the clue in later
processing that the language rules should change.

\setlanguage 〈number〉
This command sets the current language to 〈number〉 by inserting the
same whatsit that you’d get by changing \language. However, it does
not change the value of \language.

\lefthyphenmin [〈number〉 parameter]
\righthyphenmin [〈number〉 parameter]

These parameters specify the smallest word fragments that TEX allows
at the left and at the right end of a hyphenated word. Plain TEX de-

TEX for the Impatient No 149

3 Jan 2020 2:18 p.m.

Section headings, lists, and theorems 129

faults them to 2 and 3 respectively; these are the recommended values
for English.

\hyphenchar 〈font〉 [〈number〉 parameter]

TEX doesn’t necessarily use the ‘-’ character at hyphenation points. In-
stead, it uses the \hyphenchar of the current font, which is usually ‘-’
but need not be. If a font has a negative \hyphenchar value, TEX won’t
hyphenate words in that font.

Note that 〈font〉 is a control sequence that names a font, not a 〈font-
name〉 that names font files. Beware: an assignment to \hyphenchar is
not undone at the end of a group. If you want to change \hyphenchar

locally, you’ll need to save and restore its original value explicitly.

Example:
\hyphenchar\tenrm = ‘-

% Set hyphenation for tenrm font to ‘-’.

\hyphenchar\tentt = -1

% Don’t hyphenate words in font tentt.

\defaulthyphenchar [〈number〉 parameter]

When TEX reads the metrics file for a font in response to a \font com-
mand, it sets the font’s \hyphenchar to \defaulthyphenchar. If the
value of \defaulthyphenchar is not in the range 0–255 when you load
a font, TEX won’t hyphenate any words in that font unless you override
the decision by setting the font’s \hyphenchar later on. Plain TEX sets
\defaulthyphenchar to 45, the ASCII code for ‘-’.

Example:
\defaulthyphenchar = ‘-

% Assume ‘-’ is the hyphen, unless overridden.

\defaulthyphenchar = -1

% Don’t hyphenate, unless overridden.

See also: \pretolerance (p. 123).

Section headings, lists, and theorems

+ \beginsection 〈argument〉 \par
You can use this command to begin a major subdivision of your docu-
ment. 〈argument〉 is intended to serve as a section title. \beginsection

surrounds 〈argument〉 by extra vertical space and sets it in boldface,

TEX for the Impatient No 150

3 Jan 2020 2:18 p.m.

130 Commands for composing paragraphs \ §5

left-justified. You can produce the \par that ends 〈argument〉 with
a blank line.

Example:
\ldots till she had brought herself down to nine

inches high.

\beginsection Section 6. Pig and Pepper

For a minute or two she stood looking at the house \ldots

produces:
. . . till she had brought herself down to nine inches high.

Section 6. Pig and Pepper

For a minute or two she stood looking at the house . . .

\item 〈argument〉
\itemitem 〈argument〉
These commands are useful for creating itemized lists. The entire para-
graph following 〈argument〉 is indented by \parindent (for \item) or
by 2\parindent (for \itemitem). (See page 113 for an explanation of
\parindent.) Then 〈argument〉, followed by an en space, is placed just to
the left of the text of the first line of the paragraph so that it falls within
the paragraph indentation as specified by \parindent.

If you want to include more than one paragraph in an item, put \item{}
in front of the additional paragraphs.

Example:
{\parindent = 18pt

\noindent Here is what we require:

\item{1.}Three eggs in their shells,

but with the yolks removed.

\item{2.}Two separate glass cups containing:

\itemitem{(a)}One-half cup {\it used} motor oil.

\itemitem{(b)}One cup port wine, preferably French.

\item{3.}Juice and skin of one turnip.}

produces:
Here is what we require:
1. Three eggs in their shells, but with the yolks removed.
2. Two separate glass cups containing:

(a) One-half cup used motor oil.
(b) One cup port wine, preferably French.

3. Juice and skin of one turnip.

TEX for the Impatient No 151

3 Jan 2020 2:18 p.m.

Commands for composing paragraphs 131

+ \proclaim 〈argument〉. 〈general text〉 \par
This command “proclaims” a theorem, lemma, hypothesis, etc. It sets
〈argument〉 in boldface type and the following paragraph in italics. 〈arg-
ument〉 must be followed by a period and a space token, which serve to
set off 〈argument〉 from 〈general text〉. 〈general text〉 consists of the text
up to the next paragraph boundary. You can include multiple paragraphs
by using \endgraf instead of a blank line or \par.

Example:
\proclaim Theorem 1.

What I say is not to be believed.

\proclaim Corollary 1. Theorem 1 is false.\par

produces:

Theorem 1. What I say is not to be believed.

Corollary 1. Theorem 1 is false.

TEX for the Impatient No 152

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 153

3 Jan 2020 2:18 p.m.

6 Commands for
composing pages

This section covers commands that deal with pages, their components,
and the output routine. For an explanation of the conventions used in
this section, see “Descriptions of the commands” (p. 3).

Interline and interparagraph spaces

\baselineskip [〈glue〉 parameter]
\lineskiplimit [〈dimen〉 parameter]
\lineskip [〈glue〉 parameter]

These three parameters jointly determine how much space TEX leaves
between consecutive boxes of an ordinary vertical list, e.g., the lines of
a paragraph. This space is called “interline glue”. It is also inserted
between the component boxes of a vbox constructed in internal ver-
tical mode.

In the usual case, when the boxes aren’t abnormally high or deep, TEX
makes the distance from the baseline of one box to the baseline of the
next one equal to \baselineskip. It does this by inserting interline glue
equal to \baselineskip minus the depth of the upper box (as given by
\prevdepth) and the height of the lower box. But if this interline glue
would be less than \lineskiplimit, indicating that the two boxes are too
close together, TEX inserts the \lineskip glue instead.1 See pages 79–80
of The TEXbook for a precise description.

1 TEX actually accounts for the beginning of a vertical list by setting \prevdepth to
−1000 pt and testing \prevdepth before every box. If \prevdepth≤ −1000 pt it does
not insert any interline glue.

TEX for the Impatient No 154

3 Jan 2020 2:18 p.m.

134 Commands for composing pages \ §6

Note that \baselineskip and \lineskip measure different things: the
distance between baselines on the one hand and the distance between the
bottom of one box and the top of the next box on the other hand. See
page 78 of The TEXbook for further details. The first example below
shows the effects of \lineskiplimit.

You can obtain the effect of double spacing by doubling the value of
\baselineskip as illustrated in the second example below. A change to
\baselineskip at any point before the end of a paragraph affects the
entire paragraph.

Example:
\baselineskip = 11pt \lineskiplimit = 1pt

\lineskip = 2pt plus .5pt

Sometimes you’ll need to typeset a paragraph that has

tall material, such as a mathematical formula, embedded

within it. An example of such a formula is $n \choose k$.

Note the extra space above and below this line as

compared with the other lines.

(If the formula didn’t project below the line,

we’d only get extra space above the line.)

produces:
Sometimes you’ll need to typeset a paragraph that has tall material,
such as a mathematical formula, embedded within it. An example of
such a formula is

(
n
k

)
. Note the extra space above and below this line

as compared with the other lines. (If the formula didn’t project below
the line, we’d only get extra space above the line.)

Example:
\baselineskip = 2\baselineskip % Start double spacing.

\prevdepth [〈dimen〉 parameter]

When TEX adds a box to a vertical list, it sets \prevdepth to the depth
of that box. TEX sets \prevdepth to −1000 pt at the start of a vertical
list, indicating that the usual interline glue should be suppressed.

\normalbaselineskip [〈glue〉 parameter]
\normallineskiplimit [〈dimen〉 parameter]
\normallineskip [〈glue〉 parameter]
\normalbaselines

The three parameters contain values for \baselineskip, \lineskip,
and \lineskiplimit respectively. The \normalbaselines command
sets \baselineskip, \lineskip, and \lineskiplimit to the values con-
tained in the three parameters.

TEX for the Impatient No 155

3 Jan 2020 2:18 p.m.

Interline and interparagraph spaces 135

\offinterlineskip

This command tells TEX to stop inserting interline glue from now on.
Unless you want it to be in effect for the rest of the document (which you
probably don’t), you should enclose it in a group together with the text
you want it to affect. Its main purpose is to let you do interline spacing
yourself, e.g., using struts, without interference from TEX’s normal inter-
line glue. \offinterlineskip is often useful when you’re constructing a
horizontal alignment.

Example:
\def\entry#1:#2 {\strut\quad#1\quad&\quad#2\quad\cr}

\offinterlineskip \tabskip = 0pt \halign{%

\vrule\quad\hfil#\hfil\quad\vrule&

\quad\hfil#\hfil\quad\vrule\cr

\noalign{\hrule}

\vphantom{\vrule height 2pt}&\cr \noalign{\hrule}

\entry \it Opera:\it Composer

\vphantom{\vrule height 2pt}&\cr \noalign{\hrule}

\vphantom{\vrule height 2pt}&\cr

\entry Fidelio:Beethoven

\entry Peter Grimes:Britten

\entry Don Giovanni:Mozart

\vphantom{\vrule height 2pt}&\cr \noalign{\hrule}}

produces:

Opera Composer

Fidelio Beethoven
Peter Grimes Britten
Don Giovanni Mozart

\nointerlineskip

This command tells TEX not to insert interline glue in front of the next
line. It has no effect on subsequent lines.

\openup 〈dimen〉
This command increases \baselineskip by 〈dimen〉. An \openup com-
mand before the end of a paragraph affects the entire paragraph, so you
shouldn’t use \openup to change \baselineskip within a paragraph.
\openup is most useful for typesetting tables and math displays—a little
extra space between rows often makes them more readable.

TEX for the Impatient No 156

3 Jan 2020 2:18 p.m.

136 Commands for composing pages \ §6

Example:
Alice picked up the White King very gently, and lifted him

across more slowly than she had lifted the Queen; but before

she put him on the table, she thought she might well dust

him a little, he was so covered with ashes.

\openup .5\baselineskip % 1.5 linespacing.

produces:

Alice picked up the White King very gently, and lifted him across more

slowly than she had lifted the Queen; but before she put him on the

table, she thought she might well dust him a little, he was so covered

with ashes.

Page breaks

Encouraging or discouraging page breaks

\break

This command forces a page break. Unless you do something to fill out
the page, you’re likely to get an underfull vbox. \break can also be used
in horizontal mode.

\nobreak

This command prevents a page break where it otherwise might occur.
\nobreak can also be used in horizontal mode.

\allowbreak

This command tells TEX to allow a page break where one could not
ordinarily occur. \allowbreak can also be used in horizontal mode.

\penalty 〈number〉
This command produces a penalty item. The penalty item makes TEX
more or less willing to break a page at the point where that item occurs. A
negative penalty, i.e., a bonus, encourages a page break; a positive penalty
discourages a page break. A penalty of 10000 or more prevents a break

TEX for the Impatient No 157

3 Jan 2020 2:18 p.m.

Page breaks 137

altogether, while a penalty of −10000 or less forces a break. \penalty

can also be used in horizontal mode.

Example:
\def\break{\penalty-10000 } % as in plain TeX

\def\nobreak{\penalty10000 } % as in plain TeX

\def\allowbreak{\penalty0 } % as in plain TeX

\goodbreak

This command ends a paragraph and also indicates to TEX that this is a
good place to break the page.

\smallbreak

\medbreak

\bigbreak

These commands indicate increasingly desirable places for TEX to break
a page. They also cause TEX to insert a \smallskip, \medskip, or
\bigskip (p. 154) if the page break doesn’t actually happen. TEX sup-
presses this skip if it occurs just after an equal or larger skip.

+ \eject

\supereject

These commands force a page break at the current position and end the
current paragraph. If you don’t precede them with \vfil (p. 157), TEX
will try to stretch out the page contents (and will probably complain
about an underfull vbox). The \supereject command, in addition, in-
structs the plain TEX output routine to force out any leftover insertions,
such as long footnotes, so that they are produced before any more input
is processed. Thus \supereject is a good command to use at the end of
each chapter or other major unit of your document.

\filbreak

This command provides a kind of conditional page break. It tells TEX to
break the page—but not if the text up to a later \filbreak also fits on
the same page. By enclosing a paragraph in a pair of \filbreaks, you
can ensure that TEX will keep a paragraph on a single page if it can. You
should not use \filbreak within a paragraph, since it forces TEX into
vertical mode and thus ends the paragraph. See page 266 for more advice
on this subject.

\raggedbottom

\normalbottom

Normally TEX tries hard to ensure that all pages have the same depth,
i.e., that their bottom margins are equal. The \raggedbottom command

TEX for the Impatient No 158

3 Jan 2020 2:18 p.m.

138 Commands for composing pages \ §6

tells TEX to allow some variability among the bottom margins on dif-
ferent pages. It’s often appropriate to use \raggedbottom when you
have material that contains large blocks of material that should not be
split across pages. The \normalbottom command cancels the effect of
\raggedbottom.

Page breaking parameters

\interlinepenalty [〈number〉 parameter]

This parameter specifies the penalty for breaking a page between the lines
of a paragraph. By setting it to 10000 you can force all page breaks to
occur between paragraphs, provided that the pages have enough stretch
so that TEX can still compose them decently. Plain TEX leaves \inter-

linepenalty at 0.

\clubpenalty [〈number〉 parameter]

This parameter specifies the penalty for breaking a page just after the
first line of a paragraph. A line by itself at the bottom of a page is called
a “club line”. Plain TEX sets \clubpenalty to 150.

\widowpenalty [〈number〉 parameter]

This parameter specifies the penalty for breaking a page just before the
last line of a paragraph. A line by itself at the top of a page is called a
“widow line”. Plain TEX sets \widowpenalty to 150.

\displaywidowpenalty [〈number〉 parameter]

This parameter specifies the penalty for breaking a page just before the
last line of a partial paragraph that immediately precedes a math display.
Plain TEX sets \displaywidowpenalty to 50.

\predisplaypenalty [〈number〉 parameter]

This parameter specifies the penalty for breaking a page just before a
math display. Plain TEX sets \predisplaypenalty to 10000.

\postdisplaypenalty [〈number〉 parameter]

This parameter specifies the penalty for breaking a page just after a math
display. Plain TEX leaves \postdisplaypenalty at 0.

TEX for the Impatient No 159

3 Jan 2020 2:18 p.m.

Page breaks 139

\brokenpenalty [〈number〉 parameter]

This parameter specifies the penalty for breaking a page just after a line
that ends in a discretionary item (usually a hyphen). \brokenpenalty

applies to page breaking, while \hyphenpenalty (p. 125) applies to line
breaking. Plain TEX sets \brokenpenalty to 100.

\insertpenalties [〈number〉 parameter]

This parameter contains the sum of certain penalties that TEX accumu-
lates as it is placing insertions onto the current page. These penalties are
incurred when TEX is processing an \insert command and discovers that
a previous insertion of the same kind on this page has been split, leaving
part of it for subsequent pages. See pages 123–125 of The TEXbook for
the details of this calculation.
\insertpenalties has an entirely different meaning during an output

routine—it’s the number of insertions that have been seen but that don’t
fit on the current page (see page 125 of The TEXbook).

\floatingpenalty [〈number〉 parameter]

This parameter specifies the penalty that TEX adds to \insertpenalties

when the page builder is adding an insertion to the current page and
discovers that a previous insertion of the same kind on this page has
been split, leaving part of it for subsequent pages. Plain TEX leaves
\floatingpenalty at 0.

\pagegoal [〈dimen〉 parameter]

This parameter specifies the desired height for the current page. TEX
sets \pagegoal to the current value of \vsize when it first puts a box or
an insertion on the current page. You can shorten a page while TEX is
working on it by changing the value of \pagegoal—even if the new value
is less than the height of the material already on that page. TEX will just
put the extra material on the next page. But remember—\pagegoal is
reset to \vsize again when TEX starts the next page.

\pagetotal [〈dimen〉 parameter]

This parameter specifies the accumulated natural height of the current
page. TEX updates \pagetotal as it adds items to the main vertical list.

\pagedepth [〈dimen〉 parameter]

This parameter specifies the depth of the current page. TEX updates
\pagedepth as it adds items to the main vertical list.

TEX for the Impatient No 160

3 Jan 2020 2:18 p.m.

140 Commands for composing pages \ §6

\pageshrink [〈dimen〉 parameter]

This parameter specifies the amount of shrink in the accumulated glue
on the current page. TEX updates \pageshrink as it adds items to the
main vertical list.

\pagestretch [〈dimen〉 parameter]
\pagefilstretch [〈dimen〉 parameter]
\pagefillstretch [〈dimen〉 parameter]
\pagefilllstretch [〈dimen〉 parameter]

These four parameters together specify the amount of stretch in the
glue on the current page. The amount of stretch has the form n0 +
n1fil + n2fill + n3filll, with the four parameters giving the values
of the four ni. TEX updates these parameters as it adds items to the
main vertical list.

Page layout

Page description parameters

\hsize [〈dimen〉 parameter]

This parameter specifies the current line length. See page 114 for a more
complete explanation.

\vsize [〈dimen〉 parameter]

This parameter specifies the current vertical extent of a page. TEX ex-
amines it only when it is starting a page. Thus if you change \vsize

in the middle of a page, your change won’t affect anything until the fol-
lowing page. If you want to change the vertical extent of a page when
you’re in the middle of it, you should assign the new height to \pagegoal

(p. 139) instead. (If you want the change to affect the following pages
too, you should change both \vsize and \pagegoal.) Plain TEX sets
\vsize to 8.9in.

\hoffset [〈dimen〉 parameter]
\voffset [〈dimen〉 parameter]

TEX normally takes the “origin” of a page, that is, the point where it
starts printing, as being one inch down from the top of the page and one

TEX for the Impatient No 161

3 Jan 2020 2:18 p.m.

Page layout 141

inch to the right of the left end of the page.2 The values of \hoffset
and \voffset give the horizontal and vertical offset of the actual origin
from this point. Thus if \hoffset and \voffset are both zero, TEX uses
its normal origin.

Example:
\hoffset = -.3in

% Start printing .7 inches from left edge of paper.

\voffset = 1in

% Start printing 2 inches from top edge of paper.

\topskip [〈glue〉 parameter]

TEX inserts glue at the top of each page in order to ensure that the
baseline of the first box on the page always is the same distance d from
the top of the page. \topskip determines the amount of that glue, called
the “\topskip glue”, by specifying what d should be (provided that the
first box on the page isn’t too tall). d is given by the natural size of the
\topskip glue. If the height of the first box on the page exceeds d, so
that the glue would be negative, TEX simply inserts no \topskip glue at
all on that page.

To understand better the effect of these rules, assume that \topskip

has no stretch or shrink and that the first item on the page is indeed a box.
Then if the height of that box is no greater than \topskip, its baseline
will be \topskip from the top of the page independently of its height.
On the other hand, if the height of the box is e greater than \topskip,
its baseline will be \topskip+e from the top of the page. See pages 113–
114 of The TEXbook for the remaining details of how \topskip works.
Plain TEX sets \topskip to 10pt.

\parskip [〈glue〉 parameter]

This parameter specifies the “paragraph skip”, i.e., the vertical glue that
TEX inserts at the start of a paragraph. See \par (p. 110) for more
information about what happens when TEX starts a paragraph. Plain
TEX sets \parskip to 0pt plus 0.1pt.

\maxdepth [〈dimen〉 parameter]

This parameter specifies the maximum depth of the bottom box on a
page. It is related to \boxmaxdepth (p. 163). If the depth of the bottom
box on a page exceeds \maxdepth, TEX moves the box’s reference point
down so that it’s \maxdepth from the bottom of that box. Without this

2 TEX itself is indifferent to where the origin of the page is, but this information has
to be built into the device drivers that convert .dvi files into printable form so that
different devices will yield the same results.

TEX for the Impatient No 162

3 Jan 2020 2:18 p.m.

142 Commands for composing pages \ §6

adjustment, the bottom box on a page could extend well into the bottom
margin or even off the page entirely. Plain TEX sets \maxdepth to 4pt.

Page numbers

\pageno [〈number〉 parameter]

This parameter contains the current page number as an integer. The page
number is normally negative for front-matter pages that are numbered
with small roman numerals instead of arabic numerals. If you change
the page number within a page, the changed number will be used in any
headers or footers that appear on that page. The actual printing of page
numbers is handled by TEX’s output routine, which you can modify.

Plain TEX keeps the page number in the register \count0. (\pageno
is, in fact, a synonym for \count0.) Whenever it ships out a page to the
.dvi file, TEX displays the current value of \count0 on your terminal so
that you can tell which page it is working on. It’s possible to use registers
\count1–\count9 for nested levels of page numbers (you must program
this yourself). If any of these registers are nonzero, TEX displays them
on your terminal also.3

Example:
This explanation appears on page \number\pageno\

of our book.

produces:
This explanation appears on page 142 of our book.

Example:
\pageno = 30 % Number the next page as 30.

Don’t look for this explanation on page \number\pageno.

produces:
Don’t look for this explanation on page 30.

\advancepageno

This command adds 1 to the page number n in \pageno if n ≥ 0 and
subtracts 1 from it if n < 0.

+ \nopagenumbers

By default, plain TEX produces a footer containing a centered page num-
ber. This command tells TEX to produce a blank footer instead.

3 More precisely, it displays all registers in sequence from \count0 to \count9,
but omits trailing zero registers. For instance, if the values of \count0–\count3 are
(17, 0, 0, 7) and the others are 0, TEX displays the page number as [17.0.0.7].

TEX for the Impatient No 163

3 Jan 2020 2:18 p.m.

Page layout 143

\folio

This command produces the current page number, whose value is the
number n contained in \pageno. If n ≥ 0, TEX produces n as a decimal
number, while if n < 0, TEX produces−n in lowercase roman numerals.

Example:
This explanation appears on page \folio\ of the book.

produces:
This explanation appears on page 143 of the book.

Header and footer lines

\headline [〈token list〉 parameter]
\footline [〈token list〉 parameter]

These parameters contain, respectively, the current headline (header) and
the current footline (footer). The plain TEX output routine places the
headline at the top of each page and the footline at the bottom of each
page. The default headline is empty and the default footline is a centered
page number.

The headline and footline should both be as wide as \hsize (use \hfil,
p. 157, for this if necessary). You should always include a font-setting
command in these lines, since the current font is unpredictable when TEX
is calling the output routine. If you don’t set the font explicitly, you’ll get
whatever font TEX was using when it broke the page.

You shouldn’t try to use \headline or \footline to produce multiline
headers or footers. Although TEX won’t complain, it will give you some-
thing that’s very ugly. See page 274 for a method of creating multiline
headers or footers.

Example:
\headline = {\tenrm My First Reader\hfil Page \folio}

produces:
My First Reader Page 10
(at the top of page 10)

Example:
\footline = {\tenit\ifodd\pageno\hfil\folio

\else\folio\hfil\fi}

% Produce the page number in ten-point italic at

% the outside bottom corner of each page.

TEX for the Impatient No 164

3 Jan 2020 2:18 p.m.

144 Commands for composing pages \ §6

Marks

\mark { 〈text〉 }
This command causes TEX to append a mark containing 〈mark text〉
to whatever list it is currently constructing. Generally you shouldn’t use
\mark within an “inner” construct such as a math formula or a box you’ve
built with an \hbox, \vbox, or \vtop command, because TEX won’t see
the mark when it’s constructing the main box of the page. But if you
use \mark in ordinary horizontal mode or directly in an hbox that’s part
of the main vertical list, the mark migrates out to the main vertical list.
See pages 259–260 of The TEXbook for examples showing how \mark

can be used.

\firstmark

\botmark

\topmark

These commands expand to the mark text in an item generated by an
earlier \mark command. The mark text has the form of a token list. TEX
sets the values of these commands when it finishes placing the contents of
a page into \box255, just before calling the output routine as part of its
page breaking actions. TEX determines these values as follows:

\firstmark contains the tokens of the first mark on the page.
\botmark contains the tokens of the last mark on the page.
\topmark contains the tokens of the mark that is in effect at the
very top of the page. That mark is the last mark that preceded the
page, i.e., the \botmark of the previous page. It is empty if no marks
preceded the page.

If a page has no marks on it, TEX will set \firstmark and \botmark to
the same mark as \topmark, i.e., the most recent preceding mark. The
table at the bottom of page 258 of The TEXbook illustrates the relation
among \firstmark, \botmark, and \topmark.

\splitfirstmark

\splitbotmark

These commands expand to the mark text generated by an earlier \mark
command that produced an item in the item list of a vbox V . The
mark text has the form of a token list. When TEX splits V in response
to a \vsplit command (p. 149), it sets the values of these commands
as follows:

\splitfirstmark contains the tokens of the first mark in the item
list of V .

TEX for the Impatient No 165

3 Jan 2020 2:18 p.m.

Insertions 145

\splitbotmark contains the tokens of the last mark in the item
list of V .

These commands produce no tokens if there was no preceding \vsplit,
or if the most recent preceding \vsplit didn’t contain any marks.

Insertions

Footnotes

+ \footnote 〈argument1〉 〈argument2〉
\vfootnote 〈argument1〉 〈argument2〉
These commands produce footnotes. 〈argument1〉 is the “reference mark”
for the footnote and 〈argument2〉 is its text. The text can be several
paragraphs long if necessary and can contain constructs such as math
displays, but it shouldn’t contain any insertions (such as other footnotes).

You shouldn’t use these commands inside a subformula of a math for-
mula, in a box within a box being contributed to a page, or in an insertion
of any kind. If you’re unsure whether these restrictions apply, you can
be safe by only using \footnote and \vfootnote directly within a para-
graph or between paragraphs.

These restrictions aren’t as severe as they seem because you can use
\vfootnote to footnote most anything. Both \footnote and \vfoot-

note insert the reference mark in front of the footnote itself, but \vfoot-
note doesn’t insert the reference mark into the text. Thus, when you
use \vfootnote you can explicitly insert the reference mark wherever it
belongs without concern about the context and place the \vfootnote

in the next paragraph. If you find that the footnote lands on the page
following the one where it belongs, move the \vfootnote back to the
previous paragraph. There are rare circumstances where you’ll need to
alter the text of your document in order to get a footnote to appear on
the same page as its reference mark.

Example:
To quote the mathematician P\’olya is a ploy.\footnote

*{This is an example of an anagram, but not a strict one.}

produces:
To quote the mathematician Pólya is a ploy.*

...

* This is an example of an anagram, but not a strict one.

TEX for the Impatient No 166

3 Jan 2020 2:18 p.m.

146 Commands for composing pages \ §6

Example:
$$f(t)=\sigma\sigma t\;\raise 1ex \hbox{\dag}$$

\vfootnote \dag{The $\sigma\sigma$ notation was explained in

the previous section.}

produces:

f(t) = σσt †

...

† The σσ notation was explained in the previous section.

General insertions

\topinsert 〈vertical mode material〉 \endinsert
\midinsert 〈vertical mode material〉 \endinsert
\pageinsert 〈vertical mode material〉 \endinsert
These commands produce different forms of insertions that instruct (or
allow) TEX to relocate the 〈vertical mode material〉:

\topinsert attempts to put the material at the top of the current
page. If it won’t fit there, \topinsert will move the material to the
next available top of page.

\midinsert attempts to put the material at the current position.
If it won’t fit there, \midinsert will move the material to the next
available top of page.

\pageinsert puts the material by itself on the next page. To avoid
an underfull page, be sure to end the inserted material with \vfil

or fill out the excess space some other way.

The 〈vertical mode material〉 is said to be “floating” because TEX can
move it from one place to another. Insertions are very useful for material
such as figures and tables because you can position such material where
you want it without knowing where the page breaks will fall.

Each of these commands implicitly ends the current paragraph, so you
should use them only between paragraphs. You should not use them
within a box or within another insertion. If you have several insertions
competing for the same space, TEX will retain their relative order.

TEX for the Impatient No 167

3 Jan 2020 2:18 p.m.

Insertions 147

Example:
\pageinsert

% This text will appear on the following page, by itself.

This page is reserved for a picture of the Queen of Hearts

sharing a plate of oysters with the Walrus and

the Carpenter.

\endinsert

\endinsert

This command ends an insertion started by \topinsert, \midinsert, or
\pageinsert.

\insert 〈number〉 { 〈vertical mode material〉 }
This primitive command provides the underlying mechanism for con-
structing insertions, but it is hardly ever used outside of a macro defini-
tion. The definitions of the \footnote, \vfootnote, \topinsert, \mid-
insert, and \pageinsert commands are all built around \insert.

When you design insertions for a document, you should assign a dif-
ferent integer code4 n to each kind of insertion, using the \newinsert

command (p. 244) to obtain the integer codes. The \insert command
itself appends the 〈vertical mode material〉 to the current horizontal or
vertical list. Your output routine is responsible for moving the inserted
material from where it resides in \boxn to an output page.

TEX groups together all insertions having the same code number. Each
insertion code n has four registers associated with it:

\boxn is where TEX accumulates the material for insertions with
code n. When TEX breaks a page, it puts into \boxn as much
insertion n material as will fit on the page. Your output routine
should then move this material to the actual page. You can use
\ifvoid (p. 238) to test if there is any material in \boxn. If not all
the material fits, TEX saves the leftovers for the next page.

\countn is a magnification factor f. When TEX is computing the
vertical space occupied on the page by insertion n material, it multi-
plies the vertical extent of this material by f/1000. Thus you would
ordinarily set f to 500 for a double-column insertion and to 0 for a
marginal note.

\dimenn specifies the maximum amount of insertion n material that
TEX will put on a single page.

\skipn specifies extra space that TEX allocates on the page if the
page contains any insertion n material. This space is in addition

4 The TEXbook uses the term “class” for a code. We use a different term to avoid
confusion with the other meaning of “class” (p. 56).

TEX for the Impatient No 168

3 Jan 2020 2:18 p.m.

148 Commands for composing pages \ §6

to the space occupied by the insertion itself. For example, it would
account for the space on a page above the footnotes (if there are any).

TEX sets \boxn, and you should set the other three registers so that TEX
can correctly compute the vertical space required by the insertion. See
pages 122–125 of The TEXbook for further details of how TEX processes
this command and of how insertions interact with page breaking.

See also: \floatingpenalty (p. 139).

Modifying the output routine

\output [〈token list〉 parameter]

This parameter contains the current output routine, i.e., the token list
that TEX expands when it finds a page break. TEX puts the page into
\box255, so \output is responsible for doing something with \box255—
either shipping it out or putting it somewhere else. The output routine is
also responsible for attaching things such as headers and footers.

\plainoutput

This command invokes plain TEX’s output routine. Plain TEX defines
\output as a token list containing the single token \plainoutput.

\shipout 〈box〉
This command instructs TEX to send 〈box〉 to the .dvi file. TEX expands
any \write command in 〈box〉 as part of \shipout. The principal use of
\shipout is in the output routine, but you can use it anywhere.

\deadcycles [〈number〉 parameter]

This parameter contains the number of times that TEX has initiated the
output routine since the last time it did a \shipout.5 If \deadcycles
gets too big, you’ve probably gotten TEX into a loop, e.g., one where the
page builder is trying the same page break over and over again.

\maxdeadcycles [〈number〉 parameter]

If the value of \deadcycles exceeds the value of \maxdeadcycles, TEX
assumes that the output routine has gotten into a loop. TEX then com-
plains and runs its own simple output routine, equivalent to \shipout

5 More precisely, TEX sets \deadcyles to 0 whenever it executes \shipout and in-
crements it by 1 whenever it executes \output.

TEX for the Impatient No 169

3 Jan 2020 2:18 p.m.

Splitting vertical lists 149

\box255, that is likely to break the loop. Plain TEX sets \maxdeadcycles
to 25.

\outputpenalty [〈number〉 parameter]

TEX sets this parameter when it breaks a page. If the breakpoint was at
a penalty item, TEX removes the penalty item and sets \outputpenalty
to the penalty value at the breakpoint; otherwise it sets \outputpenalty
to 0.

Suppose that you are undoing a page break in order to break the page
at a different place than the one that TEX has just chosen. In order
to reconstruct the page, you need to recreate the penalty at TEX’s cho-
sen breakpoint. You can accomplish this with the command \penalty

\outputpenalty.

\holdinginserts [〈number〉 parameter]

If this parameter is greater than 0 when TEX is processing a page break,
TEX will refrain from processing insertions. Setting this parameter to
1 can be useful when you’re writing an output routine that needs to
reprocess the contents of the page, e.g., an output routine that uses a
value of \vsize (p. 140) different from the one used by the page builder.

Splitting vertical lists

\vsplit 〈number〉 to 〈dimen〉
This command causes TEX to split the box numbered 〈number〉, which
we’ll call B2, into two parts. It uses the same algorithm that it would use
if B2 was a page and it was breaking that page; the division point then
corresponds to the page break that it would find. The box B2 must be
a vbox, not an hbox. TEX puts the material preceding the division point
into another box B1 and leaves the material after the division point in
B2. The \vsplit command then produces B1. Normally you’d assign B1

to a different box register, as in the example below. If the division point
is at the end of B2, B2 will be empty after the \vsplit.

TEX employs its usual page-breaking algorithm for the split. It uses
〈dimen〉 for \pagegoal, the desired height of B1. The vertical extent of
B1 may not be exactly 〈dimen〉 because TEX may not be able to achieve
its page goal perfectly. TEX does not consider insertions in calculating

TEX for the Impatient No 170

3 Jan 2020 2:18 p.m.

150 Commands for composing pages \ §6

the split, so insertions in the original vertical list of B2 will be retained
but won’t affect the split point.

Example:
\setbox 20 = \vsplit 30 to 7in

% Split off the first seven inches or so of material from

% box 30 and place that material in box 20.

\splitmaxdepth [〈dimen〉 parameter]

This parameter specifies the maximum allowable depth of a box resulting
from a \vsplit. \splitmaxdepth plays the same role that \maxdepth

(p. 141) plays for a page.

\splittopskip [〈glue〉 parameter]

This parameter specifies the glue that TEX inserts at the top of a box
resulting from a \vsplit. \splittopskip plays the same role that
\topskip (p. 141) plays for a page.

See also: \splitbotmark, \splitfirstmark (p. 144).

TEX for the Impatient No 171

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 172

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 173

3 Jan 2020 2:18 p.m.

7 Commands for
horizontal and
vertical modes

This section covers commands that have corresponding or identical forms
for both horizontal and vertical modes. These commands provide boxes,
spaces, rules, leaders, and alignments. For an explanation of the conven-
tions used in this section, see “Descriptions of the commands” (p. 3).

Producing space

Fixed-width horizontal space

\thinspace

This command produces a positive kern whose width is one-sixth of an
em (p. 60) i.e., it causes TEX to move its position right by that amount. It
is useful when you have a nested quotation, for example, and you want to
separate the levels of quotes. TEX won’t break a line at a \thinspace.

Example:
‘‘\thinspace‘A quote.’\thinspace’’\par

24,\thinspace 29--31,\thinspace 45,\thinspace 102

produces:
“ ‘A quote.’ ”
24, 29–31, 45, 102

\negthinspace

This command produces a negative kern whose width is one-sixth of an
em (p. 60), i.e., it causes TEX to move its position left by that amount.

TEX for the Impatient No 174

3 Jan 2020 2:18 p.m.

154 Commands for horizontal and vertical modes \ §7

It is useful for bringing together characters that are a little too far apart.
TEX won’t break a line at a \negthinspace.

Example:
The horror, the horror\negthinspace, the horror of it all!

produces:
The horror, the horror, the horror of it all!

\enspace

This command produces a kern whose width is one en (half of an em,
see page 60). TEX won’t break a line at an \enspace unless it’s followed
by glue. In a bulleted list, the bullets are usually separated from the
following text by an \enspace.

Example:
Lemma 1.\enspace There exists a white rabbit.

produces:
Lemma 1. There exists a white rabbit.

+ \enskip

\quad

\qquad

Each of these commands produces a glob of horizontal glue that can
neither stretch nor shrink. TEX can break a line at such glue. The width
of these glues (which are relative to the current font) are as follows for
cmr10, the default plain TEX font:

Command Space Illustration

\enskip 1/2 em → ←
\quad 1 em → ←
\qquad 2 em → ←

Example:
en\enskip skip; quad\quad skip; qquad\qquad skip

produces:
en skip; quad skip; qquad skip

Fixed-length vertical space

+ \smallskip

\medskip

\bigskip

These commands produce successively larger amounts of vertical space:

smallskip medskip bigskip

TEX for the Impatient No 175

3 Jan 2020 2:18 p.m.

Producing space 155

\smallskip skips by 3 points and can stretch or shrink by 1 point. \med-
skip is equivalent to two \smallskips and \bigskip is equivalent to
two \medskips.

These commands end a paragraph since they are inherently vertical.
The skips that they produce are in addition to the normal interparagraph
skip.

Example:
Hop \smallskip skip \medskip and \bigskip jump.

produces:
Hop

skip

and

jump.

\smallskipamount [〈glue〉 parameter]

\medskipamount [〈glue〉 parameter]

\bigskipamount [〈glue〉 parameter]

These parameters specify the amounts of glue produced by the \small-

skip, \medskip, and \bigskip commands. By changing these parame-
ters you change the effect of the commands. The default values (for plain
TEX) correspond to a quarter of a linespace, half a linespace, and a full
linespace. We recommend that you maintain this ratio by changing these
values whenever you change \baselineskip (p. 133).

Variable-size space

+ \hskip 〈dimen1〉 plus 〈dimen2〉 minus 〈dimen3〉
\vskip 〈dimen1〉 plus 〈dimen2〉 minus 〈dimen3〉
These commands produce horizontal and vertical glue respectively. In
the simplest and most common case when only 〈dimen1〉 is present,
\hskip skips to the right by 〈dimen1〉 and \vskip skips down the page by
〈dimen1〉. More generally, these commands produce glue whose natural
size is 〈dimen1〉, whose stretch is 〈dimen2〉, and whose shrink is 〈dimen3〉.
Either the plus 〈dimen2〉, the minus 〈dimen3〉, or both can be omitted.
If both are present, the plus must come before the minus. An omitted
value is taken to be zero. Any of the 〈dimen〉s can be negative.

TEX for the Impatient No 176

3 Jan 2020 2:18 p.m.

156 Commands for horizontal and vertical modes \ §7

You can use \hskip in math mode, but you can’t use mu units (see
“mathematical unit”, p. 81) for any of the dimensions. If you want mu

units, use \mskip (p. 215) instead.

Example:
\hbox to 2in{one\hskip 0pt plus .5in two}

produces:
one two

2 in

Example:
\hbox to 2in{Help me! I can’t fit

{\hskip 0pt minus 2in} inside this box!}

produces:
Help me! I can’t fitinside this box!

2 in

Example:
\vbox to 4pc{\offinterlineskip% Just show effects of \vskip.

\hbox{one}\vskip 0pc plus 1pc \hbox{two}

\vskip .5pc \hbox{three}}

produces:
one

two

three

\hglue 〈glue〉
\vglue 〈glue〉
The \hglue command produces horizontal glue that won’t disappear at
a line break; the \vglue command produces vertical glue that won’t
disappear at a page break. In other respects these commands are just
like \hskip and \vskip. You can use \vglue to produce blank space at
the top of a page, e.g., above a title on the first page of a document, but
\topglue (next) is usually better for this purpose.

\topglue 〈glue〉
This command1 causes the space from the top of the page to the top of
the first box on the page to be 〈glue〉 precisely. The top of the page is
considered to be at the baseline of an imaginary line of text just above
the top line of the page. More precisely, it’s a distance \topskip above
the origin as given by \hoffset and \voffset.

1 \topglue was added to TEX in version 3.0, later than the other enhancements
introduced by new TEX (p. 18). It is first described in the eighteenth edition of
The TEXbook.

TEX for the Impatient No 177

3 Jan 2020 2:18 p.m.

Producing space 157

This command is useful because TEX ordinarily adjusts the glue pro-
duced by \topskip in a complex way. By using \topglue you can con-
trol the position of the first box on the page without worrying about
those adjustments.

\kern 〈dimen〉
The effect of this command depends on the mode that TEX is in when
it encounters it:

In a horizontal mode, TEX moves its position to the right (for a
positive kern) or to the left (for a negative kern).

In a vertical mode, TEX moves its position down the page (for a
positive kern) or up the page (for a negative kern).

Thus a positive kern produces empty space while a negative kern causes
TEX to back up over something that it’s already produced. This notion
of a kern is different from the notion of a kern in some computerized
typesetting systems—in TEX, positive kerns push two letters apart instead
of bringing them closer together.

A kern is similar to glue, except that (a) a kern can neither stretch nor
shrink, and (b) TEX will only break a line or a page at a kern if the kern
is followed by glue and is not part of a math formula. If TEX finds a kern
at the end of a line or a page, it discards the kern. If you want to get the
effect of a kern that never disappears, use \hglue or \vglue.

You can use \kern in math mode, but you can’t use mu units (see
“mathematical unit”, p. 81) for 〈dimen〉. If you want mu units, use \mkern
(p. 215) instead.

Example:
\centerline{\Downarrow}\kern 3pt % a vertical kern

\centerline{\Longrightarrow\kern 6pt % a horizontal kern

{\bf Heed my warning!}\kern 6pt % another horizontal kern

\Longleftarrow}

\kern 3pt % another vertical kern

\centerline{\Uparrow}

produces:
⇓

=⇒ Heed my warning! ⇐=

⇑

\hfil

\hfill

\vfil

\vfill

These commands produce infinitely stretchable horizontal and vertical
glue that overwhelms any finite stretch that may be present. \hfil

TEX for the Impatient No 178

3 Jan 2020 2:18 p.m.

158 Commands for horizontal and vertical modes \ §7

and \hfill produce horizontal glue, while \vfil and \vfill produce
vertical glue.
\hfill is infinitely larger than \hfil. If both \hfill and \hfil ap-

pear in the same box, the \hfill will consume all the available extra
space and the \hfil will be effectively ignored. \hfill can in turn be
overwhelmed by \hskip 0pt plus 1filll. The glue produced by \hfil

and \hfill never shrinks.
The behavior of \vfil and \vfill is analogous.

Example:
\hbox to 2in{Left\hfil Middle \hfil Right}

produces:
Left Middle Right

2 in

Example:
\hbox to 2in{Left\hfil Middle \hfill Right}

produces:
LeftMiddle Right

2 in

Example:
\leftline{%

\vbox to 4pc{%

\hbox{Top}\vfil\hbox{Middle}\vfil \hbox{Bottom}}\quad

\vbox to 4pc{%

\hbox{Top}\vfil\hbox{Middle}\vfill\hbox{Bottom}}}

produces:

Top

Middle

Bottom

Top
Middle

Bottom

\hss

\vss

These commands produce horizontal and vertical glue that is both in-
finitely stretchable and infinitely shrinkable. The glue can shrink to a
negative distance, producing the effect of backspacing along a line (for
\hss) or moving back up a page (for \vss).

Example:
\line{text\hfil\hbox to 0pt{margin\hss}}

% ‘margin\hss’ shrinks to the zero width of the hbox.

produces:
text margin

TEX for the Impatient No 179

3 Jan 2020 2:18 p.m.

Producing space 159

Example:
\vbox to 1pc{\hrule width 6pc % Top of box.

\hbox{1} \vskip 1pc\hbox to 2pc{\hfil 2}

% The \vss absorbs the extra distance produced by \vskip.

\vss \hbox to 3pc{\hfil 3}

\hrule width 6pc}% Bottom of box.

produces:

1

2

3

\hfilneg

\vfilneg

These commands cancel the effect of a preceding \hfil or \vfil. While
\hfil and \vfil produce infinitely stretchable positive glue, \hfilneg
and \vfilneg produce infinitely stretchable negative glue. (Thus, n
\hfilnegs cancel n \hfils, and similarly for \vfilneg.) The main use of
\hfilneg and \vfilneg is to counteract the effect of an \hfil or \vfil
inserted by a macro.
\hfilneg and \vfilneg have the curious property that if they are the

only infinitely stretchable glue in a box, they produce exactly the same
effect as \hfil and \vfil.

Example:
\leftline{\hfil on the right\hfilneg}

% Cancel the \hfil that \leftline produces to the right

% of its argument.

produces:
on the right

Example:
\def\a{\hbox to 1pc{\hfil 2}\vfil}

\vbox to 4pc{\hbox{1} \vfil \a

\vfilneg \hbox to 2pc{\hfil 3}}

produces:
1

2
3

See also: \hbadness and \vbadness (p. 170), \hfuzz and \vfuzz

(p. 171), “leaders” (p. 72).

TEX for the Impatient No 180

3 Jan 2020 2:18 p.m.

160 Commands for horizontal and vertical modes \ §7

Manipulating boxes

Constructing hboxes and vboxes

\hbox { 〈horizontal mode material〉 }
\hbox to 〈dimen〉 { 〈horizontal mode material〉 }
\hbox spread 〈dimen〉 { 〈horizontal mode material〉 }
This command produces an hbox (horizontal box) containing 〈horizontal
mode material〉. The braces around 〈horizontal mode material〉 define a
group. TEX doesn’t break the 〈horizontal mode material〉 into lines, since
it’s in restricted horizontal mode when it’s assembling the box. TEX won’t
change the size of the box once it’s been produced.
\hbox is often useful when you want to keep some text all on one line.

If your use of \hbox prevents TEX from breaking lines in an acceptable
way, TEX will complain about an overfull hbox.

The width of the hbox depends on the arguments to \hbox:

If you specify only 〈horizontal mode material〉, the hbox will have its
natural width.
If you specify to 〈dimen〉, the width of the hbox will be 〈dimen〉.
If you specify spread 〈dimen〉, the width of the hbox will be its natu-
ral width plus 〈dimen〉, i.e., the hbox will be spread out by 〈dimen〉.

The \hfil command (p. 157) is useful for filling out an hbox with empty
space when the material in the box isn’t as wide as the width of the box.

Example:
\hbox{ugly suburban sprawl}

\hbox to 2in{ugly \hfil suburban \hfil sprawl}

\hbox spread 1in {ugly \hfil suburban \hfil sprawl}

% Without \hfil in the two preceding lines,

% you’d get ‘underfull hbox’es.

produces:
ugly suburban sprawl
ugly suburban sprawl
ugly suburban sprawl

3 in

TEX for the Impatient No 181

3 Jan 2020 2:18 p.m.

Manipulating boxes 161

\vtop 〈vertical mode material〉
\vtop to 〈dimen〉 { 〈vertical mode material〉 }
\vtop spread 〈dimen〉 { 〈vertical mode material〉 }
\vbox { 〈vertical mode material〉 }
\vbox to 〈dimen〉 { 〈vertical mode material〉 }
\vbox spread 〈dimen〉 { 〈vertical mode material〉 }
These commands produce a vbox (vertical box) containing 〈vertical mode
material〉. The braces around 〈vertical mode material〉 define a group.
TEX is in internal vertical mode when it’s assembling the box. TEX won’t
change the size of the box once it’s been produced.

The difference between \vtop and \vbox lies in where TEX puts the
reference point of the constructed vbox. Ordinarily, the reference point
gotten from \vtop tends to be at or near the top of the constructed vbox,
while the reference point gotten from \vbox tends to be at or near the
bottom of the constructed vbox. Thus a row of vboxes all constructed
with \vtop will tend to have their tops nearly in a line, while a row
of vboxes all constructed with \vbox will tend to have their bottoms
nearly in a line.
\vtop and \vbox are often useful when you want to keep some text

together on a single page. (For this purpose, it usually doesn’t matter
which command you use.) If your use of these commands prevents TEX
from breaking pages in an acceptable way, TEX will complain that it’s
found an overfull or underfull vbox while \output is active.

The height of a vbox depends on the arguments to \vtop or \vbox. For
\vbox, TEX determines the height as follows:

If you specify only 〈vertical mode material〉, the vbox will have its
natural height.
If you specify to 〈dimen〉, the height of the vbox will be 〈dimen〉.
If you specify spread 〈dimen〉, the height of the vbox will be its nat-
ural height plus 〈dimen〉, i.e., the height of the vbox will be stretched
vertically by 〈dimen〉.

For \vtop, TEX constructs the box using its rules for \vbox and then
apportions the vertical extent between the height and the depth as de-
scribed below.

Ordinarily, the width of a constructed vbox is the width of the widest
item inside it.2 The rules for apportioning the vertical extent between
the height and the depth are more complicated:

For \vtop, the height is the height of its first item, if that item is
a box or rule. Otherwise the height is zero. The depth is whatever
vertical extent remains after the height is subtracted.

2 More precisely, it’s the distance from the reference point to the rightmost edge of
the constructed vbox. Therefore, if you move any of the items right using \moveright
or \moveleft (with a negative distance), the constructed vbox might be wider.

TEX for the Impatient No 182

3 Jan 2020 2:18 p.m.

162 Commands for horizontal and vertical modes \ §7

For \vbox, the depth is the depth of its last item, if that item is a box
or rule. Otherwise the depth is zero. The height is whatever vertical
extent remains after the depth is subtracted.3

The \vfil command (p. 157) is useful for filling out a vbox with empty
space when the material in the box isn’t as tall as the vertical extent of the
box.

Example:
\hbox{\hsize = 10pc \raggedright\parindent = 1em

\vtop{In this example, we see how to use vboxes to

produce the effect of double columns. Each vbox

contains two paragraphs, typeset according to \TeX’s

usual rules except that it’s ragged right.\par

This isn’t really the best way to get true double

columns because the columns}

\hskip 2pc

\vtop{\noindent

aren’t balanced and we haven’t done anything to choose

the column break automatically or even to fix up the

last line of the first column.\par

However, the technique of putting running text into a

vbox is very useful for placing that text where you

want it on the page.}}

produces:
In this example, we see

how to use vboxes to pro-
duce the effect of dou-
ble columns. Each vbox
contains two paragraphs,
typeset according to TEX’s
usual rules except that it’s
ragged right.

This isn’t really the
best way to get true dou-
ble columns because the
columns

aren’t balanced and we
haven’t done anything to
choose the column break
automatically or even to
fix up the last line of the
first column.

However, the technique
of putting running text
into a vbox is very useful
for placing that text where
you want it on the page.

3 In fact, there’s a further complication. Suppose that after the depth has been
determined using the two rules just given, the depth turns out to be greater than
\boxmaxdepth. Then the depth is reduced to \boxmaxdepth and the height is ad-
justed accordingly.

TEX for the Impatient No 183

3 Jan 2020 2:18 p.m.

Manipulating boxes 163

Example:
\hbox{\hsize = 1in \raggedright\parindent = 0pt

\vtop to .75in{\hrule This box is .75in deep. \vfil\hrule}

\qquad

\vtop{\hrule This box is at its natural depth. \vfil\hrule}

\qquad

\vtop spread .2in{\hrule This box is .2in deeper than

its natural depth.\vfil\hrule}}

produces:

This box is
.75in deep.

This box is
at its natural
depth.

This box is .2in
deeper than its
natural depth.

Example:
% See how \vbox lines up boxes at their bottoms

% instead of at their tops.

\hbox{\hsize = 1in \raggedright

\vbox to .5in{\hrule This box is .5in deep.\vfil\hrule}

\qquad

\vbox to .75in{\hrule This box is .75in deep.\vfil\hrule}}

produces:

This box is .5in
deep.

This box is
.75in deep.

\boxmaxdepth [〈dimen〉 parameter]

This parameter contains a dimension D. TEX will not construct a box
whose depth exceeds D. If you produce a box whose depth d would
exceed D, TEX will transfer the excess depth to the height of the box,
effectively moving the reference point of the box down by d −D. If you
set \boxmaxdepth to zero, TEX will line up a row of vboxes so that their
bottom boundaries all lie on the same horizontal line. Plain TEX sets
\boxmaxdepth to \maxdimen (p. 244), so \boxmaxdepth won’t affect your
boxes unless you change it.

\underbar 〈argument〉
This command puts 〈argument〉 into an hbox and underlines it without
regard to anything that protrudes below the baseline of the box.

TEX for the Impatient No 184

3 Jan 2020 2:18 p.m.

164 Commands for horizontal and vertical modes \ §7

Example:
\underbar{Why not learn \TeX?}

produces:
Why not learn TEX?

\everyhbox [〈token list〉 parameter]
\everyvbox [〈token list〉 parameter]

These parameters contain token lists that TEX expands at the start of
every hbox or vbox that it constructs. Any items resulting from the
expansion then become the beginning of the list of items for the box. By
default these token lists are empty.

Setting and retrieving the contents of boxes

\setbox 〈register〉 = 〈box〉
\box 〈register〉
These commands respectively set and retrieve the contents of the box reg-
ister whose number is 〈register〉. Note that you set a box register a little
differently than you set the other kinds of registers: you use \setboxn =

rather than \boxn =.
Retrieving the contents of a box register with these commands has the

side effect of emptying it, so that the box register become void. If you
don’t want that to happen, you can use \copy (see below) to retrieve the
contents. You should use \box in preference to \copy when you don’t care
about what’s in a box register after you’ve used it, so as not to exhaust
TEX’s memory by filling it with obsolete boxes.

Example:
\setbox0 = \hbox{mushroom}

\setbox1 = \vbox{\copy0\box0\box0}

\box1

produces:
mushroom
mushroom

\copy 〈register〉
This command produces a copy of box register 〈register〉. This command
is useful when you want to retrieve the contents of a box register but don’t

TEX for the Impatient No 185

3 Jan 2020 2:18 p.m.

Manipulating boxes 165

want to destroy the contents. (Retrieving the register contents with \box

makes the register void.)

Example:
\setbox0 = \hbox{good }

Have a \copy0 \box0 \box0 day!

produces:
Have a good good day!

\unhbox 〈register〉
\unvbox 〈register〉
These commands produce the list contained in box register 〈register〉 and
make that box register void. \unhbox applies to box registers containing
hboxes and \unvbox applies to box registers containing vboxes. You
should use these commands in preference to \unhcopy and \unvcopy

(see below) when you don’t care about what’s in the box register after
you’ve used it, so as not to exhaust TEX’s memory by filling it with
obsolete boxes.

Example:
\setbox0=\hbox{The Mock Turtle sighed deeply, and

drew the back of one flapper across his eyes. }

\setbox1=\hbox{He tried to speak, but sobs choked

his voice. }

\unhbox0 \unhbox1

% \box0 \box1 would set two hboxes side by side

% (and produce a badly overfull line).

\box1 % produces nothing

produces:
The Mock Turtle sighed deeply, and drew the back of one flapper across
his eyes. He tried to speak, but sobs choked his voice.

\unhcopy 〈register〉
\unvcopy 〈register〉
These commands produce the list contained in box register 〈register〉
and leave the contents of the register undisturbed. \unhcopy applies to
box registers containing hboxes and \unvcopy applies to box registers
containing vboxes.

TEX for the Impatient No 186

3 Jan 2020 2:18 p.m.

166 Commands for horizontal and vertical modes \ §7

Example:
\setbox0=\hbox{The Mock Turtle sighed deeply, and

drew the back of one flapper across his eyes. }

\setbox1=\hbox{He tried to speak, but sobs choked his

voice. }

\unhcopy0 \unhcopy1\par\noindent

% \box0 \box1 would set two hboxes side by side

% (and produce a badly overfull line).

\box1 % Produces an hbox (which can’t be broken).

produces:
The Mock Turtle sighed deeply, and drew the back of one flapper across
his eyes. He tried to speak, but sobs choked his voice.
He tried to speak, but sobs choked his voice.

See also: \wd, \dp, \ht (p. 167).

Shifting boxes

\moveleft 〈dimen〉 〈box〉
\moveright 〈dimen〉 〈box〉
These commands move 〈box〉 left or right by 〈dimen〉 (which can be neg-
ative). You can only apply \moveleft and \moveright to a box that’s
in a vertical list.

Example:
\vbox{\vbox{Phoebe}\vbox{walked}%

\moveleft 20pt\vbox{a}\moveright 20pt\vbox{crooked}%

\vbox{mile.}}

produces:
Phoebe
walked

a
crooked

mile.

\lower 〈dimen〉 〈box〉
\raise 〈dimen〉 〈box〉
These commands move 〈box〉 up or down by 〈dimen〉 (which can be neg-
ative). You can only apply \raise and \lower to a box that’s in a
horizontal list.

TEX for the Impatient No 187

3 Jan 2020 2:18 p.m.

Manipulating boxes 167

Example:
Are you feeling \lower 6pt \hbox{depressed} about the

\raise 6pt \hbox{bump} on your nose?

produces:

Are you feeling
depressed

about the
bump

on your nose?

Dimensions of box registers

\ht 〈register〉 [〈dimen〉 parameter]

\dp 〈register〉 [〈dimen〉 parameter]

\wd 〈register〉 [〈dimen〉 parameter]

These parameters refer to the height, depth, and width respectively of
box register 〈register〉. You can use them to find out the dimensions of
a box. You can also change the dimensions of a box, but it’s a tricky
business; if you want to be adventurous you can learn all about it from
pages 388–389 of The TEXbook.

Example:
\setbox0 = \vtop{\hbox{a}\hbox{beige}\hbox{bunny}}%

The box has width \the\wd0, height \the\ht0,

and depth \the\dp0.

produces:
The box has width 27.2223pt, height 4.30554pt, and depth 25.94444pt.

Struts, phantoms, and empty boxes

\strut

This command produces a box whose width is zero and whose height
(8.5pt) and depth (3.5pt) are those of a more or less typical line of
type in cmr10, the default plain TEX font. Its main use is in forcing lines
to have the same height when you’ve disabled TEX’s interline glue with
\offinterlineskip or a similar command, e.g., when you’re construct-
ing an alignment. If the natural height of a line is too short, you can bring
it up to standard by including a \strut in the line. The strut will force
the height and depth of the line to be larger, but it won’t print anything
or consume any horizontal space.

TEX for the Impatient No 188

3 Jan 2020 2:18 p.m.

168 Commands for horizontal and vertical modes \ §7

If you’re setting type in a font that’s bigger or smaller than cmr10, you
should redefine \strut for that context.

Example:
\noindent % So we’re in horizontal mode.

\offinterlineskip % So we get the inherent spacing.

% The periods in this vbox are not vertically equidistant.

\vtop{\hbox{.}\hbox{.(}\hbox{.x}

\hbox{.\vrule height 4pt depth 0pt}}\qquad

% The periods in this vbox are vertically equidistant

% because of the struts.

\vtop{\hbox{.\strut}\hbox{.(\strut}\hbox{.x\strut}

\hbox{.\vrule height 4pt depth 0pt\strut}}

produces:
.
.(
.x.

.

.(

.x

.

\mathstrut

This command produces a phantom formula whose width is zero and
whose height and depth are the same as those of a left parenthesis.
\mathstrut is in fact defined as ‘\vphantom(’. Its main use is for getting
radicals, underbars, and overbars to line up with other radicals, under-
bars, and overbars in a formula. It is much like \strut (p. 167), except
that it adjusts itself to the different styles that can occur in math formulas.

Example:
$$\displaylines{

\overline{a_1a_2} \land \overline{b_1b_2}

\quad{\rm versus}\quad \overline{a_1a_2\mathstrut}

\land \overline{b_1b_2\mathstrut}\cr

\sqrt{\epsilon} + \sqrt{\xi} \quad{\rm versus}\quad

\sqrt{\epsilon\mathstrut} + \sqrt{\xi\mathstrut}\cr}$$

produces:

a1a2 ∧ b1b2 versus a1a2 ∧ b1b2
√
ε+

√
ξ versus

√
ε+

√
ξ

\phantom 〈argument〉
This command produces an empty box having the same size and place-
ment that 〈argument〉 would have were it typeset. One use of \phantom

TEX for the Impatient No 189

3 Jan 2020 2:18 p.m.

Manipulating boxes 169

is for reserving space for a symbol that for some reason needs to be
drawn in by hand.

Example:
12

produces:
1 2

\hphantom 〈argument〉
\vphantom 〈argument〉
These commands produce phantom boxes that don’t print anything:

\hphantom produces a box with the same width as 〈argument〉 but
zero height and depth.
\vphantom produces a box with the same height and depth as 〈argu-
ment〉 but zero width.

Their main purpose is to force a subformula to have a certain minimum
horizontal or vertical dimension.

Example:
$$\left[\vphantom{u\over v}t\right] \star

\left[{u\over v}\right]\quad

\{\hphantom{xx}\}$$

produces: [
t
]
?
[u
v

]
{ }

\smash 〈argument〉
This command typesets 〈argument〉, but forces the height and depth of
its containing box to be zero. You can use \smash and \vphantom in
combination to give a subformula any height and depth that you wish.

Example:
$${\smash{r_m \brace r_n}\vphantom{r}} \Longrightarrow r$$

produces: {
rm
rn

}
=⇒ r

\null

This command produces an empty hbox.

TEX for the Impatient No 190

3 Jan 2020 2:18 p.m.

170 Commands for horizontal and vertical modes \ §7

Example:
\setbox0 = \null

The null box \null has width \the\wd0, height \the\ht0,

and depth \the\dp0.

produces:
The null box has width 0.0pt, height 0.0pt, and depth 0.0pt.

Parameters pertaining to malformed boxes

\overfullrule [〈dimen〉 parameter]

This parameter specifies the width of the rule that TEX appends to an
overfull hbox. Plain TEX sets it to 5pt.

\hbadness [〈number〉 parameter]
\vbadness [〈number〉 parameter]

These parameters specify the thresholds of horizontal and vertical badness
for reporting underfull or overfull boxes. \hbadness applies to hboxes and
\vbadness applies to vboxes. If the badness of a constructed box exceeds
the threshold, TEX will report an error. If you raise the thresholds (the
plain TEX defaults are both 1000), TEX will be less likely to complain.
Note that the settings of \hbadness and \vbadness have no effect on the
appearance of your typeset document; they only affect the error messages
that you get. See page 302 of The TEXbook for a precise description of
how TEX decides when to complain about an overfull or underfull box.

Example:
\hbadness = 10000 % Suppress any hbadness complaints.

\hbox to 2in{a b}\par

\hbadness = 500 % Report hbadness exceeding 500.

\hbox to 2in{a\hskip 0pt plus .5in b}

produces in the log:
Underfull \hbox (badness 5091) detected at line 4

\tenrm a b

\hbox(6.94444+0.0)x144.54, glue set 3.70787

.\tenrm a

.\glue 0.0 plus 36.135

.\tenrm b

\badness

This command yields the numerical value of the badness of the box (ei-
ther horizontal or vertical) that TEX has most recently produced. If the

TEX for the Impatient No 191

3 Jan 2020 2:18 p.m.

Retrieving the last item from a list 171

box was overfull, \badness will be 1000000; in all other cases it will be
between 0 and 10000.

\hfuzz [〈dimen〉 parameter]
\vfuzz [〈dimen〉 parameter]

These parameters specify the amount that a box can exceed its natural
size before TEX considers it to be overfull. \hfuzz applies to hboxes and
\vfuzz applies to vboxes. Plain TEX sets both parameters to 0.1pt.

Example:
\hfuzz = .5in

\hbox to 2in{This box is longer than two inches.}

% No error results

produces:
This box is longer than two inches.

3 in

See also: \tolerance (p. 123).

Retrieving the last item from a list

\lastkern

\lastskip

\lastpenalty

\lastbox

These control sequences yield the value of the last item on the current list.
They aren’t true commands because they can only appear as part of an
argument. If the last item on the list isn’t of the indicated type, they yield
a zero value (or an empty box, in the case of \lastbox). For example, if
the last item on the current list is a kern, \lastkern yields the dimension
of that kern; if it isn’t a kern, it yields a dimension of 0.

Using \lastbox has the additional effect of removing the last box from
the list. If you want the original \lastbox to remain on the list, you have
to add a copy of it to the list. \lastbox is not permitted in a math list
or in the main vertical list.

These control sequences are most useful after macro calls that might
have inserted entities of the indicated kinds.

TEX for the Impatient No 192

3 Jan 2020 2:18 p.m.

172 Commands for horizontal and vertical modes \ §7

Example:
\def\a{two\kern 15pt}

one \a\a\hskip 2\lastkern three\par

% Get three times as much space before ‘three’.

\def\a{\hbox{two}}

one \a

\setbox0 = \lastbox % Removes ‘two’.

three \box0.

produces:
one two two three
one three two.

\unkern

\unskip

\unpenalty

If the last item on the current list is of type kern, glue, or penalty re-
spectively, these commands remove it from that list. If the item isn’t of
the right type, these commands have no effect. Like \lastbox, you can’t
apply them to lists in math mode or to the main vertical list. These com-
mands are most useful after a macro call that is known to have inserted a
specific item that you don’t want there. TEX doesn’t provide an \unbox

command because \lastbox produces nearly the same effect.

Rules and leaders

\hrule

\hrule height 〈dimen〉 width 〈dimen〉 depth 〈dimen〉
\vrule

\vrule width 〈dimen〉 height 〈dimen〉 depth 〈dimen〉
The \hrule command produces a horizontal rule; the \vrule command
produces a vertical rule. You can specify any or all of the width, height,
and depth of the rule—TEX supplies default values for those that you
omit. You can give the dimensions of the rule in any order; the forms
listed above show just two of the possible combinations. You can even
give a dimension of a given kind more than once—if you do, the last one
is the one that counts.

If you don’t specify the width of a horizontal rule, the rule is extended
horizontally to the boundaries of the innermost box or alignment that
contains the rule. If you don’t specify the height of a horizontal rule, it
defaults to 0.4pt; if you don’t specify the depth of a horizontal rule, it
defaults to 0pt.

TEX for the Impatient No 193

3 Jan 2020 2:18 p.m.

Rules and leaders 173

If you don’t specify the width of a vertical rule, it defaults to 0.4pt.
If you don’t specify the height or the depth of a vertical rule, the rule is
extended to the boundary of the innermost box or alignment that con-
tains the rule.

TEX treats a horizontal rule as an inherently vertical item and a vertical
rule as an inherently horizontal item. Thus a horizontal rule is legal only
in a vertical mode, while a vertical rule is legal only in a horizontal mode.
If this seems surprising, visualize it—a horizontal rule runs from left to
right and separates vertical items in a sequence, while a vertical rule runs
up and down and separates horizontal items in a sequence.

Example:
\hrule\smallskip

\hrule width 2in \smallskip

\hrule width 3in height 2pt \smallskip

\hrule width 3in depth 2pt

produces:

Example:
% Here you can see how the baseline relates to the

% height and depth of an \hrule.

\leftline{

\vbox{\hrule width .6in height 5pt depth 0pt}

\vbox{\hrule width .6in height 0pt depth 8pt}

\vbox{\hrule width .6in height 5pt depth 8pt}

\vbox{\hbox{ baseline}\kern 3pt \hrule width .6in}

}

produces:

baseline

Example:
\hbox{({\vrule} {\vrule width 8pt})}

\hbox {({\vrule height 13pt depth 0pt}

{\vrule height 13pt depth 7pt} x)}

% the parentheses define the height and depth of each of the

% two preceding boxes; the ‘x’ sits on the baseline

produces:

()

(x)

TEX for the Impatient No 194

3 Jan 2020 2:18 p.m.

174 Commands for horizontal and vertical modes \ §7

+ \leaders 〈box or rule〉 〈skip command〉
\cleaders 〈box or rule〉 〈skip command〉
\xleaders 〈box or rule〉 〈skip command〉
These commands produce leaders, i.e., they fill a horizontal or vertical
space with copies of a pattern (see “leaders”, p. 72). The 〈box〉 or 〈rule〉
specifies a leader, i.e., a single copy of the pattern, while the 〈skip com-
mand〉 specifies a window to be filled with a row or a column of the
leaders. The pattern is repeated as many times as will fit into the win-
dow. If 〈skip command〉 is a horizontal skip, the window contains a row
of leaders and TEX must be in a horizontal mode; if 〈skip command〉 is a
vertical skip, the window contains a column of leaders and TEX must be
in a vertical mode.

The commands differ in how they arrange the repeated pattern in the
space and where they put any leftover space:

For \leaders, TEX aligns a row of leaders with the left end of the
innermost box B that is to contain the result of the \leaders com-
mand. It aligns a column of leaders with the top of B. Those leaders
that fall entirely within the window are retained. Any leftover space
at the top and bottom of the window is left empty.
For \cleaders, the leaders are centered within the window.
For \xleaders the pattern is uniformly distributed throughout the
window. If the leftover space is l and the leader is repeated n times,
TEX puts space of width or height l/(n+1) between adjacent leaders
and at the two ends (left and right or top and bottom) of the leaders.

Example:
\def\pattern{\hbox to 15pt{\hfil.\hfil}}

\line{Down the Rabbit-Hole {\leaders\pattern\hfil} 1}

\line{The Pool of Tears {\leaders\pattern\hfil} 9}

\line{A Caucus-Race and a Long Tale {\cleaders\pattern

\hfil} 19}

\line{Pig and Pepper {\xleaders\pattern\hfil} 27}

produces:
Down the Rabbit-Hole 1
The Pool of Tears 9
A Caucus-Race and a Long Tale 19
Pig and Pepper 27

TEX for the Impatient No 195

3 Jan 2020 2:18 p.m.

Rules and leaders 175

Example:
\def\bulletfill{\vbox to 3ex{\vfil\hbox{\bullet}\vfil}}%

\def\mybox{\vbox to 1in}

\def\myrule{\hrule width 4pt}\hsize=2in

\hrule \line{%

\mybox{\myrule depth 8pt \leaders\bulletfill\vfill}

\hfil

\mybox{\myrule depth 15pt \leaders\bulletfill\vfill}

\hfil

\mybox{\myrule depth 18pt \cleaders\bulletfill\vfill}

\hfil

\mybox{\myrule depth 12pt \xleaders\bulletfill\vfill}%

}\hrule

produces:

•
•
•
•

•
•
•

•
•
•
•

•
•
•
•

\dotfill

\hrulefill

These commands respectively fill the enclosing horizontal space with a
row of dots on the baseline and with a horizontal line on the baseline. It’s
usually a good idea to leave a space between \dotfill or \hrulefill

and any text that precedes or follows it (see the example below).

Example:
\hbox to 3in{Start {\dotfill} Finish}

\hbox to 3in{Swedish {\hrulefill} Finnish}

produces:
Start . Finish
Swedish Finnish

\leftarrowfill

\rightarrowfill

These commands fill the enclosing horizontal space with left-pointing or
right-pointing arrows.

TEX for the Impatient No 196

3 Jan 2020 2:18 p.m.

176 Commands for horizontal and vertical modes \ §7

Example:
\hbox to 3in{\vrule \rightarrowfill \ 3 in

\leftarrowfill\vrule}

produces:

−−−−−−−−−−−−−−−−→ 3 in ←−−−−−−−−−−−−−−−−

Alignments

Tabbing alignments

\+ 〈text〉 & 〈text〉 & · · · \cr
\tabalign

These commands begin a single line in a tabbed alignment. The only
difference between \+ and \tabalign is that \+ is an outer macro—you
can’t use it when TEX is reading tokens at high speed (see “outer”, p. 83).

If you place an ‘&’ at a position to the right of all existing tabs in a
tabbing alignment, the ‘&’ establishes a new tab at that position.

Example:
\cleartabs % Nullify any previous \settabs.

\+ {\bf if }$a[i] < a[i+1]$ &{\bf then}&\cr

\+&&$a[i] := a[i+1]$;\cr

\+&&{\it found }$:=$ {\bf true};\cr

\+&{\bf else}\cr

\+&&{\it found }$:=$ {\bf false};\cr

\+&{\bf end if};\cr

produces:
if a[i] < a[i+ 1] then

a[i] := a[i+ 1];
found := true;

else
found := false;

end if;

\settabs 〈number〉 \columns
\settabs \+ 〈sample line〉 \cr
The first form of this command defines a set of tab stops for a tabbing
alignment. It tells TEX to set the tab stops so as to divide each line into

TEX for the Impatient No 197

3 Jan 2020 2:18 p.m.

Alignments 177

〈number〉 equal parts. TEX takes the length of a line to be \hsize, as
usual. You can make the alignment narrower by decreasing \hsize.

Example:
{\hsize = 3in \settabs 3 \columns

\+1&one&first\cr

\+2&two&second\cr

\+3&three&third\cr}

produces:
1 one first
2 two second
3 three third

3 in

The second form of this command defines tab stops by setting the tab
stops at the positions indicated by the ‘&’s in the sample line. The sam-
ple line itself does not appear in the output. When you use this form
you’ll usually want to put material into the sample line that is some-
what wider than the widest corresponding material in the alignment, in
order to produce space between the columns. That’s what we’ve done
in the example below. The material following the last tab stop is irrel-
evant, since TEX does not need to position anything at the place where
the \cr appears.

The tab settings established by \settabs remain in effect until you
issue a new \settabs command or end a group containing the \settabs

command. This is true for both forms of the command.

Example:
% The first line establishes the template.

\settabs \+1\qquad & three\quad & seventh\cr

\+1&one&first\cr

\+2&two&second\cr

\+3&three&third\cr

produces:
1 one first
2 two second
3 three third

\cleartabs

This command clears all the tabs to the right of the current column.
Its main use is in applications such as typesetting computer programs in
which the tab positions change from line to line.

See also: \cr, \endline, \crcr (p. 180).

TEX for the Impatient No 198

3 Jan 2020 2:18 p.m.

178 Commands for horizontal and vertical modes \ §7

General alignments

\halign { 〈preamble〉 \cr 〈row〉 \cr . . . 〈row〉 \cr }

\halign to 〈dimen〉{ 〈preamble〉 \cr 〈row〉 \cr . . . 〈row〉 \cr }

\halign spread 〈dimen〉{ 〈preamble〉 \cr 〈row〉 \cr . . . 〈row〉 \cr }

This command produces a horizontal alignment consisting of a sequence
of rows, where each row in turn contains a sequence of column entries.
TEX adjusts the widths of the column entries to accommodate the widest
one in each column.

A horizontal alignment can only appear when TEX is in a vertical mode.
We recommend that you first study alignments in general (p. 44) before
you attempt to use this command.

An alignment consists of a preamble followed by the text to be aligned.
The preamble, which describes the layout of the rows that follow, consists
of a sequence of column templates, separated by ‘&’ and ended by \cr.
Each row consists of a sequence of column entries, also separated by ‘&’
and ended by \cr. Within a template, ‘#’ indicates where TEX should
insert the corresponding text of a column entry. In contrast, \settabs
uses a fixed implicit template of ‘#’, i.e., it just inserts the text as is.

TEX typesets each column entry in restricted horizontal mode, i.e., as
the contents of an hbox, and implicitly encloses it in a group.

The to form of this command instructs TEX to make the width of the
alignment be 〈dimen〉, adjusting the space between columns as necessary.
The spread form of this command instructs TEX to make the alignment
wider by 〈dimen〉 than its natural width. These forms are like the corre-
sponding forms of \hbox (p. 160).

See \tabskip (p. 184) for an example using the to form.

Example:
\tabskip = 1em \halign{%

\hfil\it#\hfil&\hfil#\hfil&#&\hfil\$#\cr

United States&Washington&dollar&1.00\cr

France&Paris&franc&0.174\cr

Israel&Jerusalem&shekel&0.507\cr

Japan&Tokyo¥&0.0829\cr}

produces:
United States Washington dollar $1.00

France Paris franc $0.174
Israel Jerusalem shekel $0.507
Japan Tokyo yen $0.0829

TEX for the Impatient No 199

3 Jan 2020 2:18 p.m.

Alignments 179

\valign { 〈preamble〉\cr 〈column〉\cr . . . 〈column〉\cr }
\valign to 〈dimen〉{ 〈preamble〉\cr 〈column〉\cr . . . 〈column〉\cr }
\valign spread 〈dimen〉{ 〈preamble〉\cr 〈column〉\cr . . . 〈column〉\cr }
This command produces a vertical alignment consisting of a sequence of
columns, where each column in turn contains a sequence of row entries.
TEX adjusts the heights of the row entries to accommodate the tallest
one in each row.

A vertical alignment can only appear when TEX is in a horizontal mode.
Because vertical alignments are (a) conceptually somewhat difficult and
(b) not often used, we recommend that you learn about alignments in
general (p. 44) and the \halign command (see above) before you attempt
to use the \valign command.

An alignment consists of a preamble followed by the text to be aligned.
The preamble, which describes the layout of the columns that follow,
consists of a sequence of row templates, separated by ‘&’ and ended by
\cr. Each column consists of a sequence of row entries, also separated by
‘&’ and ended by \cr. Within a template, ‘#’ indicates where TEX should
insert the corresponding text of a row entry.

TEX typesets each row entry in internal vertical mode, i.e., as the con-
tents of a vbox, and implicitly encloses the entry in a group. It always
gives the vbox zero depth. Any text or other horizontal mode material in
a row entry then puts TEX into ordinary horizontal mode. (This is just
an application of the general rules for TEX’s behavior in internal vertical
mode.) The usual paragraphing parameters apply in this case: the row
entry has an initial indentation of \parindent (p. 113) and its lines have
the \leftskip and \rightskip (p. 115) glue appended to them.

Note in particular that a row entry containing text has a width of
\hsize (p. 114). Unless you reset \hsize to the row width that you want,
you’re likely to encounter overfull hboxes, or find that the first column
takes up the width of the entire page, or both.

Normally, you need to include a strut in each template so that the rows
don’t come out crooked as a result of the varying heights of the entries in
the alignment. You can produce a strut with the \strut command.

The to form of this command instructs TEX to make the vertical ex-
tent of the alignment be 〈dimen〉, adjusting the space between rows as
necessary. The spread form of this command instructs TEX to make the
alignment taller by 〈dimen〉 than its natural height. These forms are like
the corresponding forms of \vbox (p. 161).

TEX for the Impatient No 200

3 Jan 2020 2:18 p.m.

180 Commands for horizontal and vertical modes \ §7

Example:
{\hsize=1in \parindent=0pt

\valign{#\strut&#\strut&#\strut&#\strut\cr

bernaise&curry&hoisin&hollandaise\cr

ketchup&marinara&mayonnaise&mustard\cr

rarebit&tartar\cr}}

produces:
bernaise
curry
hoisin
hollandaise

ketchup
marinara
mayonnaise
mustard

rarebit
tartar

Example:
% same thing but without struts (shows why you need them)

{\hsize=1in \parindent=0pt

\valign{#&#&#&#\cr

bernaise&curry&hoisin&hollandaise\cr

ketchup&marinara&mayonnaise&mustard\cr

rarebit&tartar\cr}}

produces:
bernaise
curry
hoisin
hollandaise

ketchup
marinara
mayonnaise
mustard

rarebit
tartar

\ialign

This command behaves just like \halign, except that it first sets the
\tabskip glue to zero and sets \everycr empty.

\cr

This command ends the preamble of a horizontal or vertical alignment,
a row of a horizontal or tabbing alignment, or a column of a vertical
alignment. You can cause TEX to take certain actions whenever it sees a
\cr by setting the value of the \everycr parameter (p. 185).

\endline

This command is a synonym for the \cr command. It is useful when
you’ve redefined \cr but still need access to the original definition.

\crcr

This command behaves just like \cr, except that TEX ignores it if it
comes immediately after a \cr or a \noalign. Its main application is as
a safety measure to avoid a misleading error message caused by a macro

TEX for the Impatient No 201

3 Jan 2020 2:18 p.m.

Alignments 181

that expects an argument ending in \cr. If you put \crcr after the ‘#n’
that denotes such an argument in the macro’s definition, the macro will
work properly whether or not the argument ends with \cr.

\omit

This command tells TEX to ignore a template in a horizontal or vertical
alignment while processing a particular column or row entry respectively.
\omit must appear as the first item in a column or row entry; in effect, it
overrides the template from the preamble with the simple template ‘#’.

Example:
\tabskip = 2em\halign{%

\hfil\it#\hfil&\hfil#\hfil&#&\hfil\$#\cr

United States&Washington&dollar&1.00\cr

\omit \dotfill France\dotfill&Paris&franc&0.174\cr

Israel&Jerusalem&shekel&0.507\cr

Japan&Tokyo¥&0.0829\cr}

produces:
United States Washington dollar $1.00
. . .France . . . Paris franc $0.174

Israel Jerusalem shekel $0.507
Japan Tokyo yen $0.0829

Example:
{\hsize=1.2in \parindent=0pt

\valign{(#)\strut&(#)\strut&(#)\strut&(#)\strut\cr

bernaise&curry&hoisin&hollandaise\cr

ketchup&\omit\strut{\bf MARINARA!}&mayonnaise&mustard\cr

rarebit&tartar\cr}}

produces:
(bernaise)
(curry)
(hoisin)
(hollandaise)

(ketchup)
MARINARA!
(mayonnaise)
(mustard)

(rarebit)
(tartar)

\span

The meaning of this command depends on whether it appears in a pream-
ble or in an alignment entry.

Normally, TEX does not expand tokens in the preamble when it reads
them. Putting \span in front of a token in the preamble causes that
token to be expanded immediately according to TEX’s usual rules of
macro expansion.

TEX for the Impatient No 202

3 Jan 2020 2:18 p.m.

182 Commands for horizontal and vertical modes \ §7

Putting \span instead of ‘&’ between two column or row entries
causes those columns or rows to be combined. For a horizontal align-
ment, the width of the combined column is the sum of the widths
of the component columns. For a vertical alignment, the height of
the combined row is the sum of the heights of the component rows.
The template of the combined column or combined row forms a single
group, so font-setting commands preceding a \span affect everything
up to the next ‘&’.

\span is rarely useful by itself outside of a template, but it provides the
basic mechanism for defining \multispan.

\multispan 〈number〉
This command tells TEX that the following 〈number〉 columns in a row of
a horizontal alignment, or 〈number〉 rows in a column of a vertical align-
ment, should be combined into a single column or row (as with \span)
and that their templates should be omitted (as with \omit).

Example:
\tabskip = 13pt\halign{%

\hfil\it#\hfil&\hfil#\hfil&#&\hfil\$#\cr

United States&Washington&dollar&1.00\cr

France&Paris&franc&0.174\cr

Israel&Jerusalem &

\multispan 2 \hfil\it(no information)\hfil \cr

Japan&Tokyo¥&0.0829\cr}

produces:
United States Washington dollar $1.00

France Paris franc $0.174
Israel Jerusalem (no information)
Japan Tokyo yen $0.0829

Example:
{\hsize=1.2in \parindent=0pt

\valign{(#)\strut&(#)\strut&(#)\strut&(#)\strut\cr

bernaise&curry&hoisin&hollandaise\cr

\multispan 3$$\left\{{{\rm ketchup}\atop{\rm marinara}}

\right\}$$&mustard\cr

rarebit&tartar\cr}}

produces:
(bernaise)
(curry)
(hoisin)

(hollandaise)

{
ketchup

marinara

}
(mustard)

(rarebit)
(tartar)

TEX for the Impatient No 203

3 Jan 2020 2:18 p.m.

Alignments 183

\noalign { 〈vertical mode material〉 }
\noalign { 〈horizontal mode material〉 }
This command inserts 〈vertical mode material〉 after the current row of
a horizontal alignment or 〈horizontal mode material〉 after the current
column of a vertical alignment. The material can be text, glue, a rule,
or anything else.

The most common use of \noalign is to put extra space after a row
or column. If you want to put extra space after every row of a horizontal
alignment, use \openup (p. 135).

Example:
\halign{%

\hfil\it#\hfil\tabskip=2em&\hfil#\hfil&#&

\hfil\$#\tabskip=0em\cr

% The \tabskip changes prevent the rule below

% from sticking out.

United States&Washington&dollar&1.00\cr

France&Paris&franc&0.174\cr

\noalign{\smallskip\hrule\smallskip}

Israel&Jerusalem&shekel&0.507\cr

Japan&Tokyo¥&0.0829\cr}

produces:
United States Washington dollar $1.00

France Paris franc $0.174

Israel Jerusalem shekel $0.507
Japan Tokyo yen $0.0829

Example:
{\hsize=1in \parindent=0pt

\valign{#\strut&#\strut&#\strut&#\strut\cr

\noalign{\vrule width 2pt\quad}

bernaise&curry&hoisin&hollandaise\cr

\noalign{\vrule width 2pt\quad}

ketchup&marinara&mayonnaise&mustard\cr

\noalign{\vrule width 2pt\quad}

rarebit&tartar\cr

\noalign{\vrule width 2pt\quad}}}

produces:

bernaise
curry
hoisin
hollandaise

ketchup
marinara
mayonnaise
mustard

rarebit
tartar

TEX for the Impatient No 204

3 Jan 2020 2:18 p.m.

184 Commands for horizontal and vertical modes \ §7

\tabskip [〈glue〉 parameter]

This parameter specifies the amount of horizontal or vertical glue that
TEX puts between the columns of a horizontal alignment or between the
rows of a vertical alignment. TEX also puts the \tabskip glue to the left
of the first column and to the right of the last column of a horizontal
alignment, and above the first row and below the last row of a vertical
alignment. You can change \tabskip within a template—the change will
affect the glue associated with all the following &’s as well as the glue
after the last row or column.

Example:
\halign to 3.5in{%

\hfil\it#\tabskip = 2em plus 8pt

\hfil&\hfil#\hfil&#\tabskip = 1em

&\hfil\$#\tabskip = 0em\cr

United States&Washington&dollar&1.00\cr

France&Paris&franc&0.174\cr

Israel&Jerusalem&shekel&0.507\cr

Japan&Tokyo¥&0.0829\cr}

produces:
United States Washington dollar $1.00

France Paris franc $0.174
Israel Jerusalem shekel $0.507
Japan Tokyo yen $0.0829

Example:
{\hsize = 1in \parindent=0pt \tabskip=5pt

\valign{#\strut&#\strut\tabskip = 3pt

&#\strut&#\strut\cr

bernaise&curry&hoisin&hollandaise\cr

ketchup&marinara&mayonnaise&mustard\cr

rarebit&tartar\cr}}

produces:

bernaise

curry

hoisin

hollandaise

ketchup

marinara

mayonnaise

mustard

rarebit

tartar

\hidewidth

This command tells TEX to ignore the width of the next column entry in
a horizontal alignment. It’s useful when you have an entry that is longer
than most of the others in the same column, and you’d rather have that
entry stick out of the column than make all the entries in the column

TEX for the Impatient No 205

3 Jan 2020 2:18 p.m.

Commands for horizontal and vertical modes 185

wider. If the \hidewidth is at the left of the entry, the entry sticks out
to the left; if the \hidewidth is at the right of the entry, the entry sticks
out to the right.

Example:
\tabskip = 25pt\halign{%

\hfil\it#\hfil&\hfil#\hfil&#&\hfil\$#\cr

United States&\hidewidth Washington&

dollar&1.00\cr

France&Paris&franc&0.174\cr

Israel&Jerusalem&shekel&0.507\cr

Japan&Tokyo¥&0.0829\cr}

produces:
United States Washington dollar $1.00

France Paris franc $0.174
Israel Jerusalem shekel $0.507
Japan Tokyo yen $0.0829

\everycr [〈token list〉 parameter]

TEX expands 〈token list〉 whenever it executes a \cr—at the end of every
preamble, at the end of every row of a horizontal alignment, and at the
end of every column of a vertical alignment. The \everycr commands
are expanded just after the \cr. Thus you can cause TEX to execute
certain commands at the end of a preamble, row, or column by assigning
a list of those commands to \everycr.

The \everycr tokens shouldn’t include any commands other than \no-

align. That’s because the \everycr tokens will reappear after the last
\cr of the alignment. A command other than \noalign will then make
TEX think that it’s starting a new row or column. TEX will complain
about a missing \cr, insert a \cr, insert the \everycr tokens again, and
repeat these actions indefinitely.

Example:
\everycr={\noalign{\smallskip\hrule\smallskip}}

\halign{#\tabskip = 11pt&\hfil#\hfil&\hfil#\hfil

\tabskip = 0pt\cr

1&one&first\cr

2&two&second\cr

3&three&third\cr}

produces:

1 one first

2 two second

3 three third

TEX for the Impatient No 206

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 207

3 Jan 2020 2:18 p.m.

8 Commands
for composing
math formulas

This section covers commands for constructing math formulas. For an
explanation of the conventions used in this section, see “Descriptions of
the commands” (p. 3).

Simple parts of formulas

Greek letters

+ α \alpha

β \beta

χ \chi

δ \delta

∆ \Delta

ε \epsilon

ε \varepsilon

η \eta

γ \gamma

Γ \Gamma

ι \iota

κ \kappa

λ \lambda

Λ \Lambda

µ \mu

ν \nu

ω \omega

Ω \Omega

φ \phi

ϕ \varphi

Φ \Phi

π \pi

$ \varpi

Π \Pi

ψ \psi

Ψ \Psi

ρ \rho

% \varrho

σ \sigma

ς \varsigma

Σ \Sigma

τ \tau

θ \theta

ϑ \vartheta

Θ \Theta

υ \upsilon

Υ \Upsilon

ξ \xi

Ξ \Xi

ζ \zeta

These commands produce Greek letters suitable for mathematics. You
can only use them within a math formula, so if you need a Greek letter

TEX for the Impatient No 208

3 Jan 2020 2:18 p.m.

188 Commands for composing math formulas \ §8

within ordinary text you must enclose it in dollar signs ($). TEX does not
have commands for Greek letters that look like their roman counterparts,
since you can get them by using those roman counterparts. For example,
you can get a lowercase omicron in a formula by writing the letter ‘o’, i.e.,
‘{\rm o}’ or an uppercase beta (‘B’) by writing ‘{\rm B}’.

Don’t confuse the following letters:

\upsilon (‘υ’), {\rm v} (‘v’), and \nu (‘ν’).
\varsigma (‘ς’) and \zeta (‘ζ’).

You can get slanted capital Greek letters by using the math italic (\mit)
font.

TEX treats Greek letters as ordinary symbols when it’s figuring how
much space to put around them.

Example:
If ρ and θ are both positive, then $f(\theta)

-{\mit \Gamma}_{\theta} < f(\rho)-{\mit \Gamma}_{\rho}$.

produces:
If ρ and θ are both positive, then f(θ)− Γθ < f(ρ)− Γρ.

Miscellaneous ordinary math symbols

+ ∞ \infty

< \Re

= \Im
6 \angle

4 \triangle

\ \backslash

| \vert

‖ \|

‖ \Vert

∅ \emptyset

⊥ \bot

> \top

∃ \exists

∀ \forall

h̄ \hbar

` \ell

ℵ \aleph

ı \imath

 \jmath

∇ \nabla

¬ \neg

¬ \lnot
′ ’ (apostrophe)
′ \prime

∂ \partial√
\surd

℘ \wp

[\flat

] \sharp

\ \natural

♣ \clubsuit

♦ \diamondsuit

♥ \heartsuit

♠ \spadesuit

These commands produce various symbols. They are called “ordinary
symbols” to distinguish them from other classes of symbols such as rela-
tions. You can only use an ordinary symbol within a math formula, so
if you need an ordinary symbol within ordinary text you must enclose it
in dollar signs ($).

The commands \imath and \jmath are useful when you need to put
an accent on top of an ‘i’ or a ‘j’.

An apostrophe (’) is a short way of writing a superscript \prime. (The
\prime command by itself generates a big ugly prime.)

TEX for the Impatient No 209

3 Jan 2020 2:18 p.m.

Simple parts of formulas 189

The \| and \Vert commands are synonymous, as are the \neg and
\lnot commands. The \vert command produces the same result as ‘|’.

The symbols produced by \backslash, \vert, and \Vert are delim-
iters. These symbols can be produced in larger sizes by using \bigm

et al. (p. 211).

Example:
The Knave of \heartsuits, he stole some tarts.

produces:
The Knave of ♥s, he stole some tarts.

Example:
If $\hat\imath < \hat\jmath$ then $i’ \leq j^\prime$.

produces:
If ı̂ < ̂ then i′ ≤ j′.

Example:
$${{x-a}\over{x+a}}\biggm\backslash{{y-b}\over{y+b}}$$

produces:
x− a
x+ a

∖
y − b
y + b

Binary operations

+ ∨ \vee

∧ \wedge

q \amalg

∩ \cap

∪ \cup

] \uplus

u \sqcap

t \sqcup

† \dagger

‡ \ddagger

∧ \land

∨ \lor

· \cdot

� \diamond

• \bullet

◦ \circ

© \bigcirc

� \odot

	 \ominus

⊕ \oplus

� \oslash

⊗ \otimes

± \pm

∓ \mp

/ \triangleleft

. \triangleright

5 \bigtriangledown

4 \bigtriangleup

∗ \ast

? \star

× \times

÷ \div

\ \setminus

o \wr

These commands produce the symbols for various binary operations. Bi-
nary operations are one of TEX’s classes of math symbols. TEX puts dif-
ferent amounts of space around different classes of math symbols. When
TEX needs to break a line of text within a math formula, it will consider
placing the break after a binary operation—but only if the operation is at
the outermost level of the formula, i.e., not enclosed in a group.

TEX for the Impatient No 210

3 Jan 2020 2:18 p.m.

190 Commands for composing math formulas \ §8

In addition to these commands, TEX also treats ‘+’ and ‘-’ as binary
operations. It considers ‘/’ to be an ordinary symbol, despite the fact
that mathematically it is a binary operation, because it looks better with
less space around it.

Example:
$$z = x \div y \quad \hbox{if and only if} \quad

z \times y = x \;\hbox{and}\; y \neq 0$$

produces:

z = x÷ y if and only if z × y = x and y 6= 0

*

The * command indicates a discretionary multiplication symbol (×),
which is a binary operation. This multiplication symbol behaves like a
discretionary hyphen when it appears in a formula within text. That
is, TEX will typeset the \times symbol only if the formula needs to be
broken at that point. There’s no point in using * in a displayed formula
since TEX never breaks displayed formulas on its own.

Example:
Let $c = a*b$. In the case that $c=0$ or $c=1$, let

Δ be $(\hbox{the smallest q})*(\hbox{the

largest q})$ in the set of approximate τ-values.

produces:
Let c = ab. In the case that c = 0 or c = 1, let ∆ be (the smallest q)×
(the largest q) in the set of approximate τ -values.

Relations

+ � \asymp
∼= \cong

a \dashv

` \vdash

⊥ \perp

| \mid

‖ \parallel
.
= \doteq

≡ \equiv

≥ \ge

≥ \geq

≤ \le

≤ \leq

� \gg

� \ll

|= \models

6= \ne

6= \neq

/∈ \notin

∈ \in

3 \ni

3 \owns

≺ \prec

� \preceq

� \succ

� \succeq

./ \bowtie

∝ \propto

≈ \approx

∼ \sim

' \simeq

_ \frown

^ \smile

⊂ \subset

⊆ \subseteq

⊃ \supset

⊇ \supseteq

v \sqsubseteq

w \sqsupseteq

These commands produce the symbols for various relations. Relations
are one of TEX’s classes of math symbols. TEX puts different amounts

TEX for the Impatient No 211

3 Jan 2020 2:18 p.m.

Simple parts of formulas 191

of space around different classes of math symbols. When TEX needs to
break a line of text within a math formula, it will consider placing the
break after a relation—but only if the relation is at the outermost level
of the formula, i.e., not enclosed in a group.

In addition to the commands listed here, TEX treats ‘=’ and the “arrow”
commands (p. 192) as relations.

Certain relations have more than one command that you can use to
produce them:

‘≥’ (\ge and \geq).
‘≤’ (\le and \leq).
‘6=’ (\ne, \neq, and \not=).
‘3’ (\ni and \owns).

You can produce negated relations by prefixing them with \not, as fol-
lows:

6� \not\asymp

6∼= \not\cong

6≡ \not\equiv

6= \not=

6≥ \not\ge

6≥ \not\geq

6≤ \not\le

6≤ \not\leq

6≺ \not\prec

6� \not\preceq

6� \not\succ

6� \not\succeq

6≈ \not\approx

6∼ \not\sim

6' \not\simeq

6⊂ \not\subset

6⊆ \not\subseteq

6⊃ \not\supset

6⊇ \not\supseteq

6v \not\sqsubseteq

6w \not\sqsupseteq

Example:
We can show that $AB \perp AC$, and that

$\triangle ABF \not\sim \triangle ACF$.

produces:
We can show that AB ⊥ AC, and that 4ABF 6∼ 4ACF .

Left and right delimiters

+ { \lbrace

{ \{

} \rbrace

} \}

[\lbrack

] \rbrack

〈 \langle

〉 \rangle

d \lceil

e \rceil

b \lfloor

c \rfloor

These commands produce left and right delimiters. Mathematicians use
delimiters to indicate the boundaries between parts of a formula. Left
delimiters are also called “openings”, and right delimiters are also called
“closings”. Openings and closings are two of TEX’s classes of math sym-
bols. TEX puts different amounts of space around different classes of math
symbols. You might expect the space that TEX puts around openings and
closings to be symmetrical, but in fact it isn’t.

TEX for the Impatient No 212

3 Jan 2020 2:18 p.m.

192 Commands for composing math formulas \ §8

Some left and right delimiters have more than one command that you
can use to produce them:

‘{’ (\lbrace and \{)
‘}’ (\rbrace and \})
‘[’ (\lbrack and ‘[’)
‘]’ (\rbrack and ‘]’)

You can also use the left and right bracket characters (in either form)
outside of math mode.

In addition to these commands, TEX treats ‘(’ as a left delimiter and
‘)’ as a right delimiter.

You can have TEX choose the size for a delimiter by using \left and
\right (p. 204). Alternatively, you can get a delimiter of a specific size
by using one of the \bigx commands (see \big et al., p. 211).

Example:
The set $\{\,x \mid x>0\,\}$ is empty.

produces:
The set {x | x > 0 } is empty.

Arrows

+ ← \leftarrow

← \gets

⇐ \Leftarrow

→ \rightarrow

→ \to

⇒ \Rightarrow

↔ \leftrightarrow

⇔ \Leftrightarrow

←− \longleftarrow

⇐= \Longleftarrow

−→ \longrightarrow

=⇒ \Longrightarrow

←→ \longleftrightarrow

⇐⇒ \Longleftrightarrow

⇐⇒ \iff

←↩ \hookleftarrow

↪→ \hookrightarrow

↽ \leftharpoondown

⇁ \rightharpoondown

↼ \leftharpoonup

⇀ \rightharpoonup
⇀↽ \rightleftharpoons

7→ \mapsto

7−→ \longmapsto

↓ \downarrow

⇓ \Downarrow

↑ \uparrow

⇑ \Uparrow

l \updownarrow

m \Updownarrow

↗ \nearrow

↘ \searrow

↖ \nwarrow

↙ \swarrow

These commands provide arrows of different kinds. They are classified as
relations (p. 190). The vertical arrows in the list are also delimiters, so
you can make them larger by using \big et al. (p. 211).

The command \iff differs from \Longleftrightarrow in that it pro-
duces extra space to the left and right of the arrow.

TEX for the Impatient No 213

3 Jan 2020 2:18 p.m.

Simple parts of formulas 193

You can place symbols or other legends on top of a left or right arrow
with \buildrel (p. 202).

Example:
$$f(x)\mapsto f(y) \iff x \mapsto y$$

produces:

f(x) 7→ f(y) ⇐⇒ x 7→ y

Named mathematical functions

+ cos \cos

sin \sin

tan \tan

cot \cot

csc \csc

sec \sec

arccos \arccos

arcsin \arcsin

arctan \arctan

cosh \cosh

coth \coth

sinh \sinh

tanh \tanh

det \det

dim \dim

exp \exp

ln \ln

log \log

lg \lg

arg \arg

deg \deg

gcd \gcd

hom \hom

ker \ker

inf \inf

sup \sup

lim \lim

lim inf \liminf

lim sup \limsup

max \max

min \min

Pr \Pr

These commands set the names of various mathematical functions in ro-
man type, as is customary. If you apply a superscript or subscript to one
of these commands, TEX will in most cases typeset it in the usual place.
In display style, TEX typesets superscripts and subscripts on \det, \gcd,
\inf, \lim, \liminf, \limsup, \max, \min, \Pr, and \sup as though they
were limits, i.e., directly above or directly below the function name.

Example:
$\cos^2 x + \sin^2 x = 1\qquad\max_{a \in A} g(a) = 1$

produces:
cos2 x+ sin2 x = 1 maxa∈A g(a) = 1

\bmod

This command produces a binary operation for indicating a modulus
within a formula.

Example:
$$x = (y+1) \bmod 2$$

produces:

x = (y + 1) mod 2

TEX for the Impatient No 214

3 Jan 2020 2:18 p.m.

194 Commands for composing math formulas \ §8

\pmod

This command provides a notation for indicating a modulus in parenthe-
ses at the end of a formula.

Example:
$$x \equiv y+1 \pmod 2$$

produces:

x ≡ y + 1 (mod 2)

Large operators

+
⋂ ⋂

\bigcap⋃ ⋃
\bigcup⊙ ⊙
\bigodot⊕ ⊕
\bigoplus⊗ ⊗
\bigotimes

⊔ ⊔
\bigsqcup⊎ ⊎
\biguplus∨ ∨
\bigvee∧ ∧
\bigwedge∐ ∐
\coprod

∫ \smallint∫ ∫
\int∮ ∮
\oint∏ ∏
\prod∑ ∑
\sum

These commands produce various large operator symbols. TEX produces
the smaller size when it’s in text style and the larger size when it’s in
display style. Operators are one of TEX’s classes of math symbols. TEX
puts different amounts of space around different classes of math symbols.

The large operator symbols with ‘big’ in their names are different from
the corresponding binary operations (see p. 189) such as \cap (∩) since
they usually appear at the beginning of a formula. TEX uses different
spacing for a large operator than it does for a binary operation.

Don’t confuse ‘
∑

’ (\sum) with ‘Σ’(\Sigma) or confuse ‘
∏

’ (\prod)
with ‘Π’ (\Pi). \Sigma and \Pi produce capital Greek letters, which are
smaller and have a different appearance.

A large operator can have limits. The lower limit is specified as a
subscript and the upper limit as a superscript.

Example:
$$\bigcap_{k=1}^r (a_k \cup b_k)$$

produces:
r⋂

k=1

(ak ∪ bk)

TEX for the Impatient No 215

3 Jan 2020 2:18 p.m.

Simple parts of formulas 195

Example:
$${\int_0^\pi \sin^2 ax\,dx} = {\pi \over 2}$$

produces: ∫ π

0

sin2 ax dx =
π

2

\limits

In text style, TEX normally places limits after a large operator. This
command tells TEX to place limits above and below a large operator
rather than after it.

If you specify more than one of \limits, \nolimits, and \display-

limits, the last command rules.

Example:
Suppose that $\bigcap\limits_{i=1}^Nq_i$ contains at least

two elements.

produces:

Suppose that
N⋂
i=1

qi contains at least two elements.

\nolimits

In display style, TEX normally places limits above and below a large
operator. This command tells TEX to place limits after a large operator
rather than above and below it.

The integral operators \int and \oint are exceptions—TEX places
limits after them in all cases, unless overridden, as in \int\limits. (plain
TEX defines \int and \oint as macros that specify the operator symbol
followed by \nolimits—this is what causes them to behave differently
by default.)

If you specify more than one of \limits, \nolimits, and \display-

limits, the last command rules.

Example:
$$\bigcap\nolimits_{i=1}^Nq_i$$

produces: ⋂N

i=1
qi

\displaylimits

This command tells TEX to place limits above and below all operators
(including the integrals) if in display style, and after all operators if
in text style.

TEX for the Impatient No 216

3 Jan 2020 2:18 p.m.

196 Commands for composing math formulas \ §8

If you specify more than one of \limits, \nolimits, and \display-

limits, the last command rules.

Example:
$$a(\lambda) = {1 \over {2\pi}} \int\displaylimits

_{-\infty}^{+\infty} f(x)e^{-i\lambda x}\,dx$$

produces:

a(λ) =
1

2π

+∞∫
−∞

f(x)e−iλx dx

Punctuation

\cdotp

\ldotp

These two commands respectively produce a centered dot and a dot po-
sitioned on the baseline. They are valid only in math mode. TEX treats
them as punctuation, putting no extra space in front of them but a little
extra space after them. In contrast, TEX puts an equal amount of space
on both sides of a centered dot generated by the \cdot command (p. 189).

Example:
$x \cdotp y \quad x \ldotp y \quad x \cdot y$

produces:
x· y x. y x · y

\colon

This command produces a colon punctation symbol. It is valid only in
math mode. The difference between \colon and the colon character (:)
is that ‘:’ is an operator, so TEX puts extra space to the left of it whereas
it doesn’t put extra space to the left of \colon.

Example:
$f \colon t \quad f : t$

produces:
f : t f : t

TEX for the Impatient No 217

3 Jan 2020 2:18 p.m.

Superscripts and subscripts 197

Superscripts and subscripts

+ _ 〈argument〉
\sb 〈argument〉

^ 〈argument〉
\sp 〈argument〉

The commands in each column are equivalent. The commands in the
first column typeset 〈argument〉 as a subscript, and those in the second
column typeset 〈argument〉 as a superscript. The \sb and \sp commands
are mainly useful if you’re working on a terminal that lacks an underscore
or caret, or if you’ve redefined ‘_’ or ‘^’ and need access to the original
definition. These commands are also used for setting lower and upper
limits on summations and integrals.

If a subscript or superscript is not a single token, you need to enclose
it in a group. TEX does not prioritize subscripts or superscripts, so it will
reject formulas such as a_i_j, a^i^j, or a^i_j.

Subscripts and superscripts are normally typeset in script style, or in
scriptscript style if they are second-order, e.g., a subscript on a sub-
script or a superscript on a a subscript. You can set any text in a
math formula in a script or scriptscript style with the \scriptstyle and
\scriptscriptstyle commands (p. 198).

You can apply a subscript or superscript to any of the commands that
produce named mathematical functions in roman type (see p. 193). In
certain cases (again, see p. 193) the subscript or superscript appears di-
rectly above or under the function name as shown in the examples of \lim
and \det below.

Example:
$x_3 \quad t_{\max} \quad a_{i_k} \quad \sum_{i=1}^n{q_i}

\quad x^3\quad e^{t \cos\theta}\quad r^{x^2}\quad

\int_0^\infty{f(x)\,dx}$

$$\lim_{x\leftarrow0}f(x)\qquad\det^{z\in A}\qquad\sin^2t$$

produces:
x3 tmax aik

∑n
i=1 qi x3 et cos θ rx

2 ∫∞
0
f(x) dx

lim
x←0

f(x)
z∈A
det sin2 t

TEX for the Impatient No 218

3 Jan 2020 2:18 p.m.

198 Commands for composing math formulas \ §8

Selecting and using styles

\textstyle

\scriptstyle

\scriptscriptstyle

\displaystyle

These commands override the normal style and hence the font that TEX
uses in setting a formula. Like font-setting commands such as \it, they
are in effect until the end of the group containing them. They are useful
when TEX’s choice of style is inappropriate for the formula you happen
to be setting.

Example:
$t+{\scriptstyle t + {\scriptscriptstyle t}}$

produces:
t+ t+t

\mathchoice { 〈math1〉 } { 〈math2〉 } { 〈math3〉 } { 〈math4〉 }
This command tells TEX to typeset one of the subformulas 〈math1〉,
〈math2〉, 〈math3〉, or 〈math4〉, making its choice according to the cur-
rent style. That is, if TEX is in display style it sets the \mathchoice

as 〈math1〉; in text style it sets it as 〈math2〉; in script style it sets it as
〈math3〉; and in scriptscript style it sets it as 〈math4〉.
Example:
\def\mc{{\mathchoice{D}{T}{S}{SS}}}

The strange formula \mc_{\mc_\mc} illustrates a

mathchoice.

produces:
The strange formula TSSS illustrates a mathchoice.

\mathpalette 〈argument1〉 〈argument2〉
This command provides a convenient way of producing a math construct
that works in all four styles. To use it, you’ll normally need to define
an additional macro, which we’ll call \build. The call on \mathpalette

should then have the form \mathpalette\build〈argument〉.
\build tests what style TEX is in and typesets 〈argument〉 accordingly.

It should be defined to have two parameters. When you call \math-

palette, it will in turn call \build, with #1 being a command that selects
the current style and #2 being 〈argument〉. Thus, within the definition of
\build you can typeset something in the current style by preceding it with

TEX for the Impatient No 219

3 Jan 2020 2:18 p.m.

Compound symbols 199

‘#1’. See page 360 of The TEXbook for examples of using \mathpalette

and page 151 of The TEXbook for a further explanation of how it works.

Compound symbols

Math accents

+ \acute acute accent as in x́
\b bar-under accent as in x

¯
\bar bar accent as in x̄
\breve breve accent as in x̆
\check check accent as in x̌
\ddot double dot accent as in ẍ
\dot dot accent as in ẋ
\grave grave accent as in x̀
\hat hat accent as in x̂
\widehat wide hat accent as in x̂+ y
\tilde tilde accent as in x̃
\widetilde wide tilde accent as in ˜z + a
\vec vector accent as in ~x

These commands produce accent marks in math formulas. You’ll ordi-
narily need to leave a space after any one of them. A wide accent can
be applied to a multicharacter subformula; TEX will center the accent
over the subformula. The other accents are usefully applied only to a
single character.

Example:
$\dot t^n \qquad \widetilde{v_1 + v_2}$

produces:
ṫn ˜v1 + v2

\mathaccent 〈mathcode〉
This command tells TEX to typeset a math accent whose family and
character code are given by 〈mathcode〉. (TEX ignores the class of the
mathcode.) See Appendix G of The TEXbook for the details of how TEX
positions such an accent. The usual way to use \mathaccent is to put it
in a macro definition that gives a name to a math accent.

Example:
\def\acute{\mathaccent "7013}

See also: “Accents” (p. 100).

TEX for the Impatient No 220

3 Jan 2020 2:18 p.m.

200 Commands for composing math formulas \ §8

Fractions and other stacking operations

+ \over

\atop

\above 〈dimen〉
\choose

\brace

\brack

These commands stack one subformula on top of another one. We will
explain how \over works, and then relate the other commands to it.
\over is the command that you’d normally use to produce a fraction.

If you write something in one of the following forms:

$$〈formula1〉\over〈formula2〉$$
$〈formula1〉\over〈formula2〉$
\left〈delim〉〈formula1〉\over〈formula2〉\right〈delim〉
{〈formula1〉\over〈formula2〉}

you’ll get a fraction with numerator 〈formula1〉 and denominator 〈formu-
la2〉, i.e., 〈formula1〉 over 〈formula2〉. In the first three of these forms the
\over is not implicitly contained in a group; it absorbs everything to its
left and to its right until it comes to a boundary, namely, the beginning
or end of a group.

You can’t use \over or any of the other commands in this group more
than once in a formula. Thus a formula such as:

$$a \over n \choose k$$

isn’t legal. This is not a severe restriction because you can always enclose
one of the commands in braces. The reason for the restriction is that if
you had two of these commands in a single formula, TEX wouldn’t know
how to group them.

The other commands are similar to \over, with the following excep-
tions:

\atop leaves out the fraction bar.
\above provides a fraction bar of thickness 〈dimen〉.
\choose leaves out the fraction bar and encloses the construct in
parentheses. (It’s called “choose” because

(
n
k

)
is the notation for the

number of ways of choosing k things out of n things.)
\brace leaves out the fraction bar and encloses the construct in
braces.
\brack leaves out the fraction bar and encloses the construct in
brackets.

TEX for the Impatient No 221

3 Jan 2020 2:18 p.m.

Compound symbols 201

Example:
$${n+1 \over n-1} \qquad {n+1 \atop n-1} \qquad

{n+1 \above 2pt n-1} \qquad {n+1 \choose n-1} \qquad

{n+1 \brace n-1} \qquad {n+1 \brack n-1}$$

produces:

n+ 1

n− 1

n+ 1

n− 1

n+ 1

n− 1

(
n+ 1

n− 1

) {
n+ 1

n− 1

} [
n+ 1

n− 1

]

\overwithdelims 〈delim1〉 〈delim2〉
\atopwithdelims 〈delim1〉 〈delim2〉
\abovewithdelims 〈delim1〉 〈delim2〉 〈dimen〉
Each of these commands stacks one subformula on top of another one
and surrounds the entire construct with 〈delim1〉 on the left and 〈delim2〉
on the right. These commands follow the same rules as \over, \atop,
and \above. The 〈dimen〉 in \abovewithdelims specifies the thickness
of the fraction bar.

Example:
$${m \overwithdelims () n}\qquad

{m \atopwithdelims || n}\qquad

{m \abovewithdelims \{\} 2pt n}$$

produces: (
m

n

) ∣∣∣∣mn
∣∣∣∣ {m

n

}

\cases

This command produces the mathematical form that denotes a choice
among several cases. Each case has two parts, separated by ‘&’. TEX
treats the first part as a math formula and the second part as ordinary
text. Each case must be followed by \cr.

Example:
$$g(x,y) = \cases{f(x,y),&if $x<y$\cr

f(y,x),&if $x>y$\cr

0,&otherwise.\cr}$$

produces:

g(x, y) =

 f(x, y), if x < y
f(y, x), if x > y
0, otherwise.

TEX for the Impatient No 222

3 Jan 2020 2:18 p.m.

202 Commands for composing math formulas \ §8

\underbrace 〈argument〉
\overbrace 〈argument〉
\underline 〈argument〉
\overline 〈argument〉
\overleftarrow 〈argument〉
\overrightarrow 〈argument〉
These commands place extensible braces, lines, or arrows over or under
the subformula given by 〈argument〉. TEX will make these constructs
as wide as they need to be for the context. When TEX produces the
extended braces, lines, or arrows, it considers only the dimensions of the
box containing 〈argument〉. If you use more than one of these commands
in a single formula, the braces, lines, or arrows they produce may not
line up properly with each other. You can use the \mathstrut command
(p. 168) to overcome this difficulty.

Example:
$$\displaylines{

\underbrace{x \circ y}\qquad \overbrace{x \circ y}\qquad

\underline{x \circ y}\qquad \overline{x \circ y}\qquad

\overleftarrow{x \circ y}\qquad

\overrightarrow{x \circ y}\cr

{\overline r + \overline t}\qquad

{\overline {r \mathstrut} + \overline {t \mathstrut}}\cr

}$$

produces:

x ◦ y︸︷︷︸ ︷︸︸︷
x ◦ y x ◦ y x ◦ y ←−−x ◦ y −−→x ◦ y

r + t r + t

\buildrel 〈formula〉 \over 〈relation〉
This command produces a box in which 〈formula〉 is placed on top of
〈relation〉. TEX treats the result as a relation for spacing purposes (see
“class”, p. 56).

Example:
$\buildrel \rm def \over \equiv$

produces:
def≡

TEX for the Impatient No 223

3 Jan 2020 2:18 p.m.

Compound symbols 203

Dots

+ \ldots

\cdots

These commands produce three dots in a row. For \ldots, the dots are
on the baseline; for \cdots, the dots are centered with respect to the axis
(see the explanation of \vcenter, p. 213).

Example:
$t_1 + t_2 + \cdots + t_n \qquad x_1,x_2, \ldots\,, x_r$

produces:
t1 + t2 + · · ·+ tn x1, x2, . . . , xr

+ \vdots

This command produces three vertical dots.

Example:
$$\eqalign{f(\alpha_1)& = f(\beta_1)\cr

\noalign{\kern -4pt}%

&\vdots\cr % moves the dots right a bit

f(\alpha_k)& = f(\beta_k)\cr}$$

produces:
f(α1) = f(β1)

...

f(αk) = f(βk)

\ddots

This command produces three dots on a diagonal. Its most common use
is to indicate repetition along the diagonal of a matrix.

Example:
$$\pmatrix{0&\ldots&0\cr

\vdots&\ddots&\vdots\cr

0&\ldots&0\cr}$$

produces:  0 . . . 0
...

. . .
...

0 . . . 0



See also: \dots (p. 99).

TEX for the Impatient No 224

3 Jan 2020 2:18 p.m.

204 Commands for composing math formulas \ §8

Delimiters

\lgroup

\rgroup

These commands produce large left and right parentheses that are defined
as opening and closing delimiters. The smallest available size for these
delimiters is \Big. If you use smaller sizes, you’ll get weird characters.

Example:
$$\lgroup\dots\rgroup\qquad\bigg\lgroup\dots\bigg\rgroup$$

produces:

(. . .)

 . . .


+ \left

\right

These commands must be used together in the pattern:

\left 〈delim1〉 〈subformula〉 \right 〈delim2〉

This construct causes TEX to produce 〈subformula〉, enclosed in the
delimiters 〈delim1〉 and 〈delim2〉. The vertical size of the delimiter is ad-
justed to fit the vertical size (height plus depth) of 〈subformula〉. 〈delim1〉
and 〈delim2〉 need not correspond. For instance, you could use ‘]’ as a left
delimiter and ‘(’ as a right delimiter in a single use of \left and \right.
\left and \right have the important property that they define a

group, i.e., they act like left and right braces. This grouping property
is particularly useful when you put \over (p. 200) or a related command
between \left and \right, since you don’t need to put braces around
the fraction constructed by \over.

If you want a left delimiter but not a right delimiter, you can use ‘.’
in place of the delimiter you don’t want and it will turn into empty space
(of width \nulldelimiterspace).

Example:
$$\left\Vert\matrix{a&b\cr c&d\cr}\right\Vert

\qquad \left\uparrow q_1\atop q_2\right.$$

produces: ∥∥∥∥ a b
c d

∥∥∥∥ xq1q2
\delimiter 〈number〉
This command produces a delimiter whose characteristics are given by
〈number〉. 〈number〉 is normally written in hexadecimal notation. You

TEX for the Impatient No 225

3 Jan 2020 2:18 p.m.

Compound symbols 205

can use the \delimiter command instead of a character in any context
where TEX expects a delimiter (although the command is rarely used
outside of a macro definition). Suppose that 〈number〉 is the hexadecimal
number cs1s2s3l1l2l3. Then TEX takes the delimiter to have class c, small
variant s1s2s3, and large variant l1l2l3. Here s1s2s3 indicates the math
character found in position s2s3 of family s1, and similarly for l1l2l3. This
is the same convention as the one used for \mathcode (p. 251).

Example:
\def\vert{\delimiter "026A30C} % As in plain TeX.

\delimiterfactor [〈number〉 parameter]
\delimitershortfall [〈number〉 parameter]

These parameters together tell TEX how the height of a delimiter should
be related to the vertical size of the subformula with which the delimiter is
associated. \delimiterfactor gives the minimum ratio of the delimiter
size to the vertical size of the subformula, and \delimitershortfall

gives the maximum by which the height of the delimiter will be reduced
from that of the vertical size of the subformula.

Suppose that the box containing the subformula has height h and depth
d, and let y = 2 max(h, d). Let the value of \delimiterfactor be f and
the value of \delimitershortfall be δ. Then TEX takes the minimum
delimiter size to be at least y · f/1000 and at least y− δ. In particular, if
\delimiterfactor is exactly 1000 then TEX will try to make a delimiter
at least as tall as the formula to which it is attached. See page 152 and
page 446 (Rule 19) of The TEXbook for the exact details of how TEX
uses these parameters. Plain TEX sets \delimiterfactor to 901 and
\delimitershortfall to 5pt.

See also: \delcode (p. 251), \vert, \Vert, and \backslash (p. 188).

Matrices

\matrix { 〈line〉 \cr . . . 〈line〉 \cr }

\pmatrix { 〈line〉 \cr . . . 〈line〉 \cr }

\bordermatrix { 〈line〉 \cr . . . 〈line〉 \cr }

Each of these three commands produces a matrix. The elements of each
row of the input matrix are separated by ‘&’ and each row in turn is
ended by \cr. (This is the same form that is used for an alignment.) The
commands differ in the following ways:

\matrix produces a matrix without any surrounding or inserted
delimiters.

TEX for the Impatient No 226

3 Jan 2020 2:18 p.m.

206 Commands for composing math formulas \ §8

\pmatrix produces a matrix surrounded by parentheses.
\bordermatrix produces a matrix in which the first row and the first
column are treated as labels. (The first element of the first row is
usually left blank.) The rest of the matrix is enclosed in parentheses.

TEX can make the parentheses for \pmatrix and \bordermatrix as
large as they need to be by inserting vertical extensions. If you want a
matrix to be surrounded by delimiters other than parentheses, you should
use \matrix in conjunction with \left and \right (p. 204).

Example:
$$\displaylines{

\matrix{t_{11}&t_{12}&t_{13}\cr

t_{21}&t_{22}&t_{23}\cr

t_{31}&t_{32}&t_{33}\cr}\qquad

\left\{\matrix{t_{11}&t_{12}&t_{13}\cr

t_{21}&t_{22}&t_{23}\cr

t_{31}&t_{32}&t_{33}\cr}\right\}\cr

\pmatrix{t_{11}&t_{12}&t_{13}\cr

t_{21}&t_{22}&t_{23}\cr

t_{31}&t_{32}&t_{33}\cr}\qquad

\bordermatrix{&c_1&c_2&c_3\cr

r_1&t_{11}&t_{12}&t_{13}\cr

r_2&t_{21}&t_{22}&t_{23}\cr

r_3&t_{31}&t_{32}&t_{33}\cr}\cr}$$

produces:

t11 t12 t13
t21 t22 t23
t31 t32 t33

 t11 t12 t13
t21 t22 t23
t31 t32 t33


 t11 t12 t13
t21 t22 t23
t31 t32 t33



c1 c2 c3

r1 t11 t12 t13

r2 t21 t22 t23

r3 t31 t32 t33



Roots and radicals

+ \sqrt 〈argument〉
This command produces the notation for the square root of 〈argument〉.
Example:
$$x = {-b\pm\sqrt{b^2-4ac} \over 2a}$$

produces:

x =
−b±

√
b2 − 4ac

2a

TEX for the Impatient No 227

3 Jan 2020 2:18 p.m.

Equation numbers 207

+ \root 〈argument1〉 \of 〈argument2〉
This command produces the notation for a root of 〈argument2〉, where
the root is given by 〈argument1〉.
Example:
$\root \alpha \of {r \cos \theta}$

produces:
α
√
r cos θ

\radical 〈number〉
This command produces a radical sign whose characteristics are given by
〈number〉. It uses the same representation as the delimiter code in the
\delcode command (p. 251).

Example:
\def\sqrt{\radical "270370} % as in plain TeX

Equation numbers

+ \eqno

\leqno

These commands attach an equation number to a displayed formula.
\eqno puts the equation number on the right and \leqno puts it on
the left. The commands must be given at the end of the formula. If you
have a multiline display and you want to number more than one of the
lines, use the \eqalignno or \leqalignno command (p. 208).

These commands are valid only in display math mode.

Example:
$$e^{i\theta} = \cos \theta + i \sin \theta\eqno{(11)}$$

produces:

eiθ = cos θ + i sin θ (11)

Example:
$$\cos^2 \theta + \sin^2 \theta = 1\leqno{(12)}$$

produces:
(12) cos2 θ + sin2 θ = 1

TEX for the Impatient No 228

3 Jan 2020 2:18 p.m.

208 Commands for composing math formulas \ §8

Multiline displays

\displaylines { 〈line〉 \cr. . .〈line〉 \cr }
This command produces a multiline math display in which each line is
centered independently of the other lines. You can use the \noalign

command (p. 183) to change the amount of space between two lines of a
multiline display.

If you want to attach equation numbers to some or all of the equations
in a multiline math display, you should use \eqalignno or \leqalignno.

Example:
$$\displaylines{(x+a)^2 = x^2+2ax+a^2\cr

(x+a)(x-a) = x^2-a^2\cr}$$

produces:

(x+ a)2 = x2 + 2ax+ a2

(x+ a)(x− a) = x2 − a2

\eqalign { 〈line〉 \cr . . . 〈line〉 \cr }

\eqalignno { 〈line〉 \cr . . . 〈line〉 \cr }

\leqalignno { 〈line〉 \cr . . . 〈line〉 \cr }

These commands produce a multiline math display in which certain cor-
responding parts of the lines are lined up vertically. The \eqalignno and
\leqalignno commands also let you provide equation numbers for some
or all of the lines. \eqalignno puts the equation numbers on the right
and \leqalignno puts them on the left.

Each line in the display is ended by \cr. Each of the parts to be aligned
(most often an equals sign) is preceded by ‘&’. An ‘&’ also precedes each
equation number, which comes at the end of a line. You can put more
than one of these commands in a single display in order to produce several
groups of equations. In this case, only the rightmost or leftmost group
can be produced by \eqalignno or \leqalignno.

You can use the \noalign command (p. 183) to change the amount of
space between two lines of a multiline display.

Example:
$$\left\{\eqalign{f_1(t) &= 2t\cr f_2(t) &= t^3\cr

f_3(t) &= t^2-1\cr}\right\}

\left\{\eqalign{g_1(t) &= t\cr g_2(t) &= 1}\right\}$$

produces: 
f1(t) = 2t

f2(t) = t3

f3(t) = t2 − 1


{
g1(t) = t

g2(t) = 1

}

TEX for the Impatient No 229

3 Jan 2020 2:18 p.m.

Fonts in math formulas 209

Example:
$$\eqalignno{

\sigma^2&=E(x-\mu)^2&(12)\cr

&={1 \over n}\sum_{i=0}^n (x_i - \mu)^2&\cr

&=E(x^2)-\mu^2\cr}$$

produces:
σ2 = E(x− µ)2 (12)

=
1

n

n∑
i=0

(xi − µ)2

= E(x2)− µ2

Example:
$$\leqalignno{

\sigma^2&=E(x-\mu)^2&(6)\cr

&=E(x^2)-\mu^2&(7)\cr}$$

produces:
σ2 = E(x− µ)2(6)

= E(x2)− µ2(7)

Example:
$$\eqalignno{

&(x+a)^2 = x^2+2ax+a^2&(19)\cr

&(x+a)(x-a) = x^2-a^2\cr}$$

% same effect as \displaylines but with an equation number

produces:

(x+ a)2 = x2 + 2ax+ a2 (19)

(x+ a)(x− a) = x2 − a2

Fonts in math formulas

+ \cal use calligraphic uppercase font

\mit use math italic font

\oldstyle use old style digit font

These commands cause TEX to typeset the following text in the specified
font. You can only use them in math mode. The \mit command is useful

TEX for the Impatient No 230

3 Jan 2020 2:18 p.m.

210 Commands for composing math formulas \ §8

for producing slanted capital Greek letters. You can also use the com-
mands given in “Selecting fonts” (p. 102) to change fonts in math mode.

Example:
${\cal XYZ} \quad

{\mit AaBb\Gamma \Delta \Sigma} \quad

{\oldstyle 0123456789}$

produces:
XYZ AaBbΓ∆Σ 

\itfam family for italic type
\bffam family for boldface type
\slfam family for slanted type
\ttfam family for typewriter type

These commands define type families for use in math mode. Their prin-
cipal use is in defining the \it, \bf, \sl, and \tt commands so that they
work in math mode.

\fam [〈number〉 parameter]

When TEX is in math mode, it ordinarily typesets a character using the
font family given in its mathcode. However, when TEX is in math mode
and encounters a character whose class is 7 (Variable), it typesets that
character using the font family given by the value of \fam, provided that
the value of \fam is between 0 and 15. If the value of \fam isn’t in that
range, TEX uses the family in the character’s mathcode as in the ordinary
case. TEX sets \fam to −1 whenever it enters math mode. Outside of
math mode, \fam has no effect.

By assigning a value to \fam you can change the way that TEX typesets
ordinary characters such as variables. For instance, by setting \fam to
\ttfam, you cause TEX to typeset variables using a typewriter font. Plain
TEX defines \tt as a macro that, among other things, sets \fam to \ttfam.

Example:
\def\bf{\fam\bffam\tenbf} % As in plain TeX.

\textfont 〈family〉 [〈fontname〉 parameter]
\scriptfont 〈family〉 [〈fontname〉 parameter]
\scriptscriptfont 〈family〉 [〈fontname〉 parameter]

Each of these parameters specifies the font that TEX is to use for type-
setting the indicated style in the indicated family. These choices have no
effect outside of math mode.

TEX for the Impatient No 231

3 Jan 2020 2:18 p.m.

Constructing math symbols 211

Example:
\scriptfont2 = \sevensy % As in plain TeX.

See also: “Type styles” (p. 103).

Constructing math symbols

Making delimiters bigger

+ \big

\bigl

\bigm

\bigr

\Big

\Bigl

\Bigm

\Bigr

\bigg

\biggl

\biggm

\biggr

\Bigg

\Biggl

\Biggm

\Biggr

These commands make delimiters bigger than their normal size. The
commands in the four columns produce successively larger sizes. The
difference between \big, \bigl, \bigr, and bigm has to do with the class
of the enlarged delimiter:

\big produces an ordinary symbol.
\bigl produces an opening symbol.
\bigr produces a closing symbol.
\bigm produces a relation symbol.

TEX uses the class of a symbol in order to decide how much space to put
around that symbol.

These commands, unlike \left and \right, do not define a group.

Example:
$$(x) \quad \bigl(x\bigr) \quad \Bigl(x\Bigr) \quad

\biggl(x\biggr) \quad \Biggl(x\Biggr)\qquad

[x] \quad \bigl[x\bigr] \quad \Bigl[x\Bigr] \quad

\biggl[x\biggr] \quad \Biggl[x\Biggr]$$

produces:

(x)
(
x
) (

x
) (

x

) (
x

)
[x]

[
x
] [

x
] [

x

] [
x

]

Parts of large symbols

\downbracefill

\upbracefill

These commands respectively produce upward-pointing and downward-
pointing extensible horizontal braces. TEX will make the braces as wide

TEX for the Impatient No 232

3 Jan 2020 2:18 p.m.

212 Commands for composing math formulas \ §8

as necessary. These commands are used in the definitions of \overbrace
and \underbrace (p. 202).

Example:
$$\hbox to 1in{\downbracefill} \quad

\hbox to 1in{\upbracefill}$$

produces: ︷ ︸︸ ︷ ︸ ︷︷ ︸
\arrowvert

\Arrowvert

\lmoustache

\rmoustache

\bracevert

These commands produce portions of certain large delimiters and can
themselves be used as delimiters. They refer to characters in the cmex10

math font.

Example:
$$\cdots \Big\arrowvert \cdots \Big\Arrowvert \cdots

\Big\lmoustache \cdots \Big\rmoustache \cdots

\Big\bracevert \cdots$$

produces:

· · ·
 · · ·www · · · · · · · · · · · ·

Aligning parts of a formula

Aligning accents

\skew 〈number〉 〈argument1〉 〈argument2〉
This command shifts the accent 〈argument1〉 by 〈number〉 mathematical
units to the right of its normal position with respect to 〈argument2〉. The
most common use of this command is for modifying the position of an
accent that’s over another accent.

Example:
$$\skew 2\bar{\bar z}\quad\skew 3\tilde{\tilde y}\quad

\skew 4\tilde{\hat x}$$

produces:
¯̄z ˜̃y ˜̂x

TEX for the Impatient No 233

3 Jan 2020 2:18 p.m.

Aligning parts of a formula 213

\skewchar 〈font〉 [〈number〉 parameter]

The \skewchar of a font is the character in the font whose kerns, as
defined in the font’s metrics file, determine the positions of math accents.
That is, suppose that TEX is applying a math accent to the character ‘x’.
TEX checks if the character pair ‘x\skewchar’ has a kern; if so, it moves
the accent by the amount of that kern. The complete algorithm that
TEX uses to position math accents (which involves many more things) is
in Appendix G of The TEXbook.

If the value of \skewchar is not in the range 0–255, TEX takes the kern
value to be zero.

Note that 〈font〉 is a control sequence that names a font, not a 〈font-
name〉 that names font files. Beware: an assignment to \skewchar is not
undone at the end of a group. If you want to change \skewchar locally,
you’ll need to save and restore its original value explicitly.

\defaultskewchar [〈number〉 parameter]

When TEX reads the metrics file for a font in response to a \font com-
mand, it sets the font’s \skewchar to \defaultskewchar. If the value of
\defaultskewchar is not in the range 0–255, TEX does not assign any
skew characters by default. Plain TEX sets \defaultskewchar to −1,
and it’s usually best to leave it there.

Aligning material vertically

\vcenter { 〈vertical mode material〉 }
\vcenter to 〈dimen〉 { 〈vertical mode material〉 }
\vcenter spread 〈dimen〉 { 〈vertical mode material〉 }
Every math formula has an invisible “axis” that TEX treats as a kind
of horizontal centering line for that formula. For instance, the axis of a
formula consisting of a fraction is at the center of the fraction bar. The
\vcenter command tells TEX to place the 〈vertical mode material〉 in a
vbox and to center the vbox with respect to the axis of the formula it is
currently constructing.

The first form of the command centers the material as given. The
second and third forms expand or shrink the material vertically as in the
\vbox command (p. 161).

TEX for the Impatient No 234

3 Jan 2020 2:18 p.m.

214 Commands for composing math formulas \ §8

Example:
$${n \choose k} \buildrel \rm def \over \equiv \>

\vcenter{\hsize 1.5 in \noindent the number of

combinations of n things taken k at a time}$$

produces: (
n

k

)
def≡

the number of combina-
tions of n things taken k
at a time

Producing spaces

Fixed-width math spaces

\!

\,

\>

\;

These commands produce various amounts of extra space in formulas.
They are defined in terms of mathematical units, so TEX adjusts the
amount of space according to the current style.

\! produces a negative thin space, i.e., it reduces the space between
its neighboring subformulas by the amount of a thin space.

\, produces a thin space.

\> produces a medium space.

\; produces a thick space.

Example:
$$00\quad0\!0\quad0\,0\quad0\>0\quad0\;0\quad

{\scriptstyle 00\quad0\!0\quad0\,0\quad0\>0\quad0\;0}$$

produces:
00 00 0 0 0 0 0 0 00 00 0 0 0 0 0 0

\thinmuskip [〈muglue〉 parameter]
\medmuskip [〈muglue〉 parameter]
\thickmuskip [〈muglue〉 parameter]

These parameters define thin, medium, and thick spaces in math mode.

Example:
$00\quad0\mskip\thinmuskip0\quad0\mskip\medmuskip0

\quad0\mskip\thickmuskip0$

TEX for the Impatient No 235

3 Jan 2020 2:18 p.m.

Producing spaces 215

produces:
00 0 0 0 0 0 0

\jot [〈dimen〉 parameter]

This parameter defines a distance that is equal to three points (unless
you change it). The \jot is a convenient unit of measure for opening up
math displays.

Variable-width math spaces

\mkern 〈mudimen〉
This command produces a kern, i.e., blank space, of width 〈mudimen〉.
The kern is measured in mathematical units, which vary according to the
style. Aside from its unit of measurement, this command behaves just
like \kern (p. 157) does in horizontal mode.

Example:
$0\mkern13mu 0 \qquad {\scriptscriptstyle 0 \mkern13mu 0}$

produces:
0 0 0 0

\mskip 〈mudimen1〉 plus 〈mudimen2〉 minus 〈mudimen3〉
This command produces horizontal glue that has natural width 〈mu-
dimen1〉, stretch 〈mudimen2〉, and shrink 〈mudimen3〉. The glue is mea-
sured in mathematical units, which vary according to the style. Aside
from its units of measurement, this command behaves just like \hskip

(p. 155).

Example:
$0\mskip 13mu 0 \quad {\scriptscriptstyle 0 \mskip 13mu 0}$

produces:
0 0 0 0

\nonscript

When TEX is currently typesetting in script or scriptscript style and en-
counters this command immediately in front of glue or a kern, it cancels
the glue or kern. \nonscript has no effect in the other styles.

TEX for the Impatient No 236

3 Jan 2020 2:18 p.m.

216 Commands for composing math formulas \ §8

This command provides a way of “tightening up” the spacing in script
and scriptscript styles, which generally are set in smaller type. It is of
little use outside of macro definitions.

Example:
\def\ab{a\nonscript\; b}

\ab^{\ab}

produces:
a bab

See also: \kern (p. 157), \hskip (p. 155).

Spacing parameters for displays

\displaywidth [〈dimen〉 parameter]

This parameter specifies the maximum width that TEX allows for a math
display. If TEX cannot fit the display into a space of this width, it sets
an overfull hbox and complains. TEX sets the value of \displaywidth
when it encounters the ‘$$’ that starts the display. This initial value is
\hsize (p. 114) unless it’s overridden by changes to the paragraph shape.
See pages 188–189 of The TEXbook for a more detailed explanation of
this parameter.

\displayindent [〈dimen〉 parameter]

This parameter specifies the space by which TEX indents a math display.
TEX sets the value of \displayindent when it encounters the ‘$$’ that
starts the display. Usually this initial value is zero, but if the paragraph
shape indicates that the display should be shifted by an amount s, TEX
will set \displayindent to s. See pages 188–189 of The TEXbook for a
more detailed explanation of this parameter.

\predisplaysize [〈dimen〉 parameter]

TEX sets this parameter to the width of the line preceding a math dis-
play. TEX uses \predisplaysize to determine whether or not the dis-
play starts to the left of where the previous line ends, i.e., whether or
not it visually overlaps the previous line. If there is overlap, it uses the
\abovedisplayskip and \belowdisplayskip glue in setting the display;
otherwise it uses the \abovedisplayshortskip and \belowdisplay-

shortskip glue. See pages 188–189 of The TEXbook for a more detailed
explanation of this parameter.

TEX for the Impatient No 237

3 Jan 2020 2:18 p.m.

Producing spaces 217

\abovedisplayskip [〈glue〉 parameter]

This parameter specifies the amount of vertical glue that TEX inserts
before a display when the display starts to the left of where the previous
line ends, i.e., when it visually overlaps the previous line. Plain TEX sets
\abovedisplayskip to 12pt plus3pt minus9pt. See pages 188–189 of
The TEXbook for a more detailed explanation of this parameter.

\belowdisplayskip [〈glue〉 parameter]

This parameter specifies the amount of vertical glue that TEX inserts
after a display when the display starts to the left of where the previous
line ends, i.e., when it visually overlaps the previous line. Plain TEX sets
\belowdisplayskip to 12pt plus3pt minus9pt. See pages 188–189 of
The TEXbook for a more detailed explanation of this parameter.

\abovedisplayshortskip [〈glue〉 parameter]

This parameter specifies the amount of vertical glue that TEX inserts
before a math display when the display starts to the right of where
the previous line ends, i.e., when it does not visually overlap the pre-
vious line. Plain TEX sets \abovedisplayshortskip to 0pt plus3pt.
See pages 188–189 of The TEXbook for a more detailed explanation of
this parameter.

\belowdisplayshortskip [〈glue〉 parameter]

This parameter specifies the amount of vertical glue that TEX inserts
after a display when the display starts to the right of where the previ-
ous line ends, i.e., when it does not visually overlap the previous line.
Plain TEX sets \belowdisplayshortskip to 7pt plus3pt minus4pt.
See pages 188–189 of The TEXbook for a more detailed explanation of
this parameter.

Other spacing parameters for math

\mathsurround [〈dimen〉 parameter]

This parameter specifies the amount of space that TEX inserts before and
after a math formula in text mode (i.e., a formula surrounded by single
$’s). See page 162 of The TEXbook for further details about its behavior.
Plain TEX leaves \mathsurround at 0pt.

\nulldelimiterspace [〈dimen〉 parameter]

This parameter specifies the width of the space produced by a null delim-
iter. Plain TEX sets \nulldelimiterspace to 1.2pt.

TEX for the Impatient No 238

3 Jan 2020 2:18 p.m.

218 Commands for composing math formulas \ §8

\scriptspace [〈dimen〉 parameter]

This parameter specifies the amount of space that TEX inserts before and
after a subscript or superscript. The \nonscript command (p. 215) after
a subscript or superscript cancels this space. Plain TEX sets \script-

space to 0.5pt.

Categorizing math constructs

\mathord

\mathop

\mathbin

\mathrel

\mathopen

\mathclose

\mathpunct

These commands tell TEX to treat the construct that follows as belonging
to a particular class (see page 154 of The TEXbook for the definition of
the classes). They are listed here in the order of the class numbers, from
0 to 6. Their primary effect is to adjust the spacing around the construct
to be whatever it is for the specified class.

Example:
$\mathop{\rm minmax}\limits_{t \in A \cup B}\,t$

% By treating minmax as a math operator, we can get TeX to

% put something underneath it.

produces:
minmax
t∈A∪B

t

\mathinner

This command tells TEX to treat the construct that follows as an “inner
formula”, e.g., a fraction, for spacing purposes. It resembles the class
commands given just above.

Special actions for math formulas

\everymath [〈token list〉 parameter]
\everydisplay [〈token list〉 parameter]

These parameters specify token lists that TEX inserts at the start of every
text math or display math formula, respectively. You can take special
actions at the start of each math formula by assigning those actions to

TEX for the Impatient No 239

3 Jan 2020 2:18 p.m.

Commands for composing math formulas 219

\everymath or \everydisplay. Don’t forget that if you want both kinds
of formulas to be affected, you need to set both parameters.

Example:
\everydisplay={\heartsuit\quad}

\everymath = {\clubsuit}

3 is greater than 2 for large values of 3.

$$4>3$$

produces:
♣3 is greater than ♣2 for large values of ♣3.

♥ 4 > 3

TEX for the Impatient No 240

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 241

3 Jan 2020 2:18 p.m.

9 Commands for
general operations

This section covers TEX’s programming features and everything else that
doesn’t fit into the categories of commands in the previous chapters. For
an explanation of the conventions used in this section, see “Descriptions
of the commands” (p. 3).

Naming and modifying fonts

\font

\font 〈control sequence〉 = 〈fontname〉
\font 〈control sequence〉 = 〈fontname〉 scaled 〈number〉
\font 〈control sequence〉 = 〈fontname〉 at 〈dimen〉
Used alone, the \font control sequence designates the current font. \font
isn’t a true command when it’s used alone, since it then can appear only
as an argument to another command.

For the other three forms of \font, 〈fontname〉 names a set of files that
define a font. These forms of \font are commands. Each of these forms
has two effects:

1) It defines 〈control sequence〉 as a name that selects the font 〈font-
name〉, possibly magnified (see below).

2) It causes TEX to load the font metrics file (.tfm file) for 〈fontname〉.
The name of a font file usually indicates its design size. For example,
cmr10 indicates Computer Modern roman with a design size of 10 points.
The design size of a font is recorded in its metrics file.

If neither scaled 〈number〉 nor at 〈dimen〉 is present, the font is used
at its design size—the size at which it usually looks best. Otherwise, a
magnified version of the font is loaded:

TEX for the Impatient No 242

3 Jan 2020 2:18 p.m.

222 Commands for general operations \ §9

If scaled 〈number〉 is present, the font is magnified by a factor of
〈number〉/1000.

If at 〈dimen〉 is present, the font is scaled to 〈dimen〉 by magnifying
it by 〈dimen〉/ds, where ds is the design size of 〈fontname〉. 〈dimen〉
and ds are nearly always given in points.

Magnifications of less than 1 are possible; they reduce the size.
You usually need to provide a shape file (p. 65) for each magnification

of a font that you load. However, some device drivers can utilize fonts
that are resident in a printer. Such fonts don’t need shape files.

See “font” (p. 64) and “magnification” (p. 78) for further information.

Example:
\font\tentt = cmtt10

\font\bigttfont = cmtt10 scaled \magstep2

\font\eleventtfont = cmtt10 at 11pt

First we use {\tentt regular CM typewriter}.

Then we use {\eleventtfont eleven-point CM typewriter}.

Finally we use {\bigttfont big CM typewriter}.

produces:
First we use regular CM typewriter. Then we use eleven-point
CM typewriter. Finally we use big CM typewriter.

\fontdimen 〈number〉 〈font〉 [〈dimen〉 parameter]

These parameters specify various dimensions associated with the font
named by the control sequence 〈font〉 (as distinguished from the 〈font-
name〉 that names the font files). Values of these parameters are specified
in the metrics file for 〈font〉, but you can retrieve or change their values
during a TEX run. The numbers and meanings of the parameters are:

Number Meaning

1 slant per point
2 interword space
3 interword stretch
4 interword shrink
5 x-height (size of 1ex)
6 quad width (size of 1em)
7 extra space

TEX uses the slant per point for positioning accents. It uses the interword
parameters for producing interword spaces (see \spaceskip, p. 107) and
the extra space parameter for the additional space after a period (see
\xspaceskip, p. 107). The values of these parameters for the plain TEX
fonts are enumerated on page 433 of The TEXbook. Math symbol fonts
have 15 additional parameters, which we won’t discuss here.

TEX for the Impatient No 243

3 Jan 2020 2:18 p.m.

Naming and modifying fonts 223

Beware: assignments to these parameters are not undone at the end of
a group. If you want to change these parameters locally, you’ll need to
save and restore their original settings explicitly.

Example:
Here’s a line printed normally.\par

\dimen0=\fontdimen2\font

\fontdimen2\font=3\fontdimen2\font % triple word spacing

\noindent Here’s a really spaced-out line.

\fontdimen2\font=\dimen0

produces:
Here’s a line printed normally.
Here’s a really spaced-out line.

\magnification = 〈number〉
\mag [〈number〉 parameter]

An assignment to \magnification establishes the “scale factor” f that
determines the magnification ratio of your document (see “magnifica-
tion”, p. 78). The assignment to \magnification must occur before the
first page of your document has been shipped out.

The assignment sets f to 〈number〉 and also sets \hsize and \vsize

respectively to 6.5true in and 8.9true in, the values appropriate for
an 81/2-by-11-inch page. f must be between 0 and 32768. The magnifica-
tion ratio of the document is f/1000. A scale factor of 1000 provides unit
magnification, i.e., it leaves the size of your document unchanged. It’s
customary to use powers of 1.2 as scale factors, and most libraries of fonts
are based on such factors. You can use the \magstep and \magstephalf

commands to specify magnifications by these factors.
\magnification is not a parameter. You can’t use it to retrieve the

scale factor. If you write something like \dimen0 = \magnification,
TEX will complain about it.

The \mag parameter contains the scale factor. Changing the value of
\mag rescales the page dimensions, which is not usually what you want.
Therefore it’s usually better to change the magnification by assigning to
\magnification rather than to \mag.

Example:
\magnification = \magstep2

% magnify fonts by 1.44 (=1.2x1.2)

\magstep 〈number〉
This command expands to the magnification ratio needed to magnify
everything in your document (other than true dimensions) by 1.2r, where
r is the value of 〈number〉. 〈number〉must be between 0 and 5.

TEX for the Impatient No 244

3 Jan 2020 2:18 p.m.

224 Commands for general operations \ §9

Example:
\magnification = \magstep1 % Magnify by ratio of 1.2.

\magstephalf

This command expands to the magnification ratio needed to magnify
everything in your document (other than true dimensions) by

√
1.2, i.e.,

halfway between 1 and 1.2.

Example:
\magnification = \magstephalf

Converting information to tokens

Numbers

\number 〈number〉
This command produces the representation of a number as a sequence
of character tokens. The number can be either an explicit integer, a
〈number〉 parameter, or a 〈number〉 register.

Example:
\number 24 \quad \count13 = -10000 \number\count13

produces:
24 -10000

+ \romannumeral 〈number〉
This command produces the roman numeral representation of a number
as a sequence of character tokens. The number can be either an explicit
integer, a 〈number〉 parameter, or a 〈number〉 register. If the number is
zero or negative, \romannumeral produces no tokens.

Example:
\romannumeral 24 \quad (\romannumeral -16)\quad

\count13 = 6000 \romannumeral\count13

produces:
xxiv () mmmmmm

Environmental information

\time [〈number〉 parameter]

TEX sets this parameter to the number of minutes that have elapsed since
midnight (of the current day). At noon, for instance, \time is 720. This

TEX for the Impatient No 245

3 Jan 2020 2:18 p.m.

Converting information to tokens 225

command and the next three make use of the time and date as recorded
in your computer. TEX retrieves them just once, at the beginning of your
run, so \time at the end of the run always has the same value as \time at
the beginning of the run (unless you’ve explicitly changed it).

\day [〈number〉 parameter]

TEX sets this parameter to the current day of the month. It is a number
between 1 and 31. \day is set at the beginning of your run (see the
comments on \time above).

\month [〈number〉 parameter]

TEX sets this parameter to the current month. It is a number between
1 and 12. \month is set at the beginning of your run (see the comments
on \time above).

\year [〈number〉 parameter]

TEX sets this parameter to the current year (A.D.). It is a number such
as 1991. \year is set at the beginning of your run (see the comments
on \time above).

\fmtname

\fmtversion

These commands produce the name and version number of the TEX for-
mat, e.g., plain TEX or LATEX, that you’re using. The \fmtversion string
contains a long list of supported languages, so is omitted here.

Example:
This book was produced with the \fmtname\ format.

produces:
This book was produced with the eplain format.

\jobname

This command produces the base name of the file with which TEX was
invoked. For example, if your main input file is hatter.tex, \jobname

TEX for the Impatient No 246

3 Jan 2020 2:18 p.m.

226 Commands for general operations \ §9

will expand to hatter. \jobname is most useful when you’re creating an
auxiliary file to be associated with a document.

Example:
\newwrite\indexfile \openout\indexfile = \jobname.idx

% For input file ‘hatter.tex’, open index file ‘hatter.idx’.

Values of variables

\meaning 〈token〉
This command produces the meaning of 〈token〉. It is useful for diagnostic
output. You can use the \the command (p. 234) in a similar way to get
information about the values of registers and other TEX entities.

Example:
[{\tt \meaning\eject}] [\meaning\tenrm] [\meaning Y]

produces:
[macro:->\par \break] [select font cmr10] [the letter Y]

\string 〈control sequence〉
This command produces the characters that form the name of 〈control
sequence〉, including the escape character. The escape character is repre-
sented by the current value of \escapechar. TEX gives the characters in
the list a category code of 12 (other).

You can perform the reverse operation with the \csname command
(p. 233), which turns a string into a control sequence.

Example:
the control sequence {\tt \string\bigbreak}

produces:
the control sequence \bigbreak

\escapechar [〈number〉 parameter]

This parameter specifies the ASCII code of the character that TEX uses
to represent the escape character when it’s converting a control sequence
name to a sequence of character tokens. This conversion occurs when you
use the \string command and also when TEX is producing diagnostic
messages. The default value of the escape character is 92, the ASCII

TEX for the Impatient No 247

3 Jan 2020 2:18 p.m.

Grouping 227

character code for a backslash. If \escapechar is not in the range 0–255,
TEX does not include an escape character in the result of the conversion.

Example:
\escapechar = ‘!

the control sequence {\tt \string\bigbreak}

produces:
the control sequence !bigbreak

\fontname 〈font〉
This command produces the filename for 〈font〉. The filename is the
〈fontname〉 that was used to define 〈font〉.
Example:
\font\myfive=cmr5 [\fontname\myfive]

produces:
[cmr5]

Grouping

\begingroup

\endgroup

These two commands begin and end a group. A \begingroup does not
match up with a right brace, nor an \endgroup with a left brace.

TEX treats \begingroup and \endgroup like any other control sequence
when it’s scanning its input. In particular, you can define a macro that
contains a \begingroup but not an \endgroup, and conversely. This
technique is often useful when you’re defining paired macros, one of which
establishes an environment and the other of which terminates that envi-
ronment. You can’t, however, use \begingroup and \endgroup as sub-
stitutes for braces other than the ones that surround a group.

Example:
\def\a{One \begingroup \it two }

\def\enda{\endgroup four}

\a three \enda

produces:
One two three four

+ {

\bgroup

}

\egroup

The left and right braces are commands that begin and end a group.
The \bgroup and \egroup control sequences are equivalent to ‘{’ and

TEX for the Impatient No 248

3 Jan 2020 2:18 p.m.

228 Commands for general operations \ §9

‘}’, except that TEX treats \bgroup and \egroup like any other control
sequence when it’s scanning its input.
\bgroup and \egroup can be useful when you’re defining paired macros,

one of which starts a brace-delimited construct (not necessarily a group)
and the other one of which ends that construct. You can’t define such
macros using ordinary braces—if you try, your macro definitions will
contain unmatched braces and will therefore be unacceptable to TEX.
Usually you should use these commands only when you can’t use or-
dinary braces.

Example:
Braces define the {\it boundaries\/} of a group.

produces:
Braces define the boundaries of a group.

Example:
\def\a{One \vbox\bgroup}

% You couldn’t use { instead of \bgroup here because

% TeX would not recognize the end of the macro

\def\enda#1{{#1\egroup} two}

% This one is a little tricky, since the \egroup actually

% matches a left brace and the following right brace

% matches the \bgroup. But it works!

\a \enda{\hrule width 1in}

produces:
One two

\global

This command makes the following definition or assignment global (see
“global”, p. 65) so that it becomes effective independent of group bound-
aries. You can apply a \global prefix to any kind of definition or assign-
ment, including a macro definition or a register assignment.

Example:
{\global\let\la = \leftarrow}

$a \la b$

produces:
a← b

\globaldefs [〈number〉 parameter]

This parameter controls whether or not TEX takes definitions and other
assignments to be global:

If \globaldefs is zero (as it is by default), a definition is global
if and only if it is preceded by \global either explicitly or implic-

TEX for the Impatient No 249

3 Jan 2020 2:18 p.m.

Grouping 229

itly. (The \gdef and \xdef commands (p. 231) have an implicit
\global prefix).

If \globaldefs is greater than zero, all assignments and definitions
are implicitly prefixed by \global.

If \globaldefs is less than zero, all \global prefixes are ignored.

\aftergroup 〈token〉
When TEX encounters this command during input, it saves 〈token〉. After
the end of the current group, it inserts 〈token〉 back into the input and
expands it. If a group contains several \aftergroups, the corresponding
tokens are all inserted following the end of the group, in the order in
which they originally appeared.

The example that follows shows how you can use \aftergroup to post-
pone processing a token that you generate within a conditional test.

Example:
\def\neg{negative} \def\pos{positive}

% These definitions are needed because \aftergroup applies

% to a single token, not to a sequence of tokens or even

% to a brace-delimited text.

\def\arith#1{Is $#1>0$? \begingroup

\ifnum #1>-1 Yes\aftergroup\pos

\else No\aftergroup\neg\fi

, it’s \endgroup. }

\arith 2

\arith {-1}

produces:
Is 2 > 0? Yes, it’s positive. Is −1 > 0? No, it’s negative.

\afterassignment 〈token〉
When TEX encounters this command it saves 〈token〉 in a special place.
After it next performs an assignment, it inserts 〈token〉 into the input and
expands it. If you call \afterassignment more than once before an as-
signment, only the last call has any effect. One use of \afterassignment
is in writing macros for commands intended to be written in the form of
assignments, as in the example below.

See page 279 of The TEXbook for a precise description of the behavior
of \afterassignment.

TEX for the Impatient No 250

3 Jan 2020 2:18 p.m.

230 Commands for general operations \ §9

Example:
\def\setme{\afterassignment\setmeA\count255}

\def\setmeA{$\number\count255\advance\count255 by 10

+10=\number\count255$}

Some arithmetic: \setme = 27

% After expanding \setme, TeX sets \count255 to 27 and

% then calls \setmeA.

produces:
Some arithmetic: 27 + 10 = 37

Macros

Defining macros

\def 〈control sequence〉 〈parameter text〉 { 〈replacement text〉 }
This command defines 〈control sequence〉 as a macro with the specified
〈parameter text〉 and 〈replacement text〉. See page 75 for a full explanation
of how to write a macro definition.

Example:
\def\add#1+#2=?{#1+#2&=

\count255=#1 \advance\count255 by #2 \number\count255\cr}

$$\eqalign{

\add 27+9=?

\add -5+-8=?}$$

produces:
27 + 9 = 36

−5 +−8 = −13

\edef 〈control sequence〉 〈parameter text〉 { 〈replacement text〉 }
This command defines a macro in the same general way as \def. The
difference is that TEX expands the 〈replacement text〉 of an \edef im-
mediately (but still without executing anything). Thus any definitions
within the 〈replacement text〉 are expanded, but assignments and com-
mands that produce things such as boxes and glue are left as is. For
example, an \hbox command within the 〈replacement text〉 of an \edef

remains as a command and is not turned into a box as TEX is process-
ing the definition. It isn’t always obvious what’s expanded and what
isn’t, but you’ll find a complete list of expandable control sequences on
pages 212–215 of The TEXbook.

TEX for the Impatient No 251

3 Jan 2020 2:18 p.m.

Macros 231

You can inhibit the expansion of a control sequence that would oth-
erwise be expanded by using \noexpand (p. 234). You can postpone the
expansion of a control sequence by using \expandafter (p. 233).

The \write, \message, \errmessage, \wlog, and \csname commands
expand their token lists using the same rules that \edef uses to expand
its replacement text.

Example:
\def\aa{xy} \count255 = 1

\edef\bb{w\ifnum \count255 > 0\aa\fi z}

% equivalent to \def\bb{wxyz}

\def\aa{} \count255 = 0 % leaves \bb unaffected

\bb

produces:
wxyz

\gdef 〈control sequence〉 〈parameter text〉 { 〈replacement text〉 }
This command is equivalent to \global\def.

\xdef 〈control sequence〉 〈parameter text〉 { 〈replacement text〉 }
This command is equivalent to \global\edef.

\long

This command is used as a prefix to a macro definition. It tells TEX
that the arguments to the macro are permitted to include \par tokens
(p. 110), which normally indicate the end of a paragraph. If TEX tries to
expand a macro defined without \long and any of the macro’s arguments
include a \par token, TEX will complain about a runaway argument. The
purpose of this behavior is to provide you with some protection against
unterminated macro arguments. \long gives you a way of bypassing
the protection.

Example:
\long\def\aa#1{\par\hrule\smallskip#1\par\smallskip\hrule}

\aa{This is the first line.\par

This is the second line.}

% without \long, TeX would complain

produces:

This is the first line.
This is the second line.

TEX for the Impatient No 252

3 Jan 2020 2:18 p.m.

232 Commands for general operations \ §9

\outer

This command is used as a prefix to a macro definition. It tells TEX that
the macro is outer (p. 83) and cannot be used in certain contexts. If the
macro is used in a forbidden context, TEX will complain.

Example:
\outer\def\chapterhead#1{%

\eject\topglue 2in \centerline{\bf #1}\bigskip}

% Using \chapterhead in a forbidden context causes an

% error message.

\chardef 〈control sequence〉=〈charcode〉
This command defines 〈control sequence〉 to be 〈charcode〉. Although
\chardef is most often used to define characters, you can also use it to
give a name to a number in the range 0–255 even when you aren’t using
that number as a character code.

Example:
\chardef\percent = ‘\% 21\percent, {\it 19\percent}

% Get the percent character in roman and in italic

produces:
21%, 19%

\mathchardef 〈control sequence〉=〈mathcode〉
This command defines 〈control sequence〉 as a math character with the
given 〈mathcode〉. The control sequence will only be legal in math mode.

Example:
\mathchardef\alphachar = "010B % As in plain TeX.

\alphachar

produces:
α

Other definitions

\let 〈control sequence〉 = 〈token〉
This command causes 〈control sequence〉 to acquire the current meaning
of 〈token〉. Even if you redefine 〈token〉 later, the meaning of 〈control
sequence〉 will not change. Although 〈token〉 is most commonly a control
sequence, it can also be a character token.

\futurelet 〈control sequence〉 〈token1〉 〈token2〉
This command tells TEX to make 〈token2〉 the meaning of 〈control se-
quence〉 (as would be done with \let), and then to process 〈token1〉 and

TEX for the Impatient No 253

3 Jan 2020 2:18 p.m.

Macros 233

〈token2〉 normally. \futurelet is useful at the end of macro definitions
because it gives you a way of looking beyond the token that TEX is about
to process before it processes it.

Example:
\def\predict#1{\toks0={#1}\futurelet\next\printer}

% \next will acquire the punctuation mark after the

% argument to \predict

\def\printer#1{A \punc\ lies ahead for \the\toks0. }

\def\punc{%

\ifx\next;semicolon\else

\ifx\next,comma\else

‘‘\next’’\fi\fi}

\predict{March}; \predict{April}, \predict{July}/

produces:
A semicolon lies ahead for March. A comma lies ahead for April. A
“/” lies ahead for July.

\csname 〈token list〉 \endcsname
This command produces a control sequence from 〈token list〉. It provides
a way of synthesizing control sequences, including ones that you can’t
normally write. 〈token list〉 can itself include control sequences; it is
expanded in the same way as the replacement text of an \edef definition
(p. 230). If the final expansion yields anything that isn’t a character, TEX
will complain. \csname goes from a list of tokens to a control sequence;
you can go the other way with \string (p. 226).

Example:
\def\capTe{Te}

This book purports to be about \csname\capTe X\endcsname.

produces:
This book purports to be about TEX.

Controlling expansion

\expandafter 〈token1〉 〈token2〉
This command tells TEX to expand 〈token1〉 according to its rules for
macro expansion after it has expanded 〈token2〉 by one level. It’s useful
when 〈token1〉 is something like ‘{’ or \string that inhibits expansion of
〈token2〉, but you want to expand 〈token2〉 nevertheless.

TEX for the Impatient No 254

3 Jan 2020 2:18 p.m.

234 Commands for general operations \ §9

Example:
\def\aa{xyz}

\tt % Use this font so ‘\’ prints that way.

[\string\aa] [\expandafter\string\aa]

[\expandafter\string\csname TeX\endcsname]

produces:
[\aa] [xyz] [\TeX]

\noexpand 〈token〉
This command tells TEX to suppress expansion of 〈token〉 if 〈token〉 is a
control sequence that can be expanded. If 〈token〉 can’t be expanded, e.g.,
it’s a letter, TEX acts as though the \noexpand wasn’t there and processes
〈token〉 normally. In other words the expansion of ‘\noexpand〈token〉’ is
simply 〈token〉 no matter what 〈token〉 happens to be.

Example:
\def\bunny{rabbit}

\edef\magic{Pull the \noexpand\bunny\ out of the hat! }

% Without \noexpand, \bunny would always be replaced

% by ‘rabbit’

\let\oldbunny=\bunny \def\bunny{lagomorph} \magic

\let\bunny=\oldbunny \magic

produces:
Pull the lagomorph out of the hat! Pull the rabbit out of the hat!

\the 〈token〉
This command generally expands to a list of character tokens that repre-
sents 〈token〉. 〈token〉 can be any of the following:

a TEX parameter, e.g., \parindent or \deadcycles
a register, e.g., \count0
a code associated with an input character, e.g., \catcode‘(
a font parameter, e.g., \fontdimen3\sevenbf
the \hyphenchar or \skewchar of a font, e.g., \skewchar\teni
\lastpenalty, \lastskip, or \lastkern (values derived from the
last item on the current horizontal or vertical list)
a control sequence defined by \chardef or \mathchardef

In addition, \the can expand to noncharacter tokens in the following two
cases:

\the 〈font〉, which expands to the most recently defined control se-
quence that selects the same font as the control sequence 〈font〉
\the 〈token variable〉, which expands to a copy of the value of the
variable, e.g., \the\everypar

TEX for the Impatient No 255

3 Jan 2020 2:18 p.m.

Macros 235

See pages 214–215 of The TEXbook for a more detailed description of
what \the does in various cases.

Example:
The vertical size is currently \the\vsize.

The category code of ‘(’ is \the\catcode ‘(.

produces:
The vertical size is currently 548.4975pt. The category code of ‘(’ is
12.

See also: “Converting information to tokens” (p. 224), \showthe (p. 253).

Conditional tests

\if 〈token1〉 〈token2〉
This command tests if 〈token1〉 and 〈token2〉 have the same charac-
ter code, independent of their category codes. Before performing the
test, TEX expands tokens following the \if until it obtains two tokens
that can’t be expanded further. These two tokens become 〈token1〉 and
〈token2〉. The expansion includes replacing a control sequence \let equal
to a character token by that character token. A control sequence that
can’t be further expanded is considered to have character code 256.

Example:
\def\first{abc}

\if\first true\else false\fi;

% ‘‘c’’ is left over from the expansion of \first.

% It lands in the unexecuted ‘‘true’’ part.

\if a\first\ true\else false\fi;

% Here ‘‘bc’’ is left over from the expansion of \first

\if \hbox\relax true\else false\fi

% Unexpandable control sequences test equal with ‘‘if’’

produces:
false; bc true; true

\ifcat 〈token1〉 〈token2〉
This command tests if 〈token1〉 and 〈token2〉 have the same category code.
Before performing the test, TEX expands tokens following the \ifcat

until it obtains two tokens that can’t be expanded further. These two
tokens become 〈token1〉 and 〈token2〉. The expansion includes replacing
a control sequence \let equal to a character token by that character

TEX for the Impatient No 256

3 Jan 2020 2:18 p.m.

236 Commands for general operations \ §9

token. A control sequence that can’t be further expanded is considered
to have category code 16.

Example:
\ifcat axtrue\else false\fi;

\ifcat]}true\else false\fi;

\ifcat \hbox\day true\else false\fi;

\def\first{12345}

\ifcat (\first true\else false\fi

% ‘‘2345’’ lands in the true branch of the test

produces:
true; false; true; 2345true

\ifx 〈token1〉 〈token2〉
This command tests if 〈token1〉 and 〈token2〉 agree. Unlike \if and
\ifcat, \ifx does not expand the tokens following \ifx, so 〈token1〉
and 〈token2〉 are the two tokens immediately after \ifx. There are
three cases:

1) If one token is a macro and the other one isn’t, the tokens don’t agree.

2) If neither token is a macro, the tokens agree if:

a) both tokens are characters (or control sequences denoting char-
acters) and their character codes and category codes agree, or

b) both tokens refer to the same TEX command, font, etc.

3) If both tokens are macros, the tokens agree if:

a) their “first level” expansions, i.e., their replacement texts, are
identical, and

b) they have the same status with respect to \long (p. 231) and
\outer (p. 232).

Note in particular that any two undefined control sequences agree.

This test is generally more useful than \if.

Example:
\ifx\alice\rabbit true\else false\fi;

% true since neither \rabbit nor \alice is defined

\def\a{a}%

\ifx a\a true\else false\fi;

% false since one token is a macro and the other isn’t

\def\first{\a}\def\second{\aa}\def\aa{a}%

\ifx \first\second true\else false\fi;

% false since top level expansions aren’t the same

\def\third#1:{(#1)}\def\fourth#1?{(#1)}%

\ifx\third\fourth true\else false\fi

% false since parameter texts differ

TEX for the Impatient No 257

3 Jan 2020 2:18 p.m.

Macros 237

produces:
true; false; false; false

\ifnum 〈number1〉 〈relation〉 〈number2〉
This command tests if 〈number1〉 and 〈number2〉 satisfy 〈relation〉, which
must be either ‘<’, ‘=’, or ‘>’. The numbers can be constants such as 127,
count registers such as \pageno or \count22, or numerical parameters
such as \hbadness. Before performing the test, TEX expands tokens
following the \ifnum until it obtains a sequence of tokens having the
form 〈number1〉 〈relation〉 〈number2〉, followed by a token that can’t be
part of 〈number2〉.
Example:
\count255 = 19 \ifnum \count255 > 12 true\else false\fi

produces:
true

\ifodd 〈number〉
This command tests if 〈number〉 is odd. Before performing the test,
TEX expands tokens following the \ifodd until it obtains a sequence
of tokens having the form 〈number〉, followed by a token that can’t be
part of 〈number〉.
Example:
\count255 = 19

\ifodd 5 true\else false\fi

produces:
true

\ifdim 〈dimen1〉 〈relation〉 〈dimen2〉
This command tests if 〈dimen1〉 and 〈dimen2〉 satisfy 〈relation〉, which
must be either ‘<’, ‘=’, or ‘>’. The dimensions can be constants such as
1in, dimension registers such as \dimen6, or dimension parameters such
as \parindent. Before performing the test, TEX expands tokens following
the \ifdim until it obtains a sequence of tokens having the form 〈dimen1〉
〈relation〉 〈dimen2〉, followed by a token that can’t be part of 〈dimen2〉.
Example:
\dimen0 = 1000pt \ifdim \dimen0 > 3in true\else false\fi

produces:
true

TEX for the Impatient No 258

3 Jan 2020 2:18 p.m.

238 Commands for general operations \ §9

\ifhmode

\ifvmode

\ifmmode

\ifinner

These commands test what mode TEX is in:

\ifhmode is true if TEX is in ordinary or restricted horizontal mode.

\ifvmode is true if TEX is in ordinary or internal vertical mode.

\ifmmode is true if TEX is in text math or display math mode.

\ifinner is true if TEX is in an “internal” mode: restricted horizon-
tal, internal vertical, or text math.

Example:
\def\modes{{\bf

\ifhmode

\ifinner IH\else H\fi

\else\ifvmode

\ifinner \hbox{IV}\else \hbox{V}\fi

\else\ifmmode \hbox{M}\else

error\fi\fi\fi}}

Formula \modes; then \modes,

\hbox{next \modes\ and \vbox{\modes}}.

\par\modes

produces:
Formula M; then H, next IH and IV.
V

\ifhbox 〈register〉
\ifvbox 〈register〉
\ifvoid 〈register〉
These commands test the contents of the box register numbered 〈register〉.
Let 〈register〉 be n. Then:

\ifhbox is true if \boxn is an hbox.

\ifvbox is true if \boxn is an vbox.

\ifvoid is true if \boxn is void, i.e, doesn’t have a box in it.

Example:
\setbox0 = \vbox{} % empty but not void

\setbox1 = \hbox{a}

\setbox2 = \box1 % makes box1 void

\ifvbox0 true\else false\fi;

\ifhbox2 true\else false\fi;

\ifvoid1 true\else false\fi

TEX for the Impatient No 259

3 Jan 2020 2:18 p.m.

Macros 239

produces:
true; true; true

\ifeof 〈number〉
This command tests an input stream for end of file. It is true if input
stream 〈number〉 has not been opened, or has been opened and the asso-
ciated file has been entirely read in (or doesn’t exist).

\ifcase 〈number〉〈case0 text〉 \or 〈case1 text〉 \or . . . \or 〈casen text〉
\else 〈otherwise text〉 \fi

This command introduces a test with numbered multiple cases. If 〈num-
ber〉 has the value k, TEX will expand 〈casek text〉 if it exists, and 〈other-
wise text〉 if it doesn’t. You can omit the \else—in this case, TEX won’t
expand anything if none of the cases are satisfied.

Example:
\def\whichday#1{\ifcase #1<day 0>\or Sunday\or Monday%

\or Tuesday\or Wednesday\or Thursday\or Friday%

\or Saturday\else Nonday\fi

\ is day \##1. }

\whichday2 \whichday3 \whichday9

produces:
Monday is day #2. Tuesday is day #3. Nonday is day #9.

\iftrue

\iffalse

These commands are equivalent to tests that are always true or always
false. The main use of these commands is in defining macros that keep
track of the result of a test.

Example:
\def\isbigger{\let\bigger=\iftrue}

\def\isnotbigger{\let\bigger=\iffalse}

% These \let’s MUST be buried in macros! If they aren’t,

% TeX erroneously tries to match them with \fi.

\def\test#1#2{\ifnum #1>#2 \isbigger\else\isnotbigger\fi}

\test{3}{6}

\bigger$3>6$\else$3\le6$\fi

produces:
3 ≤ 6

\else

This command introduces the “false” alternative of a conditional test.

TEX for the Impatient No 260

3 Jan 2020 2:18 p.m.

240 Commands for general operations \ §9

\fi

This command ends the text of a conditional test.

\newif \if〈test name〉
This command names a trio of control sequences with names \alphatrue,
\alphafalse, and \ifalpha, where alpha is 〈test name〉. You can use
them to define your own tests by creating a logical variable that records
true/false information:

\alphatrue sets the logical variable alpha true.
\alphafalse sets the logical variable alpha false
\ifalpha is a conditional test that is true if the logical variable alpha
is true and false otherwise.

The logical variable alpha doesn’t really exist, but TEX behaves as
though it did. After \newif\ifalpha, the logical variable is initially false.
\newif is an outer command, so you can’t use it inside a macro defini-

tion.

Example:
\newif\iflong \longtrue

\iflong Rabbits have long ears.

\else Rabbits don’t have long ears.\fi

produces:
Rabbits have long ears.

Repeated actions

\loop α \ifΩ β \repeat

\repeat

These commands provide a looping construct for TEX. Here α and β
are arbitrary sequences of commands and \ifΩ is any of the conditional
tests described in “Conditional tests” (p. 235). The \repeat replaces the
\fi corresponding to the test, so you must not write an explicit \fi to
terminate the test. Nor, unfortunately, can you associate an \else with
the test. If you want to use the test in the opposite sense, you need to
rearrange the test or define an auxiliary test with \newif (see above) and
use that test in the sense you want (see the second example below).

TEX expands \loop as follows:

1) α is expanded.

2) \ifΩ is performed. If the result is false, the loop is terminated.

3) β is expanded.

4) The cycle is repeated.

TEX for the Impatient No 261

3 Jan 2020 2:18 p.m.

Macros 241

Example:
\count255 = 6

\loop

\number\count255\

\ifnum\count255 > 0

\advance\count255 by -1

\repeat

produces:
6 5 4 3 2 1 0

Example:
\newif\ifnotdone % \newif uses \count255 in its definition

\count255=6

\loop

\number\count255\

\ifnum\count255 < 1 \notdonefalse\else\notdonetrue\fi

\ifnotdone

\advance\count255 by -1

\repeat

produces:
6 5 4 3 2 1 0

Doing nothing

\relax

This command tells TEX to do nothing. It’s useful in a context where you
need to provide a command but there’s nothing that you want TEX to do.

Example:
\def\medspace{\hskip 12pt\relax}

% The \relax guards against the possibility that

% The next tokens are ‘plus’ or ‘minus’.

\empty

This command expands to no tokens at all. It differs from \relax in that
it disappears after macro expansion.

TEX for the Impatient No 262

3 Jan 2020 2:18 p.m.

242 Commands for general operations \ §9

Registers

Using registers

\count 〈register〉 = 〈number〉
\dimen 〈register〉 = 〈dimen〉
\skip 〈register〉 = 〈glue〉
\muskip 〈register〉 = 〈muglue〉
\toks 〈register〉 = 〈token variable〉
\toks 〈register〉 = { 〈token list〉 }

\count 〈register〉
\dimen 〈register〉
\skip 〈register〉
\muskip 〈register〉
\toks 〈register〉

The first six commands listed here assign something to a register. The =’s
in the assignments are optional. The remaining five control sequences are
not true commands because they can only appear as part of an argument.
They yield the contents of the specified register. Although you can’t use
these control sequences by themselves as commands in text, you can use
\the to convert them to text so that you can typeset their values.

You can name and reserve registers with the \newcount command and
its relatives (p. 244). Using these commands is a safe way to obtain regis-
ters that are known not to have any conflicting usage.

A \count register contains an integer, which can be either positive or
negative. Integers can be as large as you’re ever likely to need them to
be.1 TEX uses count registers 0–9 to keep track of the page number (see
page 119 of The TEXbook). \count255 is the only count register available
for use without a reservation.

Example:
\count255 = 17 \number\count255

produces:
17

A \dimen register contains a dimension. Registers \dimen0 through
\dimen9 and \dimen255 are available for scratch use.

Example:
\dimen0 = 2.5in

\hbox to \dimen0{\Leftarrow\hfil\Rightarrow}

produces:
⇐ ⇒

3 in

1 Here’s the only exercise in this book: find out what’s the largest integer that
TEX will accept.

TEX for the Impatient No 263

3 Jan 2020 2:18 p.m.

Registers 243

A \skip register contains the dimensions of glue. Unlike a \dimen reg-
ister, it records an amount of shrink and stretch as well as a natural
size. Registers \skip0 through \skip9 and \skip255 are available for
use without a reservation.

Example:
\skip2 = 2in

\Rightarrow\hskip \skip2 \Leftarrow

produces:
⇒ ⇐

2 in

A \muskip register is like a \skip register, but the glue in it is always
measured in mu (see “mathematical unit”, p. 81). The size of a mu de-
pends on the current font. For example, it’s usually a little smaller in a
subscript than in ordinary text. Registers \muskip0 through \muskip9

and \muskip255 are available for use without a reservation.

Example:
\muskip0 = 24mu % An em and a half, no stretch or shrink.

$\mathop{a \mskip\muskip0 b}\limits^{a \mskip\muskip0 b}$

% Note the difference in spacing.

produces:
a b

a b

You can assign either a token variable (a register or a parameter) or a
token list to a \toks register. When you assign a token list to a token
register, the tokens in the token list are not expanded.

Once the tokens in a token list have been inserted into text using \the,
they are expanded just like tokens that were read in directly. They
have the category codes that they received when TEX first saw them
in the input.

Example:
\toks0 = {the \oystereaters\ were at the seashore}

% This assignment doesn’t expand \oystereaters.

\def\oystereaters{Walrus and Carpenter}

\toks1 = \toks0

% the same tokens are now in \toks0 and \toks1

Alice inquired as to whether \the\toks1.

produces:
Alice inquired as to whether the Walrus and Carpenter were at the
seashore.

TEX for the Impatient No 264

3 Jan 2020 2:18 p.m.

244 Commands for general operations \ §9

\maxdimen

This control sequence yields a 〈dimen〉 that is the largest dimension ac-
ceptable to TEX (nearly 18 feet). It is not a true command because it can
only appear as part of an argument to another command.

Example:
\maxdepth = \maxdimen % Remove restrictions on \maxdepth.

See also: \advance (p. 245), \multiply, \divide (p. 246), \setbox,
\box (p. 164).

Naming and reserving registers, etc.

\newcount

\newdimen

\newskip

\newmuskip

\newtoks

\newbox

\newread

\newwrite

\newfam

\newinsert

\newlanguage

These commands reserve and name an entity of the indicated type:

\newcount, \newdimen, \newskip, \newmuskip, \newtoks, \newbox
each reserve a register of the indicated type.

\newread and \newwrite reserve an input stream and an output
stream respectively.

\newfam reserves a family of math fonts.

\newinsert reserves an insertion type. (Reserving an insertion type
involves reserving several different registers.)

\newlanguage reserves a set of hyphenation patterns.

You should use these commands whenever you need one of these enti-
ties, other than in a very local region, in order to avoid numbering con-
flicts.

There’s an important difference among these commands:

The control sequences defined by \newcount, \newdimen, \newskip,
\newmuskip, and \newtoks each designate an entity of the appropri-
ate type. For instance, after the command:

\newdimen\listdimen

the control sequence \listdimen can be used as a dimension.

The control sequences defined by \newbox, \newread, \newwrite,
\newfam, \newinsert, and \newlanguage each evaluate to the num-
ber of an entity of the appropriate type. For instance, after the
command:

\newbox\figbox

TEX for the Impatient No 265

3 Jan 2020 2:18 p.m.

Registers 245

the control sequence \figbox must be used in conjunction with a
\box-like command, e.g.:

\setbox\figbox = \vbox{. . . }

\countdef 〈control sequence〉 = 〈register〉
\dimendef 〈control sequence〉 = 〈register〉
\skipdef 〈control sequence〉 = 〈register〉
\muskipdef 〈control sequence〉 = 〈register〉
\toksdef 〈control sequence〉 = 〈register〉
These commands define 〈control sequence〉 to refer to the register of the
indicated category whose number is 〈register〉. Normally you should use
the commands in the previous group (\newcount, etc.) in preference to
these commands in order to avoid numbering conflicts. The commands in
the previous group are defined in terms of the commands in this group.

Example:
\countdef\hatters = 19 % \hatters now refers to \count19

\toksdef\hares = 200 % \hares now refers to \toks200

See also: \newif (p. 240), \newhelp (p. 262).

Doing arithmetic in registers

\advance 〈count register〉 by 〈number〉
\advance 〈dimen register〉 by 〈dimen〉
\advance 〈skip register〉 by 〈glue〉
\advance 〈muskip register〉 by 〈muglue〉
This command adds a compatible quantity to a register. For 〈glue〉 or
〈muglue〉 all three components (natural value, stretch, and shrink) are
added. Any of the quantities can be negative. For purposes of these
calculations (and other assignments as well), 〈glue〉 can be converted to
a 〈dimen〉 by dropping the stretch and shrink, and a 〈dimen〉 can be
converted to a 〈number〉 by taking its value in scaled points (see “dimen-
sion”, p. 60). You can omit the word by in these commands—TEX will
understand them anyway.

TEX for the Impatient No 266

3 Jan 2020 2:18 p.m.

246 Commands for general operations \ §9

Example:
\count0 = 18 \advance\count0 by -1 \number\count0\par

\skip0 = .5in \advance\skip0 by 0in plus 1in % add stretch

\hbox to 2in{a\hskip\skip0 b}

produces:
17
a b

2 in

\multiply 〈register〉 by 〈number〉
\divide 〈register〉 by 〈number〉
These commands multiply and divide the value in 〈register〉 by 〈number〉
(which can be negative). The register can be a \count, \dimen, \skip,
or \muskip register. For a \skip or \muskip register (p. 242), all three
components of the glue in the register are modified. You can omit the
word by in these commands—TEX will understand them anyway.

You can also obtain a multiple of a 〈dimen〉 by preceding it by a
〈number〉 or decimal constant, e.g., -2.5\dimen2. You can also use this
notation for 〈glue〉, but watch out—the result is a 〈dimen〉, not 〈glue〉.
Thus 2\baselineskip yields a 〈dimen〉 that is twice the natural size of
\baselineskip, with no stretch or shrink.

Example:
\count0 = 9\multiply \count0 by 8 \number\count0 ;

\divide \count0 by 12 \number\count0 \par

\skip0 = 20pt plus 2pt minus 3pt \multiply \skip0 by 3

Multiplied value of skip0 is \the\skip0.\par

\dimen0 = .5in \multiply\dimen0 by 6

\hbox to \dimen0{a\hfil b}

produces:
72; 6
Multiplied value of skip0 is 60.0pt plus 6.0pt minus 9.0pt.
a b

3 in

Ending the job

+ \bye

This command tells TEX to fill out and produce the last page, print
any held-over insertions, and end the job. It is the usual way to end
your input file.

TEX for the Impatient No 267

3 Jan 2020 2:18 p.m.

Input and output 247

\end

This command tells TEX to produce the last page and end the job. It
does not fill out the page, however, so it’s usually better to use \bye

rather than \end.

Input and output

Operations on input files

+ \input 〈filename〉
This command tells TEX to read its input from file 〈filename〉. When that
file is exhausted, TEX returns to reading from its previous input source.
You can nest input files to any level you like (within reason).

When you’re typesetting a large document, it’s usually a good idea to
structure your main file as a sequence of \input commands that refer to
the subsidiary parts of the document. That way you can process the in-
dividual parts easily as you’re working on drafts. It’s also a good practice
to put all of your macro definitions into a separate file and summon that
file with an \input command as the first action in your main file.

TEX uses different rules for scanning file names than it does for scanning
tokens in general (see p. 63). If your implementation expects file names to
have extensions (usually indicated by a preceding dot), then TEX provides
a default extension of .tex.

Example:
\input macros.tex

\input chap1 % equivalent to chap1.tex

\endinput

This command tells TEX to stop reading input from the current file when
it next reaches the end of a line.

\inputlineno

This command yields a number (not a string) giving the line number of
the current line, defined to be the number that would appear in an error
message if an error occurred at this point.

\openin 〈number〉 = 〈filename〉
This command tells TEX to open the file named 〈filename〉 and make
it available for reading via the input stream designated by 〈number〉.

TEX for the Impatient No 268

3 Jan 2020 2:18 p.m.

248 Commands for general operations \ §9

〈number〉 must be between 0 and 15. Once you’ve opened a file and
connected it to an input stream, you can read from the file using the
\read command with the input stream’s number.

You can associate more than one input stream with the same file. You
can then read from several different positions within the file, one for
each input stream.

You should allocate \openin stream numbers with \newread (p. 244).

Example:
\newread\auxfile \openin\auxfile = addenda.aux

% \auxfile now denotes the number of this opening

% of addenda.aux.

\closein 〈number〉
This command tells TEX to close the input stream numbered 〈number〉,
i.e., end the association between the input stream and its file. The input
stream with this number then becomes available for use with a different
file. You should close an input stream once you’re finished using its file.

Example:
\closein\auxfile

\read 〈number〉 to 〈control sequence〉
This command tells TEX to read a line from the file associated with the
input stream designated by 〈number〉 and assign the tokens on that line to
〈control sequence〉. The control sequence then becomes a parameterless
macro. No macro expansion takes place during the reading operation.
If the line contains any unmatched left braces, TEX will read additional
lines until the braces are all matched. If TEX reaches the end of the file
without matching all the braces, it will complain.

If 〈number〉 is greater than 15 or hasn’t been associated with a file using
\openin, TEX prompts you with ‘〈control sequence〉 =’ on your terminal
and waits for you to type a line of input. It then assigns the input line to
〈control sequence〉. If 〈number〉 is less than zero, it reads a line of input
from your terminal but omits the prompt.

Example:
\read\auxfile to \holder

% Expanding \holder will produce the line just read.

TEX for the Impatient No 269

3 Jan 2020 2:18 p.m.

Input and output 249

Operations on output files

\openout 〈number〉 = 〈filename〉
This command tells TEX to open the file named 〈filename〉 and make
it available for writing via the output stream designated by 〈number〉.
〈number〉 must be between 0 and 15. Once you’ve opened a file and
connected it to an output stream, you can write to the file using the
\write command with the output stream’s number.

An \openout generates a whatsit that becomes part of a box. The
\openout does not take effect until TEX ships out that box to the .dvi

file, unless you’ve preceded the \openout with \immediate.
TEX won’t complain if you associate more than one output stream with

the same file, but you’ll get garbage in the file if you try it!
You should allocate stream numbers for \openout using \newwrite

(p. 244).

Example:
\newwrite\auxfile \openout\auxfile = addenda.aux

% \auxfile now denotes the number of this opening

% of addenda.aux.

\closeout 〈number〉
This command tells TEX to close the output stream numbered 〈number〉.
i.e., end the association between the output stream and its file. The
output stream with this number then becomes available for use with a
different file. You should close an output stream once you’re finished
using its file.

A \closeout generates a whatsit that becomes part of a box. The
\closeout does not take effect until TEX ships out that box to the .dvi

file, unless you’ve preceded the \closeout with \immediate.

Example:
\closeout\auxfile

\write 〈number〉 { 〈token list〉 }
This command tells TEX to write 〈token list〉 to the file associated with
the output stream designated by 〈number〉. It generates a whatsit that
becomes part of a box. The actual writing does not take place until TEX
ships out that box to the .dvi file, unless you’ve preceded the \write

with \immediate.
For a \write that is not immediate, TEX does not expand macros in

〈token list〉 until the token list is actually written to the file. The macro

TEX for the Impatient No 270

3 Jan 2020 2:18 p.m.

250 Commands for general operations \ §9

expansions follow the same rules as \edef (p. 230). In particular, any con-
trol sequence that is not the name of a macro is written as \escapechar
followed by the control sequence name and a space. Any ‘#’ tokens in
〈token list〉 are doubled, i.e., written as ‘##’.

If 〈number〉 is not in the range from 0 to 15, TEX writes 〈token list〉
to the log file. If 〈number〉 is greater than 15 or isn’t associated with an
output stream, TEX also writes 〈token list〉 to the terminal.

Example:
\def\aa{a a}

\write\auxfile{\hbox{$x#y$} \aa}

% Writes the string ‘\hbox {$x##y$} a a’ to \auxfile.

\immediate

This command should precede an \openout, \closeout, or \write. It
tells TEX to perform the specified file operation without delay.

Example:
\immediate\write 16{I’m stuck!}

% has the same effect as \message

\special { 〈token list〉 }
This command tells TEX to write 〈token list〉 directly to the .dvi file
when it next ships out a page. A typical use of \special would be to
tell the device driver to incorporate the contents of a named graphics file
into the output page. The \special command produces a whatsit that
associates 〈token list〉 with a particular position on the page, namely, the
position that a zero-size box would have had if such a box had appeared
instead of the \special command. Any use you might make of \special
depends strictly on the device drivers that you have available.

Example:
\special{graphic expic}

% Display the graphics file ‘expic’ here.

\newlinechar [〈number〉 parameter]

This parameter contains a character that indicates a new line on out-
put. When TEX encounters this character while reading the argument of
a \write, \message, or \errmessage command, it starts a new line. If
\newlinechar is not in the range 0–255, there is no character that indi-
cates a new line on output. Plain TEX sets \newlinechar to −1.

Example:
\newlinechar = ‘\^^J

\message{This message appears^^Jon two lines.}

TEX for the Impatient No 271

3 Jan 2020 2:18 p.m.

Input and output 251

produces in the log:
This message appears

on two lines.

See also: \newread, \newwrite (p. 244).

Interpreting input characters

\catcode 〈charcode〉 [〈number〉 table entry]

This table entry contains the category code of the character whose ASCII

code is 〈charcode〉. The category codes are listed on page 53. By changing
the category code of a character you can get TEX to treat that charac-
ter differently.

Example:
\catcode ‘\[= 1 \catcode ‘\] = 2

% Make [and] act like left and right braces.

\active

This command contains the category code for an active character, namely,
the number 13.

Example:
\catcode ‘\@ = \active % Make @ an active character.

\mathcode 〈charcode〉 [〈number〉 table entry]

This table entry contains the mathcode of the character whose ASCII

code is 〈charcode〉 (see “mathcode”, p. 80). The mathcode specifies that
character’s interpretation in math mode.

Example:
\mathcode\> = "313E % as in plain TeX

% The > character has class 3 (relation), family 1 (math

% italic), and character code "3E

\delcode 〈charcode〉 [〈number〉 table entry]

This table entry specifies the delimiter code for the input character whose
ASCII code is 〈charcode〉. The delimiter code tells TEX how to find the
best output character to use for typesetting the indicated input character
as a delimiter.
〈number〉 is normally written in hexadecimal notation. Suppose that
〈number〉 is the hexadecimal number s1s2s3 l1l2l3. Then when the char-
acter is used as a delimiter, TEX takes the character to have small variant

TEX for the Impatient No 272

3 Jan 2020 2:18 p.m.

252 Commands for general operations \ §9

s1s2s3 and large variant l1l2l3. Here s1s2s3 indicates the math charac-
ter found in position s2s3 of family s1, and similarly for l1l2l3. This is
the same convention as the one used for \mathcode (p. 251), except that
\mathcode also specifies a class.

Example:
\delcode ‘(= "028300 % As in plain TeX.

\endlinechar [〈number〉 parameter]

This parameter contains the character code for the character that TEX
appends to the end of each input line. A value not in the range 0–255
indicates that no character should be appended. Plain TEX leaves \end-
linechar at ‘\^^M (the ASCII code for 〈return〉).

\ignorespaces

This command tells TEX to read and expand tokens until it finds one
that is not a space token, ignoring any space tokens that it finds on the
way. \ignorespaces is often useful at the end of a macro as a way of
making the macro insensitive to any spaces or ends of line that might
follow calls on it. (An empty line after \ignorespaces still produces a
\par token, however.)

Example:
\def\aa#1{yes #1\ignorespaces}

\aa{may}

be

produces:
yes maybe

Controlling interaction with TEX

\errorstopmode

This command tells TEX to stop for interaction whenever it finds an error.
This is the normal mode of operation.

\scrollmode

This command tells TEX not to stop for most errors, but to continue
displaying the error messages on your terminal. Typing ‘S’ or ‘s’ in
response to an error message puts you into scroll mode.

TEX for the Impatient No 273

3 Jan 2020 2:18 p.m.

Diagnostic aids 253

\nonstopmode

This command tells TEX not to stop for errors, even those pertaining to
files that it can’t find, but to continue displaying the error messages on
your terminal. Typing ‘R’ or ‘r’ in response to an error message puts you
into nonstop mode.

\batchmode

This command tells TEX not to stop for errors and to suppress all further
output to your terminal. Typing ‘Q’ or ‘q’ in response to an error message
puts you into batch mode.

\pausing [〈number〉 parameter]

If this parameter is greater than zero, TEX will pause at each line of input
to give you an opportunity to replace it with a different line. If you type
in a replacement, TEX will use that line instead of the original one; if you
respond with 〈return〉, TEX will use the original line.

Setting \pausing to 1 can be useful as a way of patching a document
as TEX is processing it. For example, you can use this facility to insert
\show commands (see below).

Diagnostic aids

Displaying internal data

\show 〈token〉
\showthe 〈argument〉
\showbox 〈number〉
\showlists

These commands record information in the log of your TEX run:

\show records the meaning of 〈token〉.
\showthe records whatever tokens would be produced by \the 〈arg-
ument〉 (see p. 234).

\showbox records the contents of the box register numbered 〈num-
ber〉. The number of leading dots in the log indicates the number of
levels of nesting of inner boxes.

\showlists records the contents of each of the lists that TEX is cur-
rently constructing. (These lists are nested one within another.) See
pages 88–89 of The TEXbook for further information about inter-
preting the output of \showlists.

TEX for the Impatient No 274

3 Jan 2020 2:18 p.m.

254 Commands for general operations \ §9

For \show and \showthe, TEX also displays the information at your
terminal. For \showbox and \showlists, TEX displays the information
at your terminal only if \tracingonline (p. 256) is greater than zero;
if \tracingonline is zero or less (the default case), the information is
not displayed.

Whenever TEX encounters a \show-type command it stops for interac-
tion. The request for interaction does not indicate an error, but it does
give you an opportunity to ask TEX to show you something else. If you
don’t want to see anything else, just press 〈return〉.

You can control the amount of output produced by \showbox by set-
ting \showboxbreadth and \showboxdepth (p. 261). These parameters
respectively have default values of 5 and 3, which is why just five items
appear for each box described in the log output below. (The ‘..etc.’ in-
dicates additional items within the boxes that aren’t displayed.)

Example:
\show a

\show \hbox

\show \medskip

\show &

produces in the log:
> the letter a.

> \hbox=\hbox.

> \medskip=macro:

->\vskip \medskipamount .

> alignment tab character &.

Example:
\showthe\medskipamount

\toks27={\hbox{Joe’s\quad\ Diner}}

\showthe\toks27

produces in the log:
> 6.0pt plus 2.0pt minus 2.0pt.

> \hbox {Joe’s\quad \ Diner}.

Example:
\setbox 3=\vbox{\hbox{A red dog.}\hrule A black cat.}

\showbox 3

TEX for the Impatient No 275

3 Jan 2020 2:18 p.m.

Diagnostic aids 255

produces in the log:
> \box3=

\vbox(16.23332+0.0)x53.05565

.\hbox(6.94444+1.94444)x46.41675

..\tenrm A

..\glue 3.33333 plus 1.66498 minus 1.11221

..\tenrm r

..\tenrm e

..\tenrm d

..etc.

.\rule(0.4+0.0)x*

.\hbox(6.94444+0.0)x53.05565

..\tenrm A

..\glue 3.33333 plus 1.66498 minus 1.11221

..\tenrm b

..\tenrm l

..\tenrm a

..etc.

TEX for the Impatient No 276

3 Jan 2020 2:18 p.m.

256 Commands for general operations \ §9

Example:
\vbox{A \hbox

{formula

$x \over y\showlists$}}

produces in the log:
math mode entered at line 3

\mathord

.\fam1 y

this will be denominator of:

\fraction, thickness = default

\\mathord

\.\fam1 x

restricted horizontal mode entered at line 2

\tenrm f

\tenrm o

\tenrm r

\tenrm m

\kern-0.27779

\tenrm u

\tenrm l

\tenrm a

\glue 3.33333 plus 1.66666 minus 1.11111

spacefactor 1000

horizontal mode entered at line 1

\hbox(0.0+0.0)x20.0

\tenrm A

\glue 3.33333 plus 1.66498 minus 1.11221

spacefactor 999

internal vertical mode entered at line 1

prevdepth ignored

vertical mode entered at line 0

prevdepth ignored

See also: \showboxbreadth, \showboxdepth (p. 261).

Specifying what is traced

\tracingonline [〈number〉 parameter]

If this parameter is greater than zero, TEX will display the results of trac-
ing (including \showbox and \showlists) at your terminal in addition
to recording them in the log file.

TEX for the Impatient No 277

3 Jan 2020 2:18 p.m.

Diagnostic aids 257

\tracingcommands [〈number〉 parameter]

If this parameter is 1 or greater, TEX will record in the log file most
commands that it executes. If \tracingonline is greater than zero, this
information will also appear at your terminal. Typesetting the first char-
acter of a word counts as a command, but (for the purposes of the trace
only) the actions of typesetting the subsequent characters and any punc-
tuation following them do not count as commands. If \tracingcommands
is 2 or greater, TEX will also record commands that are expanded rather
than executed, e.g., conditional tests and their outcomes.

Example:
\tracingcommands = 1 If $x+y>0$ we quit.\par

On the other hand, \tracingcommands = 0

produces in the log:
{vertical mode: the letter I}

{horizontal mode: the letter I}

{blank space }

{math shift character $}

{math mode: the letter x}

{the character +}

{the letter y}

{the character >}

{the character 0}

{math shift character $}

{horizontal mode: blank space }

{the letter w}

{blank space }

{the letter q}

{blank space }

{\par}

{vertical mode: the letter O}

{horizontal mode: the letter O}

{blank space }

{the letter t}

{blank space }

{the letter o}

{blank space }

{the letter h}

{blank space }

{\tracingcommands}

\tracinglostchars [〈number〉 parameter]

If this parameter is greater than zero, TEX will record an indication in
the log file of each time that it drops an output character because that

TEX for the Impatient No 278

3 Jan 2020 2:18 p.m.

258 Commands for general operations \ §9

character does not exist in the current font. If \tracingonline is greater
than zero, this information will also appear at your terminal. Plain TEX
defaults it to 1 (unlike the others).

Example:
\tracinglostchars = 1

A {\nullfont few} characters.

produces in the log:
Missing character: There is no f in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no w in font nullfont!

\tracingmacros [〈number〉 parameter]

If this parameter is 1 or greater, TEX will record in the log file the expan-
sion and arguments of every macro that it executes. If \tracingmacros is
2 or greater, TEX will record, in addition, every expansion of a token list
such as \output or \everycr. If \tracingonline is greater than zero,
this information will also appear at your terminal.

Example:
\def\a{first \b, then \c}

\def\b{b} \def\c{c}

\tracingmacros = 2

Call \a once.

produces in the log:
\a ->first \b , then \c

\b ->b

\c ->c

\tracingoutput [〈number〉 parameter]

If this parameter is greater than zero, TEX will record in the log file the
contents of every box that it sends to the .dvi file. If \tracingonline
is greater than zero, this information will also appear at your terminal.
The number of leading dots in each line of the trace output indicates
the nesting level of the box at that line. You can control the amount of
tracing by setting \showboxbreadth and \showboxdepth (p. 261).

Setting \tracingoutput to 1 can be particularly helpful when you’re
trying to determine why you’ve gotten extra space on a page.

Example:
% This is the entire file.

\tracingoutput = 1 \nopagenumbers

One-line page. \bye

TEX for the Impatient No 279

3 Jan 2020 2:18 p.m.

Diagnostic aids 259

produces in the log:
Completed box being shipped out [1]

\vbox(667.20255+0.0)x469.75499

.\vbox(0.0+0.0)x469.75499, glue set 13.99998fil

..\glue -22.5

..\hbox(8.5+0.0)x469.75499, glue set 469.75499fil

...\vbox(8.5+0.0)x0.0

...\glue 0.0 plus 1.0fil

..\glue 0.0 plus 1.0fil minus 1.0fil

.\vbox(643.20255+0.0)x469.75499, glue set 631.2581fill

..\glue(\topskip) 3.05556

..\hbox(6.94444+1.94444)x469.75499, glue set 386.9771fil

...\hbox(0.0+0.0)x20.0

...\tenrm O

...\tenrm n

...\tenrm e

...\tenrm -

...etc.

..\glue 0.0 plus 1.0fil

..\glue 0.0 plus 1.0fill

.\glue(\baselineskip) 24.0

.\hbox(0.0+0.0)x469.75499, glue set 469.75499fil

..\glue 0.0 plus 1.0fil

\tracingpages [〈number〉 parameter]

If this parameter is greater than zero, TEX will record in the log file its
calculations of the cost of various page breaks that it tries. If \tracing-
online is greater than zero, this information will also appear at your
terminal. TEX produces a line of this output whenever it first places
a box or insertion on the current page list, and also whenever it pro-
cesses a potential break point for the page. Examining this output can
be helpful when you’re trying to determine the cause of a bad page break.
See pages 112–114 of The TEXbook for an illustration and explanation
of this output.

Some production forms of TEX ignore the value of \tracingpages so
that they can run faster. If you need to use this parameter, be sure to
use a form that responds to it.

\tracingparagraphs [〈number〉 parameter]

If this parameter is greater than zero, TEX will record in the log file its cal-
culations of the cost of various line breaks that it tries. If \tracingonline
is greater than zero, this information will also appear at your terminal.
TEX produces this output when it reaches the end of each paragraph.

TEX for the Impatient No 280

3 Jan 2020 2:18 p.m.

260 Commands for general operations \ §9

See pages 98–99 of The TEXbook for an illustration and explanation
of this output.

Some production forms of TEX ignore the value of \tracingpara-

graphs so that they can run faster. If you need to use this parameter, be
sure to use a form that responds to it.

\tracingrestores [〈number〉 parameter]

If this parameter is greater than zero, TEX will record in the log file
the values that it restores when it encounters the end of a group. If
\tracingonline is greater than zero, this information will also appear
at your terminal.

Some production forms of TEX ignore the value of \tracingrestores
so that they can run faster. If you need to use this parameter, be sure to
use a form that responds to it.

\tracingstats [〈number〉 parameter]

If this parameter is 1 or greater, TEX will include a report on the resources
that it used to run your job (see page 300 of The TEXbook for a list
and explanation of these resources). Moreover, if \tracingstats is 2 or
greater, TEX will report on its memory usage whenever it does a \shipout

(p. 148) for a page. The report appears at the end of the log file. If
\tracingonline is greater than zero, the information will also appear
at your terminal. If you’re having trouble with TEX exceeding one of
its capacities, the information provided by \tracingstats may help you
pinpoint the cause of the difficulty.

Some production forms of TEX ignore the value of \tracingstats so
that they can run faster. If you need to use this parameter, be sure to
use a form that responds to it.

The following example shows a sample of the tracing output you’d
get on one implementation of TEX. It may be different on other im-
plementations.

Example:
\tracingstats=1

produces in the log:
Here is how much of TeX’s memory you used:

4 strings out of 5540

60 string characters out of 72328

5956 words of memory out of 262141

921 multiletter control sequences out of 9500

14794 words of font info for 50 fonts, out of 72000 for 255

14 hyphenation exceptions out of 607

7i,4n,1p,68b,22s stack positions out of 300i,40n,60p,3000b,4000s

TEX for the Impatient No 281

3 Jan 2020 2:18 p.m.

Diagnostic aids 261

\tracingall

This command tells TEX to turn on every available form of tracing. It
also sets \tracingonline to 1 so that the trace output will appear at
your terminal.

\showboxbreadth [〈number〉 parameter]

This parameter specifies the maximum number of list items that TEX
displays for one level of one box when it is producing the output for
\showbox or \tracingoutput. Plain TEX sets \showboxbreadth to 5.

\showboxdepth [〈number〉 parameter]

This parameter specifies the level of the deepest list that TEX displays
when it is producing the output for \showbox or \showlists. Plain TEX
sets \showboxdepth is 3.

Sending messages

\message { 〈token list〉 }
\errmessage { 〈token list〉 }
These commands display the message given by 〈token list〉 on your ter-
minal and also enter it into the log. Any macros in the message are
expanded, but no commands are executed. This is the same rule that
TEX uses for \edef (p. 230).

For \errmessage, TEX pauses in the same way that it does for one of its
own error messages and displays the \errhelp tokens if you ask for help.

You can generate multiline messages by using the \newlinechar char-
acter (p. 250).

Example:
\message{Starting a new section.}

\wlog { 〈token list〉 }
This command writes 〈token list〉 on the log file. TEX expands 〈token list〉
according to the same rules that it uses for \edef (p. 230).

Example:
\wlog{Take two aspirins and call me in the morning.}

produces in the log:
Take two aspirins and call me in the morning.

\errhelp [〈token list〉 parameter]

This parameter contains the token list that TEX displays when you ask for
help in response to an \errmessage command. We recommend that when

TEX for the Impatient No 282

3 Jan 2020 2:18 p.m.

262 Commands for general operations \ §9

you’re generating an error message with \errmessage, you set \errhelp
to a string that describes the nature of the error and use \newhelp to
produce that string. You can use the \newlinechar character to produce
multiline messages.

\newhelp 〈control sequence〉 { 〈help text〉 }
This command assigns the help message given by 〈help text〉 to 〈control
sequence〉. It provides an efficient way of defining the help text that
further explains an error message. Before issuing the error message
with the \errmessage command, you should assign 〈control sequence〉
to \errhelp. The help text will then appear if the user types ‘H’ or ‘h’
in response to the error message.

Example:
\newhelp\pain{Your input includes a token that I find^^J

to be offensive. Don’t bother me again with this^^J

document until you’ve removed it.}

\errhelp = \pain \newlinechar = ‘\^^J

% ^^J will start a new line

\errmessage{I do not appreciate receiving this token}

produces in the log:
! I do not appreciate receiving this token.

l.8 ...t appreciate receiving this token.}

? H

\Your input includes a token that I find

to be offensive. Don’t bother me again with this

document until you’ve removed it.

\errorcontextlines [〈number〉 parameter]

This parameter determines the number of pairs of context lines, not count-
ing the top and bottom pairs, that TEX prints when it encounters an error.
By setting it to 0 you can get rid of long error messages. You can still
force out the full context by typing something like:

I\errorcontextlines=100\oops

in response to an error, since the undefined control sequence \oops will
cause another error. Plain TEX sets \errorcontextlines to 5.

See also: \write (p. 249), \escapechar (p. 226).

TEX for the Impatient No 283

3 Jan 2020 2:18 p.m.

Initializing TEX 263

Initializing TEX

\dump

This command, which must not appear inside a group, dumps the con-
tents of TEX’s memory to a format file (p. 65). By using virtex, a spe-
cial “virgin” form of TEX, you can then reload the format file at high
speed and continue in the same state that TEX was in at the time of
the dump. \dump also ends the run. Since \dump can only be used in
initex, not in production forms of TEX, it is only useful to people who
are installing TEX.

\everyjob [〈token list〉 parameter]

This parameter contains a token list that TEX expands at the start of
every job. Because an assignment to \everyjob cannot affect the current
run (by the time you’ve done the assignment it’s already too late), it is
only useful to people who are preparing format files.

TEX for the Impatient No 284

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 285

3 Jan 2020 2:18 p.m.

10 Tips and techniques

TEX is a complex program that occasionally works its will in mysterious
ways. In this section we offer some tips on solving problems that you
might encounter and explain some handy techniques.

Correcting bad page breaks

Sometimes TEX breaks a page right in the middle of material that you
want to keep together—for example, a section heading and the text that
follows it, or a short list of related items. There are two ways to correct
the situation:

You can force the material to be kept together.
You can force a page break at a different place.

The simplest way to force TEX to keep material together on a page
is to enclose the material in a vbox using the \vbox command (p. 161).
A vbox is ordinarily better than an hbox for this purpose because most
often the material to be kept together, e.g., a sequence of paragraphs,
will be vertical mode material. You should precede and follow the vbox
by an implicit or explicit paragraph command (either a blank line or
\par); otherwise TEX may try to make the vbox part of an an adjacent
paragraph. The vbox method has an important limitation: you can’t
apply it to portions of text smaller than a paragraph.

You can sometimes keep the lines of a single paragraph together by
enclosing the paragraph in a group and assigning \interlinepenalty

(p. 138) a value of 10000 at the start of the group (or elsewhere before
the end of the paragraph). This method causes TEX to consider page

TEX for the Impatient No 286

3 Jan 2020 2:18 p.m.

266 Tips and techniques \ §10

breaks within that paragraph to be infinitely undesirable. However, if all
the page breaks that TEX can find are infinitely undesirable, it may break
the page within the paragraph anyway.

A \nobreak command (p. 136) after the end of a paragraph prevents
TEX from breaking the page at the following item (unless that item hap-
pens to be a penalty of less than 10000). This is also the best way to
prevent a page break after a heading, since a heading usually behaves
like a paragraph. The \nobreak must follow the blank line or \par that
ends the paragraph so that TEX won’t treat the \nobreak as part of the
paragraph. For the \nobreak to be effective, it must also come before any
legal breakpoint at the end of the paragraph. The glue that TEX inserts
before the next paragraph is such a breakpoint, and so is any vertical glue
that you insert explicitly after a paragraph. Thus the \nobreak should
usually be the very first thing after the end of the paragraph or heading.

You can use the \eject command (p. 137) to force TEX to break a page
at a particular place. Within a paragraph, you can use the combination
‘\vadjust{\vfill\eject}’ (p. 120) to force a break after the next com-
plete output line. The reason for preceding \eject by \vfill (p. 157) is
to get TEX to fill out the page with blank space. However, using \eject

to fix page break problems has a major disadvantage: if the page bound-
aries in your document change, the page breaks that you’ve inserted may
no longer be where you want them.

If you don’t provide TEX with a \vfill command to fill out the page
before an \eject, TEX redistributes the extra blank space as best it can
and then usually complains that “an underfull \vbox (badness 10000) has
occurred while \output is active.” You may encounter a similar problem
with any of the methods mentioned above for enclosing material that you
want to keep together.

The \filbreak command (p. 137) provides a way of keeping the lines
of one or more paragraphs (or other vertical mode material) together on
a page. If you enclose a paragraph in \filbreaks, TEX will effectively
ignore the \filbreaks if the paragraph fits on the current page and break
the page before the first \filbreak if the paragraph doesn’t fit. If you put
\filbreaks around each paragraph in a sequence of paragraphs, like this:

\filbreak

〈paragraph〉
\filbreak

〈paragraph〉
\filbreak

...
〈paragraph〉
\filbreak

TEX for the Impatient No 287

3 Jan 2020 2:18 p.m.

Preserving the end of a page 267

TEX will keep the lines of each paragraph together on a page. If TEX
breaks a page at a \filbreak, it will fill the bottom of the page with
blank space.

Sometimes you can get TEX to modify the length of a page by changing
the \looseness parameter (p. 124) for one or more paragraphs. Setting
\looseness negative within a paragraph causes TEX to try to squeeze the
paragraph into fewer lines; setting it positive causes TEX to try to expand
the paragraph into more lines. The disadvantage of changing \looseness

is that the interword spacing in the affected region won’t be optimal. You
can get further information about TEX’s attempted line breaks by setting
\tracingpages (p. 259) to 1.

Preserving the end of a page

Sometimes you need to modify something on a single page and you want
to avoid reprinting the entire document. If your modification doesn’t
change the page length too much, there’s hope. You need to fix the end
of the page so that it falls in the same place; the methods are similar to
the ones for fixing a bad page break.

If the original end of page came between paragraphs, you can force a
page break at the same place using any of the methods we’ve described
above. Otherwise, you must force both a line break and a page break at a
particular place. If the new page is shorter than the old one, the sequence:

\vadjust{\vfill\eject}\break

should do the trick. But if the new page is longer, the problem is far more
difficult because TEX has probably already squeezed the page as tightly
as it can. Your only hopes in this case are to set \looseness (p. 124) to
a negative value, to shorten some of the vertical skips on the page, to add
some shrink to \parskip (p. 141) if it was nonzero, or, as a last resort, to
decrease \baselineskip (p. 133) ever so slightly.

Leaving space at the top of a page

You can usually use the \vskip command (p. 155) to leave vertical space
on a page. That doesn’t work at the top of a page, however, since TEX
discards glue, kerns, and penalties that occur just after a page break.

TEX for the Impatient No 288

3 Jan 2020 2:18 p.m.

268 Tips and techniques \ §10

Use the \topglue command (p. 156) instead; it produces glue that never
disappears.

Correcting bad line breaks

If TEX breaks a line in the middle of material that you wanted to keep on
a single line, there are several ways to correct the situation:

You can force a break in a nearby place with the \break command
(p. 120).
You can insert a tie (~) between two words (see p. 105) to prevent a
break between them.
You can tell TEX about hyphenations that it wouldn’t otherwise
consider by inserting one or more discretionary hyphens in various
words (see \-, p. 126).
You can enclose several words in an hbox using the \hbox com-
mand (p. 160).

The disadvantage of all of these methods, except for inserting discre-
tionary hyphens, is that they may make it impossible for TEX to find a
satisfactory set of line breaks. Should that happen, TEX will set one or
more underfull or overfull boxes and complain about it. The hbox method
has a further disadvantage: because TEX sets an hbox as a single unit
without considering its context, the interword space within the hbox may
not be consistent with the interword space in the rest of the line.

Correcting overfull or underfull boxes

If TEX complains about an overfull box, it means you’ve put more material
into a box than that box has room for. Similarly, if TEX complains about
an underfull box, it means you haven’t put enough material into the box.
You can encounter these complaints under many different circumstances,
so let’s look at the more common ones:

An overfull hbox that’s a line of a paragraph indicates that the line
was too long and that TEX couldn’t rearrange the paragraph to make
the line shorter. If you set \emergencystretch (p. 124) to some
nonzero value, that may cure the problem by allowing TEX to put
more space between words. Another solution is to set \tolerance

(p. 123) to 10000, but that’s likely to yield lines with far too much
space in them. Yet another solution is to insert a discretionary hy-
phen in a critical word that TEX didn’t know how to hyphenate. If

TEX for the Impatient No 289

3 Jan 2020 2:18 p.m.

Correcting overfull or underfull boxes 269

all else fails, you might try rewording the paragraph. A solution that
is rarely satisfactory is increasing \hfuzz (p. 171), allowing TEX to
construct lines that project beyond the right margin.

An underfull hbox that’s a line of a paragraph indicates that the
line was too short and that TEX couldn’t rearrange the paragraph
to make the line longer. TEX will set such a line by stretching its
interword spaces beyond their normal limits. Two of the cures for
overfull lines mentioned above also apply to underfull lines: inserting
discretionary hyphens and rewording the paragraph. Underfull lines
won’t trouble you if you’re using ragged right formatting, which you
can get with the \raggedright command (p. 116).

The complaint:

Underfull \vbox (badness 10000) has occurred

while \output is active

indicates that TEX didn’t have enough material to fill up a page.
The likely cause is that you’ve been using vboxes to keep material
together and TEX has encountered a vbox near the bottom of a page
that wouldn’t fit on that page. It has put the vbox on the next page,
but in doing so has left too much empty space in the current page.
In this case you’ll either have to insert some more space elsewhere on
the current page or break up the vbox into smaller parts.

Another possible cause of this complaint is having a long para-
graph that occupies an entire page without a break. Since TEX
won’t ordinarily vary the spacing between lines, it may be unable
to fill a gap at the bottom of the page amounting to a fraction of the
line spacing. This can happen if \vsize (p. 140), the page length, is
not an even multiple of \baselineskip (p. 133), the space between
consecutive baselines.

Yet another cause of this complaint, similar to the previous one,
is setting \parskip (p. 141), the interparagraph glue, to a value that
doesn’t have any stretch or shrink. You can fix these last two prob-
lems by increasing \vfuzz (p. 171).

The complaint

Overfull \vbox (296.30745pt too high) has occurred

while \output is active

indicates that you constructed a vbox that was longer than the page.
You’ll just have to make it shorter.

The only cures for an overfull hbox or vbox that you’ve constructed
with the \hbox or \vbox commands (pp. 160, 161) are to take some-
thing out of the box, to insert some negative glue with \hss or \vss
(p. 158), or to increase the size of the box.

TEX for the Impatient No 290

3 Jan 2020 2:18 p.m.

270 Tips and techniques \ §10

If you encounter an underfull hbox or vbox that you’ve constructed
with \hbox or \vbox, you’re usually best off to fill out the box with
\hfil or \vfil (p. 157).

Recovering lost interword spaces

If you find that TEX has run two words together, the likely cause is a
control sequence that’s absorbed the spaces after it. Put a control space
(\) after the control sequence.

Avoiding unwanted interword spaces

If you get a space in your document where you don’t want and don’t
expect one, the most likely cause, in our experience, is an end of line or a
space following a brace. (If you’re doing fancy things with category codes,
you’ve introduced lots of other likely causes.) TEX ordinarily translates
an end-of-line into a space, and it considers a space after a right or left
brace to be significant.

If the unwanted space is caused by a space after a brace within an input
line, then remove that space. If the unwanted space is caused by a brace
at the end of an input line, put a ‘%’ immediately after the brace. The ‘%’
starts a comment, but this comment needn’t have any text.

A macro definition can also introduce unwanted spaces if you haven’t
written it carefully. If you’re getting unwanted spaces when you call a
macro, check its definition to be sure that you don’t have an unintended
space after a brace and that you haven’t ended a line of the definition
immediately after a brace. People often end lines of macro definitions
after braces in order to make the definitions more readable. To be safe,
put a ‘%’ after any brace that ends a line of a macro definition. It may
not be needed, but it won’t do any harm.1

When you’re having trouble locating the source of an unwanted space,
try setting \tracingcommands (p. 257) to 2. You’ll get a {blank space}

command in the log file for each space that TEX sees.
It helps to know TEX’s rules for spaces:

1) Spaces are ignored at the beginnings of input lines.

2) Spaces at the ends of input lines are ignored under all circumstances,
although the end of line itself is treated like a space. (A completely
blank line, however, generates a \par token.)

1 Admittedly there are rare cases where you really do want an end of line after a brace.

TEX for the Impatient No 291

3 Jan 2020 2:18 p.m.

Avoiding excess space around a display 271

3) Multiple spaces are treated like a single space, but only if they appear
together in your input. Thus a space following the arguments of a
macro call is not combined with a final space produced by the macro
call. Instead, you get two spaces.

4) Spaces are ignored after control words.

5) Spaces are in effect ignored after numbers, dimensions, and the ‘plus’
and ‘minus’ in glue specifications.2

If you’ve changed the category code of the space or the end-of-line char-
acter, all bets are off.

Avoiding excess space around a display

If you’re getting too much space above a math display, it may be because
you’ve left a blank line in your input above the display. The blank line
starts a new paragraph and puts TEX into vertical mode. When TEX
sees a ‘$’ in vertical mode, it switches back to horizontal mode and in-
serts the interparagraph glue (\parskip) followed by the interline glue
(\baselineskip). Then, when it starts the display itself, it inserts more
glue (either \abovedisplayskip or \abovedisplayshortskip, depend-
ing on the length of the preceding line). This last glue is the only glue
that you want. To avoid getting the interparagraph glue as well, don’t
leave a blank line above a math display or otherwise end a paragraph
(with \par, say) just before a math display.

Similarly, if you’re getting too much space below a math display, it
may be because you’ve left a blank line in your input below the display.
Just remove it.

Avoiding excess space after a paragraph

If you get too much vertical space after a paragraph that was produced
by a macro, you may be getting the interparagraph glue produced by the
macro, an empty paragraph, and then more interparagraph glue. You can
get rid of the second paragraph skip by inserting:

\vskip -\parskip

\vskip -\baselineskip

2 Actually, TEX ignores only a single space in these places. Since multiple spaces or-
dinarily reduce to a single space, however, the effect is that of ignoring any number of
spaces.

TEX for the Impatient No 292

3 Jan 2020 2:18 p.m.

272 Tips and techniques \ §10

just after the macro call. If you always get this problem with a certain
macro, you can put these lines at the end of the macro definition instead.
You may also be able to cure the problem by never leaving a blank line
after the macro call—if you want a blank line just to make your input
more readable, start it with a ‘%’.

Changing the paragraph shape

Several TEX parameters—\hangindent, \leftskip, etc.—affect the way
that TEX shapes paragraphs and breaks them into lines. These parame-
ters are used indirectly in plain TEX commands such as \narrower and
\hang; you can also assign to them directly. If you’ve used one of these
commands (or changed one of these parameters), but the command or
parameter change does not seem to be having any effect on a paragraph,
the problem may be that you’ve ended a group before you’ve ended the
paragraph. For example:

{\narrower She very soon came to an open field, with

a wood on the other side of it: it looked much darker

than the last wood, and Alice felt a little timid

about going into it.}

This paragraph won’t be set narrower because the right brace at the end
terminates the \narrower group before TEX has had a chance to break
the paragraph into lines. Instead, put a \par before the right brace; then
you’ll get the effect you want.

Putting paragraphs into a box

Suppose you have a few paragraphs of text that you want to put in a
particular place on the page. The obvious way to do it is to enclose the
paragraphs in an hbox of an appropriate size, and then place the hbox
where you want it to be. Alas, the obvious way doesn’t work because TEX
won’t do line breaking in restricted horizontal mode. If you try it, you’ll
get a misleading error message that suggests you’re missing the end of a
group. The way around this restriction is to write:

\vbox{\hsize = 〈dimen〉 . . . 〈paragraphs〉 . . . }

TEX for the Impatient No 293

3 Jan 2020 2:18 p.m.

Drawing lines 273

where 〈dimen〉 is the line length that you want for the paragraphs. This
is what you need to do, in particular, when you want to enclose some
paragraphs in a box (a box enclosed in ruled lines, not a TEX box).

Drawing lines

You can use the \hrule and \vrule commands (p. 172) to draw lines,
i.e., rules. You’ll need to know (a) where you can use each command and
(b) how TEX determines the lengths of rules when you haven’t given the
lengths explicitly.

You can only use \hrule when TEX is in a vertical mode and \vrule

when TEX is in a horizontal mode. This requirement means that you
can’t put a horizontal rule into an hbox or a vertical rule into a vbox.
You can, however, construct a horizontal rule that looks vertical
by specifying all three dimensions and making it tall and skinny.
Similarly, you can construct a vertical rule that looks horizontal by
making it short and fat.

A horizontal rule inside a vbox has the same width as does the vbox
if you haven’t given the width of the rule explicitly. Vertical rules
inside hboxes behave analogously. If your rules are coming out too
long or too short, check the dimensions of the enclosing box.

As an example, suppose we want to produce:

Help! Let
me out of
here!

The following input will do it:

\hbox{\vrule

\vbox{\hrule \vskip 3pt

\hbox{\hskip 3pt

\vbox{\hsize = .7in \raggedright

\noindent Help! Let me out of here!}%

\hskip 3pt}%

\vskip 3pt \hrule}%

\vrule}

We need to put the text into a vbox in order to get TEX to process it as
a paragraph. The four levels of boxing are really necessary—if you doubt
it, try to run this example with fewer levels.

TEX for the Impatient No 294

3 Jan 2020 2:18 p.m.

274 Tips and techniques \ §10

Creating multiline headers or footers

You can use the \headline and \footline commands (p. 143) to pro-
duce headers and footers, but they don’t work properly for headers and
footers having more than one line. However, you can get multiline head-
ers and footers by redefining some of the subsidiary macros in TEX’s
output routine.

For a multiline header, you need to do three things:

1) Redefine the \makeheadline macro that’s called from TEX’s out-
put routine.

2) Increase \voffset by the amount of vertical space consumed by the
extra lines.

3) Decrease \vsize by the same amount.

The following example shows how you might do this:

\advance\voffset by 2\baselineskip

\advance\vsize by -2\baselineskip

\def\makeheadline{\vbox to 0pt{\vss\noindent

Header line 1\hfil Page \folio\break

Header line 2\hfil\break

Header line 3\hfil}%

\vskip\baselineskip}

You can usually follow the pattern of this definition quite closely, just
substituting your own header lines and choosing an appropriate multiple
of \baselineskip (one less than the number of lines in the header).

For a multiline footer, the method is similar:

1) Redefine the \makefootline macro that’s called from TEX’s out-
put routine.

2) Decrease \vsize by the amount of vertical space consumed by the
extra lines.

The following example shows how you might do this:

\advance\vsize by -2\baselineskip

\def\makefootline{%

\lineskip = 24pt

\vbox{\raggedright\noindent

Footer line 1\hfil\break

Footer line 2\hfil\break

Footer line 3\hfil}}

Again, you can usually follow the pattern of this definition quite closely.
The value of \lineskip determines the amount of space between the

TEX for the Impatient No 295

3 Jan 2020 2:18 p.m.

Finding mismatched braces 275

baseline of the last line of the main text on the page and the baseline of
the first line of the footer.

Finding mismatched braces

Most times when your TEX input suffers from mismatched braces, you’ll
get a diagnostic from TEX fairly near the place where you actually made
the mistake. But one of the most frustrating errors you can get from a
TEX run, just before TEX quits, is the following:

(\end occurred inside a group at level 1)

This indicates that there is an extra left brace or a missing right brace
somewhere in your document, but it gives you no hint at all about where
the problem might be. So how can you find it?

A debugging trick we’ve found useful is to insert the following line or
its equivalent at five or six places equally spaced within the document
(and not within a known group):

}% a fake ending

Let’s assume the problem is an extra left brace. If the extra left brace is,
say, between the third and fourth fake ending, you’ll get error messages
from the first three fake endings but not from the fourth one. The reason
is that TEX will ignore the first three fake endings after complaining about
them, but the fourth fake ending will match the extra left brace. Thus
you know that the extra left brace is somewhere between the third and
fourth fake ending. If the region of the error is still too large for you
to find it, just remove the original set of fake endings and repeat the
process within that region. If the problem is a missing right brace rather
than an extra left brace, you should be able to track it down once you’ve
found its mate.

This method doesn’t work under all circumstances. In particular, it
doesn’t work if your document consists of several really large groups.
But often you can find some variation on this method that will lead you
to that elusive brace.

If all else fails, try shortening your input by removing the last half of
the file (after stashing away the original version first!) or inserting a \bye

command in the middle. If the error persists, you know it’s in the first
half; if it goes away, you know it’s in the second half. By repeating this
process you’ll eventually find the error.

TEX for the Impatient No 296

3 Jan 2020 2:18 p.m.

276 Tips and techniques \ §10

Setting dimensions

The simplest way to set a dimension is to specify it directly, e.g.:

\hsize = 6in

You can also specify a dimension in terms of other dimensions or as a
mixture of different units, but it’s a little more work. There are two ways
to construct a dimension as such a combination:

1) You can add a dimension to a dimension parameter or to a dimension
register. For example:

\hsize = 6in \advance\hsize by 3pc % 6in + 3pc

2) You can indicate a dimension as a multiple of a dimension or glue
parameter or register. In this case, TEX converts glue to a dimension
by throwing away the stretch and shrink. For example:

\parindent = .15\hsize

\advance\vsize by -2\parskip

Creating composite fonts

It’s sometimes useful to create a “composite font”, named by a control
sequence F , in which all the characters are taken from a font f1 except
for a few that are borrowed from another font f2. You can then set text in
the composite font by using F just as you’d use any other font identifier.

You can create such a composite font by defining F as a macro. In the
definition of F , you first select font f1 and then define control sequences
that produce the borrowed characters, set in f2. For example, suppose
that you want to create a composite font \britrm which has all the char-
acters of cmr10 except for the dollar sign, for which you want to borrow
the pound sterling symbol from font cmti10. The pound sterling symbol
in cmti10 happens to be in the same font position as the dollar sign in
cmr10. Here’s how to do it:

\def\britrm{%

\tenrm % \tenrm names the cmr10 font

\def\${{\tenit\char ‘\$}}% \tenit names the cmti10 font.

}

Now whenever you start the font named \britrm, \$ will produce a pound
sterling symbol.

TEX for the Impatient No 297

3 Jan 2020 2:18 p.m.

Reproducing text verbatim 277

You can also get the same effect by changing the category codes of the
characters in question to make those characters active and then providing
a definition for the character. For example:

\catcode ‘* = \active

\def*{{\tentt \char ‘*}}

In this case the asterisk will be taken from the \tentt font. If you then
type the input line:

Debbie was the * of the show.

it will be set as:

Debbie was the * of the show.

Reproducing text verbatim

Verbatim text is text that is reproduced in a typeset document just as
it appeared in the input. The most common use of verbatim text is
in typesetting computer input, including both computer programs and
input to TEX itself. Computer input is not easy to produce verbatim
for two reasons:

1) Some characters (control symbols, escape characters, braces, etc.)
have special meanings to TEX.

2) Ends of line and multiple spaces are translated to single spaces.

In order to produce verbatim text, you have to cancel the special meanings
and disable the translation. This is best done with macros.

To cancel the special meanings, you need to change the category codes
of those characters that have special meanings. The following macro
illustrates how you might do it:

\chardef \other = 12

\def\deactivate{%

\catcode‘\\ = \other \catcode‘\{ = \other

\catcode‘\} = \other \catcode‘\$ = \other

\catcode‘\& = \other \catcode‘\# = \other

\catcode‘\% = \other \catcode‘\~ = \other

\catcode‘\^ = \other \catcode‘_ = \other

}

But beware! Once you’ve changed the category codes in this way, you’ve
lost the ability to use control sequences since there’s no longer an escape
character. You need some way of getting back to the normal mode of
operation. We’ll explain how to do that in a moment, after considering
the other problem: disabling the translation of spaces and ends of line.

TEX for the Impatient No 298

3 Jan 2020 2:18 p.m.

278 Tips and techniques \ §10

Plain TEX has two commands that together nearly solve the problem:
\obeyspaces (p. 107) and \obeylines (p. 122). The two things that they
don’t do are to preserve spaces at the start of a line and to preserve blank
lines. For that you need stronger measures—which are provided by the
\obeywhitespace macro that we are about to define.

TEX normally insists on collecting lines into paragraphs. One way to
convince it to take line boundaries literally is to turn individual lines
into paragraphs.3 You can do this by redefining the end of line char-
acter to produce the \par control sequence. The following three macro
definitions show how:

\def\makeactive#1{\catcode‘#1 = \active \ignorespaces}

{% The group delimits the text over which ^^M is active.

\makeactive\^^M %

\gdef\obeywhitespace{%

% Use \gdef so the definition survives the group.

\makeactive\^^M %

\let^^M = \newline %

\aftergroup\removebox % Kill extra paragraph at end.

\obeyspaces %

}%

}

\def\newline{\par\indent}

\def\removebox{\setbox0=\lastbox}

A subtle point about the definition of \obeywhitespace is that ^^M must
be made active both when \obeywhitespace is being defined and when
it is being used.

In order to be able to get back to normal operation after verbatim text,
you need to choose a character that appears rarely if at all in the verbatim
text. This character serves as a temporary escape character. The vertical
bar (|) is sometimes a good choice. With this choice, the macros:

\def\verbatim{\par\begingroup\deactivate\obeywhitespace

\catcode ‘\| = 0 % Make | the new escape character.

}

\def\endverbatim{\endgroup\endpar}

\def\|{|}

will do the trick. Within the verbatim text, you can use a double vertical
bar (||) to denote a single one, and you end the verbatim text with
|endverbatim.

3 Another way is to turn the end of line character into a \break command and provide
infinite glue at the end of each line.

TEX for the Impatient No 299

3 Jan 2020 2:18 p.m.

Using outer macros 279

There are many variations on this technique:

If a programming language has keywords, you can turn each keyword
into a command that typesets that keyword in boldface. Each key-
word in the input should then be preceded by the temporary escape
character.

If you have a character (again, let’s assume it’s the vertical bar) that
never appears in the verbatim text, you can make it active and cause
it to end the verbatim text. The macro definitions then go like this:

{\catcode ‘\| = \active

\gdef\verbatim{%

\par\begingroup\deactivate\obeywhitespace

\catcode ‘| = \active

\def |{\endgroup\par}%

}}

The ideas presented here provide only a simple approach to typesetting
computer programs. Verbatim reproduction is often not as revealing or
easy to read as a version that uses typographical conventions to reflect
the syntax and even the semantics of the program. If you’d like to pursue
this subject further, we recommend the following book:

Baecker, Ronald M., and Marcus, Aaron, Human Factors and Ty-
pography for More Readable Programs. Reading, Mass.: Addison-
Wesley, 1990.

Using outer macros

If TEX complains about a “forbidden control sequence”, you’ve probably
used an outer macro in a non-outer context (see “outer”, p. 83). An
outer macro is one whose definition is preceded by \outer. An outer
macro can’t be used in a macro argument, in a macro definition, in the
preamble of an alignment, or in conditional text, i.e., text that will be
expanded only when a conditional test has a particular outcome. Certain
macros have been defined as outer because they aren’t intended to be
used in these contexts and such a use is probably an error. The only
ways around this problem are to redefine the macro or to move its use to
an acceptable context.

Using an outer macro in an improper context can also cause TEX to
complain about a runaway situation or an incomplete conditional. The
problem can be hard to diagnose because the error message gives no hint
as to what it is. If you get such an error message, look around for a call
on an outer macro. You may not always know that a particular macro is

TEX for the Impatient No 300

3 Jan 2020 2:18 p.m.

280 Tips and techniques \ §10

outer, but the command ‘\show\a’ (p. 253) will show you the definition
of \a and also tell you if \a is outer.

Changing category codes

Sometimes it’s useful to make local changes to the category code of a
character in some part of your document. For instance, you might be
typesetting a computer program or something else that uses normally ac-
tive characters for special purposes. You’d then want to deactivate those
characters so that TEX will treat them as being like any other character.

If you make such a local change to the category code of a character,
you may sometimes be dismayed to find that TEX seems to be paying
no attention whatsoever to your change. Two aspects of TEX’s behavior
are likely causes:

1) TEX determines the category code of an input character and attaches
it to the character when it reads in the character. Let’s say you
read in a tilde (~) and later change the category code of tildes, but
make the change before TEX’s stomach has actually processed that
particular tilde (see “anatomy of TEX”, p. 46). TEX will still respond
to that tilde using the category code as it was before the change. This
difficulty typically arises when the tilde is part of an argument to a
macro and the macro itself changes the category code of tilde.

2) When TEX is matching a call of a macro to the definition of that
macro, it matches not just the characters in the parameter pattern
but also their category codes. If the category code of a pattern
character isn’t equal to the category code of the same character in
the call, TEX won’t consider the characters as matching. This effect
can produce mysterious results because it looks as though the pattern
should match. For example, if you’ve defined a macro:

\def\eurodate#1/#2/#3{#2.#1.#3}

then the slash character must have the same category code when you
call \eurodate as it had when you defined \eurodate.

If the problem arises because the troublesome character is an argument
to a macro, then the usual cure is to redefine the macro as a pair of
macros \mstart and \mfinish, where \mstart is to be called before the
argument text and \mfinish is to be called after it. \mstart then sets
up the category codes and \mfinish undoes the change, perhaps just by
ending a group.

TEX for the Impatient No 301

3 Jan 2020 2:18 p.m.

Making macro files more readable 281

Making macro files more readable

You can make a file of macros more readable by setting the category codes
of space to 9 (ignored character) and \endlinechar (p. 252) to −1 at the
beginning of the file. Then you can use spaces and ends of line freely in
the macro definitions without getting unwanted spaces when you call the
macros. The ignored characters won’t generate spaces, but they’ll still
act as terminators for control sequences. If you really do want a space,
you can still get it with the \space command (p. 105).

Of course you’ll need to restore the category codes of space and end of
line to their normal values (10 and 5, respectively) at the end of the file.
You can do this either by enclosing the entire file in a group or by restoring
the values explicitly. If you choose to enclose the file in a group, then you
should also set \globaldefs to 1 so that all the macro definitions will be
global and thus visible outside of the group.

A miniature example of a macro file of this form is:

\catcode ‘\ = 9 \endlinechar = -1

\def \makeblankbox #1 #2 {

\hbox{\lower \dp0 \vbox{\hidehrule {#1} {#2}

\kern -#1 % overlap rules

\hbox to \wd0{\hidevrule {#1} {#2}%

\raise \ht0 \vbox to #1{} % vrule height

\lower \dp0 \vtop to #1{} % vrule depth

\hfil \hidevrule {#2} {#1} }

\kern -#1 \hidehrule {#2} {#1} } }

\def\hidehrule #1 #2 {

\kern -#1 \hrule height#1 depth#2 \kern -#2 }

\def\hidevrule #1 #2 {

\kern -#1 {\dimen0 = #1 \advance \dimen0 by #2

\vrule width \dimen0 } \kern -#2 }

\catcode ‘\ = 10 \endlinechar = ‘\^^M

Without the changed category codes, these macros would have to be
written much more compactly, using fewer spaces and more ‘%’s at the
ends of lines.

TEX for the Impatient No 302

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 303

3 Jan 2020 2:18 p.m.

11 Making sense
of error messages

Interpreting TEX’s error messages can sometimes be like going to your
physician with a complaint that you’re feeling fatigued and being handed,
in response, a breakdown of your blood chemistry. The explanation of
your distress is probably there, but it’s not easy to figure out what it is.
A few simple rules will go a long way in helping you to understand TEX’s
error messages and get the most benefit from them.

Your first goal should be to understand what you did that caused TEX
to complain. Your second goal (if you’re working interactively) should be
to catch as many errors as you can in a single run.

Let’s look at an example. Suppose that your input contains the line:

We skip \quid a little bit.

You meant to type ‘\quad’, but you typed ‘\quid’ instead. Here’s what
you’ll get from TEX in response:

! Undefined control sequence.

l.291 We skip \quid

a little bit.

?

This message will appear both at your terminal and in your log file. The
first line, which always starts with an exclamation point (!), tells you
what the problem is. The last two lines before the ‘?’ prompt (which
in this case are also the next two lines) tell you how far TEX has gotten
when it found the error. It found the error on line 291 of the current
input file, and the break between the two message lines indicates TEX’s
precise position within line 291, namely, just after \quid. The current
input file is the one just after the most recent unclosed left parenthesis in
the terminal output of your run (see p. 9).

TEX for the Impatient No 304

3 Jan 2020 2:18 p.m.

284 Making sense of error messages \ §11

This particular error, an undefined control sequence, is one of the most
common ones you can get. If you respond to the prompt with another ‘?’,
TEX will display the following message:

Type <return> to proceed, S to scroll future error messages,

R to run without stopping, Q to run quietly,

I to insert something, E to edit your file,

1 or ... or 9 to ignore the next 1 to 9 tokens of input,

H for help, X to quit.

Here’s what these alternatives mean:

If you type 〈return〉, TEX will continue processing your document.
In this case it will just ignore the \quid.

If you type ‘S’ (or ‘s’—uppercase and lowercase are equivalent here),
TEX will process your document without stopping except if it encoun-
ters a missing file. Error messages will still appear at your terminal
and in the log file.

If you type ‘R’ or ‘r’, you’ll get the same effect as ‘S’ except that TEX
won’t even stop for missing files.

If you type ‘Q’ or ‘q’, TEX will continue processing your document
but will neither stop for errors nor display them at your terminal.
The errors will still show up in the log file.

If you type ‘X’ or ‘x’, TEX will clean up as best it can, discard the
page it’s working on, and quit. You can still print or view the pages
that TEX has already processed.

If you type ‘E’ or ‘e’, TEX will clean up and terminate as it would
for ‘X’ or ‘x’ and then enter your text editor, positioning you at the
erroneous line. (Not all systems support this option.)

If you type ‘H’ or ‘h’, you’ll get a further explanation of the error
displayed at your terminal and possibly some advice about what to
do about it. This explanation will also appear in your log file. For
the undefined control sequence above, you’ll get:

The control sequence at the end of the top line

of your error message was never \def’ed. If you have

misspelled it (e.g., ‘\hobx’), type ‘I’ and the correct

spelling (e.g., ‘I\hbox’). Otherwise just continue,

and I’ll forget about whatever was undefined.

If you type ‘?’, you’ll get this same message again.

The other two alternatives, typing ‘I’ or a small integer, provide ways
of getting TEX back on the track so that your error won’t cause further
errors later in your document:

If you type ‘I’ or ‘i’ followed by some text, then TEX will insert
that text as though it had occurred just after the point of the error,

TEX for the Impatient No 305

3 Jan 2020 2:18 p.m.

Making sense of error messages 285

at the innermost level where TEX is working. In the case of the
example above, that means at TEX’s position in your original input,
namely, just after ‘\quid’. Later you’ll see an example that shows
the difference between inserting something at the innermost level
and inserting it into your original input. In the example above of the
undefined control sequence, if you type:

I\quad

TEX will carry out the \quad command and produce a quad space
where you intended to have one.

If you type a positive integer less than 100 (not less than 10 as
the message misleadingly suggests), TEX will delete that number of
tokens from the innermost level where it is working. (If you type an
integer greater than or equal to 100, TEX will delete 10 tokens!)

Here’s an example of another common error:

Skip across \hskip 3cn by 3 centimeters.

The error message for this is:

! Illegal unit of measure (pt inserted).

<to be read again>

c

<to be read again>

n

l.340 Skip across \hskip 3cn

by 3 centimeters.

In this case TEX has observed that ‘3’ is followed by something that isn’t
a proper unit of measure, and so it’s assumed the unit of measure to be
points. TEX will read the tokens of ‘cn’ again and insert them into your
input, which is not what you want. In this case you can get a better result
by first typing ‘2’ to bypass the ‘cn’. You’ll get the message:

<recently read> n

l.340 Skip across \hskip 3cn

by 3 centimeters.

Now you can type ‘I\hskip 3cm’ to get the skip you wanted (in addi-
tion to the 3pt skip that you’ve already gotten).1

If you type something that’s only valid in math mode, TEX will switch
over to math mode for you whether or not that’s what you really wanted.
For example:

So \spadesuit s are trumps.

1 By typing ‘I\unskip\hskip 3cm’ you can get rid of the 3pt skip.

TEX for the Impatient No 306

3 Jan 2020 2:18 p.m.

286 Making sense of error messages \ §11

Here’s TEX’s error message:

! Missing $ inserted.

<inserted text>

$

<to be read again>

\spadesuit

l.330 So \spadesuit

s are trumps.

Since the \spadesuit symbol is only allowed in math mode, TEX has
inserted a ‘$’ in front of it. After TEX inserts a token, it’s positioned in
front of that token, in this case the ‘$’, ready to read it. Typing ‘2’ will
cause TEX to skip both the ‘$’ and the ‘\spadesuit’ tokens, leaving it
ready to process the ‘s’ in ‘s are trumps.’. (If you just let TEX continue,
it will typeset ‘s are trumps’ in math mode.)

Here’s an example where TEX’s error diagnostic is downright wrong:

\hbox{One \vskip 1in two.}

The error message is:

! Missing } inserted.

<inserted text>

}

<to be read again>

\vskip

l.29 \hbox{One \vskip

1in two.}

The problem is that you can’t use \vskip when TEX is in restricted
horizontal mode, i.e, constructing an hbox. But instead of rejecting the
\vskip, TEX has inserted a right brace in front of it in an attempt to
close out the hbox. If you accept TEX’s correction, TEX will complain
again when it gets to the correct right brace later on. It will also complain
about anything before that right brace that isn’t allowed in vertical mode.
These additional complaints will be particularly confusing because the
errors they indicate are bogus, a result of the propagated effects of the
inappropriate insertion of the right brace. Your best bet is to type ‘5’,
skipping past all the tokens in ‘}\vskip 1in’.

Here’s a similar example in which the error message is longer than any
we’ve seen so far:

\leftline{Skip \smallskip a little further.} But no more.

The mistake here is that \smallskip only works in a vertical mode. The
error message is something like:

! Missing } inserted.

<inserted text>

TEX for the Impatient No 307

3 Jan 2020 2:18 p.m.

Making sense of error messages 287

}

<to be read again>

\vskip

\smallskip ->\vskip

\smallskipamount

<argument> Skip \smallskip

a little further.

\leftline #1->\line {#1

\hss }

l.93 ...Skip \smallskip a little further.}

But no more.

The error messages here give you a tour through the macros that are used
in plain TEX’s implementation of \leftline—macros that you probably
don’t care about. The first line tells you that TEX intends to cure the
problem by inserting a right brace. TEX hasn’t actually read the right
brace yet, so you can delete it if you choose to. Each component of the
message after the first line (the one with the ‘!’) occupies a pair of lines.
Here’s what the successive pairs of lines mean:

1) The first pair indicates that TEX has inserted, but not yet read, a
right brace.

2) The next pair indicates that after reading the right brace, TEX will
again read a ‘\vskip’ command (gotten from the macro definition of
\smallskip).

3) The third pair indicates that TEX was expanding the \smallskip

macro when it found the error. The pair also displays the definition
of \smallskip and indicates how far TEX has gotten in expanding
and executing that definition. Specifically, it’s just attempted unsuc-
cessfully to execute the \vskip command. In general, a diagnostic
line that starts with a control sequence followed by ‘->’ indicates that
TEX has been expanding and executing a macro by that name.

4) The fourth pair indicates that TEX was processing a macro argument
when it found the \smallskip and also indicates TEX’s position in
that argument, i.e., it’s just processed the \smallskip (unsuccess-
fully). By looking ahead to the next pair of lines we can see that the
argument was passed to \leftline.

5) The fifth pair indicates that TEX was expanding the \leftline

macro when it found the error. (In this example the error occurred
while TEX was in the middle of interpreting several macro definitions
at different levels of expansion.) Its position after #1 indicates that
the last thing it saw was the first (and in this case the only) argument
to \leftline.

6) The last pair indicates where TEX is positioned in your input file.
Note that this position is well beyond the position where it’s inserting

TEX for the Impatient No 308

3 Jan 2020 2:18 p.m.

288 Making sense of error messages \ §11

the right brace and reading ‘\vskip’ again. That’s because TEX
has already read the entire argument to \leftline from your input
file, even though it’s only processed part of that argument. The
dots at the beginning of the pair indicate a preceding part of the
input line that isn’t shown. This preceding part, in fact, includes the
\leftline control sequence that made the \vskip illegal.

In a long message like this, you’ll generally find only the first line and the
last pair of lines to be useful; but it sometimes helps to know what the
other lines are about. Any text that you insert or delete will be inserted
or deleted at the innermost level. In this example the insertion or deletion
would occur just before the inserted right brace. Note in particular that
in this case TEX puts any text you might insert not into your input text
but into a macro definition several levels down. (The original macro
definition is of course not modified.)

You can use the \errorcontextlines command (p. 262) to limit the
number of pairs of error context lines that TEX produces. If you’re not
interested in all the information that TEX is giving you, you can set
\errorcontextlines to 0. That will give you just the first and last
pairs of lines.

Finally, we’ll mention two other indicators that can appear at the start
of a pair of error message lines:

<output> indicates that TEX was in the middle of its output routine
when this error occurred.

<write> indicates that TEX was in the middle of executing a \write

command when this error occurred. TEX will detect such an error
when it is actually doing the \write (during a \shipout), rather
than when it first encounters the \write.

TEX for the Impatient No 309

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 310

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 311

3 Jan 2020 2:18 p.m.

12 A compendium
of useful macros

This section describes eplain.tex, a collection of macros and other def-
initions that extend plain TEX. The descriptions of the various macros
explain their purposes, but usually do not explain how they work or pro-
vide explicit details on how to use them. That information is contained
in the source files for eplain.tex and in the documentation that comes
with it. See “Resources” (p. 18) for how to obtain eplain.tex.

Preliminaries

We start with some macros for changing category codes and convenient
definitions for two of the commonly used ones.

\def\makeactive#1{\catcode‘#1 = \active \ignorespaces}%

\chardef\letter = 11 \chardef\other = 12

\def\uncatcodespecials{%

\def\do##1{\catcode‘##1 = \other}%

\dospecials}% Defined in plain.

In order to define ‘^^M’ as an active character, you need to encase the
definition in a group and invoke some extra machinery. The \letreturn

macro lets you define ‘^^M’ without that extra machinery (which you can
see in the definition below).

{\makeactive\^^M \long\gdef\letreturn#1{\let^^M = #1}}%

These macros consume one, two, or three arguments.

\def\gobble#1{}\def\gobbletwo#1#2{}%

\def\gobblethree#1#2#3{}%

TEX for the Impatient No 312

3 Jan 2020 2:18 p.m.

292 A compendium of useful macros \ §12

Now we establish some conventions for reading the rest of the file.
Within the file we allow “private” control sequences that contain ‘@’ in
their names. These control sequences aren’t accessible outside of this file
(unless you change the category code of ‘@’ again).

\catcode‘@ = \letter % Allow control sequences with @.

\let\@plainwlog = \wlog % Don’t log register allocations.

\let\wlog = \gobble

\newlinechar = ‘^^J

The next two macros provide convenient forms of diagnostic output.
\loggingall turns on all tracing, but causes the trace output to appear
only in the log file and not at your terminal. \tracingboxes causes
boxes to be displayed completely when they’re traced. (TEX normally
shows only three levels of boxing and five items within each box.)

\def\loggingall{\tracingcommands\tw@\tracingstats\tw@

\tracingpages\@ne\tracingoutput\@ne

\tracinglostchars\@ne\tracingmacros\tw@

\tracingparagraphs\@ne\tracingrestores\@ne

\showboxbreadth\maxdimen\showboxdepth\maxdimen}%

\def\tracingboxes{\showboxbreadth = \maxdimen

\showboxdepth = \maxdimen}%

The default thickness of rules is 0.4 pt. You can produce rules of
any default thickness you choose by redefining \vruledefaultwidth,
\hruledefaultheight, and \hruledefaultdepth and then using \eh-

rule and \evrule instead of \hrule and \vrule. (The ‘e’ stands for
“eplain”.) If you give an explicit dimension (e.g., \ehrule height 16pt),
TEX will use it.

\newdimen\hruledefaultheight \hruledefaultheight = 0.4pt

\newdimen\hruledefaultdepth \hruledefaultdepth = 0.0pt

\newdimen\vruledefaultwidth \vruledefaultwidth = 0.4pt

\def\ehrule{\hrule height\hruledefaultheight

depth\hruledefaultdepth}%

\def\evrule{\vrule width\vruledefaultwidth}%

The \% convention for writing a ‘%’ character doesn’t work when you
want to include that character in the token list of \write. You can use
\percentchar to achieve this. We also redefine ^^L to be nonouter so
that you can use it in a macro definition or argument.

{\catcode‘\% = \other \gdef\percentchar{%}}%

\def^^L{\par

}%

\tokstostring converts its argument into a list of character tokens.
It uses only expansions that are handled in TEX’s gullet. This property

TEX for the Impatient No 313

3 Jan 2020 2:18 p.m.

Preliminaries 293

is necessary for it to work with \edef. It is used by the cross-referencing
macros (p. 302).

In order to split the argument up at spaces, we have to use two sub-
sidiary macros. \@ttsA finds the spaces, and \@ttsB handles a token
sequence without any spaces. Each space is replaced by the expansion
of \spacesub.

\def\tokstostring#1{\@ttsA#1 \ttsmarkA}%

\def\@ttsA#1 #2\ttsmarkA{\ifempty{#1}\else

\@ttsB #1\@ttsmarkB

\ifempty{#2}\else

\spacesub\@ttsA#2\ttsmarkA\fi\fi}%

\def\@ttsB#1{\ifx #1\@ttsmarkB\else

\string #1%

\expandafter\@ttsB\fi}%

\def\@ttsmarkB{\@ttsmarkB}% should never be expanded

\def\spacesub{+}%

\ifempty tests if its argument is empty.

\def\ifempty#1{\@ifempty #1\@emptymarkA\@emptymarkB}%

\def\@ifempty#1#2\@emptymarkB{\ifx #1\@emptymarkA}%

\def\@emptymarkA{\@emptymarkA}%

The \for macro implements a TEX version of the for loop in traditional
programming languages. These macros come directly from LATEX.

\def\for#1:=#2\do#3{\edef\@fortmp{#2}%

\ifx\@fortmp\empty \else

\expandafter\@forloop#2,\@nil,\@nil\@@#1{#3}\fi}%

\def\@nnil{\@nil}%

\def\@fornoop#1\@@#2#3{}%

\def\@forloop#1,#2,#3\@@#4#5{\def#4{#1}\ifx #4\@nnil

\else #5\def#4{#2} ifx #4\@nnil \else

#5\@iforloop #3\@@#4{#5}\fi\fi}%

\def\@iforloop#1,#2\@@#3#4{\def#3{#1}\ifx #3\@nnil

\let\@nextwhile=\@fornoop \else #4\relax

\let\@nextwhile=\@iforloop\fi

\@nextwhile#2\@@#3{#4}}%

\obeywhitespace is useful for reproducing line breaks, blank lines, and
spaces in your input. It combines the effects of \obeylines and \obey-

spaces, and also causes spaces at the start of a line to be printed. Tab
characters are not affected by this; they still produce normal glue.

\def\alwaysspace{\hglue\fontdimen2\the\font \relax}%

{\makeactive\^^M \makeactive\ %

\gdef\obeywhitespace{%

\makeactive\^^M\def^^M{\par\indent}%

TEX for the Impatient No 314

3 Jan 2020 2:18 p.m.

294 A compendium of useful macros \ §12

\aftergroup\@removebox% Kill extra paragraph at end.

\makeactive\ \let =\alwaysspace}}%

\def\@removebox{\setbox0=\lastbox}

\frac is a good way to print fractions in text when you don’t want to
use \over and “1/2” just doesn’t look right. This macro is the answer to
Exercise 11.6 of The TEXbook.

\def\frac#1/#2{\leavevmode

\kern.1em \raise .5ex \hbox{\the\scriptfont0 #1}%

\kern-.1em $/$%

\kern-.15em \lower .25ex \hbox{\the\scriptfont0 #2}}%

The following macros produce logos that are useful in the TEX world.
The AMS-TEX logo is from page 420 of The TEXbook. The LATEX logo
is slightly modified from the one in latex.tex (we use a different font
for the ‘A’); similarly, the BIBTEX logo uses \sevenrm instead of a true
caps-and-small-caps font. The .mf source file for the METAFONT logo is
given in the METAFONT manual:

Knuth, Donald E.,The METAFONTbook. Reading, Mass.: Addison-
Wesley, 1986.

\def\LaTeX{L\kern-.26em \raise.6ex\hbox{\fiverm A}%

\kern-.15em TeX}%

\def\AMSTeX{$\cal A\kern-.1667em \lower.5ex\hbox{$\cal M$}%

\kern-.125em S$-\TeX}%

\def\BibTeX{{\rm B\kern-.05em {\sevenrm I\kern-.025em B}%

\kern-.08em T\kern-.1667em \lower.7ex\hbox{E}%

\kern-.125emX}}%

\font\mflogo = logo10

\def\MF{{\mflogo META}{\tenrm \-}{\mflogo FONT}}%

The next two macros produce boxes. \blackbox produces a “square
bullet”, used in the list macros (p. 298). \makeblankbox (from page 311
of The TEXbook) produces an unfilled rectangle, with the thickness of
the border rules given by the arguments.

\def\blackbox{\vrule height .8ex width .6ex depth -.2ex}%

\def\makeblankbox#1#2{%

\hbox{\lower\dp0\vbox{\hidehrule{#1}{#2}%

\kern -#1% overlap rules

\hbox to \wd0{\hidevrule{#1}{#2}%

\raise\ht0\vbox to #1{}% vrule height

\lower\dp0\vtop to #1{}% vrule depth

\hfil\hidevrule{#2}{#1}}%

\kern-#1\hidehrule{#2}{#1}}}}%

\def\hidehrule#1#2{\kern-#1\hrule height#1 depth#2

\kern-#2}%

TEX for the Impatient No 315

3 Jan 2020 2:18 p.m.

Displays 295

\def\hidevrule#1#2{\kern-#1{\dimen0 = #1

\advance\dimen0 by #2 \vrule width\dimen0}\kern-#2}%

\numbername produces the written-out form of a number. (If the
number is greater than ten, the macro just reproduces the numerals of
its argument.)

\def\numbername#1{\ifcase#1%

zero\or one\or two\or three\or four\or five%

\or six\or seven\or eight\or nine\or ten\or #1\fi}%

\testfileexistence determines whether a file \jobname.#1 is non-
empty and sets \iffileexists appropriately. The file name in the ar-
gument need not end in a space token since the macro provides the
space token.

\newif\iffileexists

\def\testfileexistence#1{\begingroup

\immediate\openin0 = \jobname.#1\space

\ifeof 0\global\fileexistsfalse

\else \global\fileexiststrue\fi

\immediate\closein0

\endgroup}%

Displays

By default, TEX centers displayed material (the material between $$’s).
\leftdisplays causes displays to be left-justified by default. You can
return to centered displays with \centereddisplays.

The macros here are more general than they need to be just for doing
left-justified displays. For every display, \ifeqno will be true if an \eqno

occurred in the display. \ifleqno will be true if an \leqno occurred. If
either kind of equation number occurred, \eqn produces the text of the
equation number. \eq always produces the text of the equation itself.

These macros are based on the code on page 376 of The TEXbook.

\newif\ifeqno \newif\ifleqno

\newtoks\@eqtoks \newtoks\@eqnotoks

\def\eq{\the\@eqtoks}\def\eqn{\the\@eqnotoks}%

\def\displaysetup#1$${%

\@displaytest#1\eqno\eqno\@displaytest}%

\def\@displaytest#1\eqno#2\eqno#3\@displaytest{%

\if #3% No \eqno, check for \leqno:

\@ldisplaytest#1\leqno\leqno\@ldisplaytest

\else

TEX for the Impatient No 316

3 Jan 2020 2:18 p.m.

296 A compendium of useful macros \ §12

\eqnotrue \leqnofalse % Have \eqno, not \leqno.

\@eqnotoks = {#2}\@eqtoks = {#1}%

\fi

\generaldisplay$$}%

\def\@ldisplaytest#1\leqno#2\leqno#3\@ldisplaytest{%

\@eqtoks = {#1}%

\if #3%

\eqnofalse % No \leqno; we’re done.

\else

\eqnotrue \leqnotrue % Have \leqno.

\@eqnotoks = {#2}%

\fi}%

You can format displays differently by defining your own macro, anal-
ogous to \leftdisplays. The macro definition must place a call on
\displaysetup in \everydisplay so as to ensure that \displaysetup

is called at the start of every display. The macro definition must also
include a definition of \generaldisplay.

\newtoks\previouseverydisplay

\def\leftdisplays{%

\previouseverydisplay = \everydisplay

\everydisplay =

{\the\previouseverydisplay \displaysetup}%

\def\generaldisplay{%

\leftline{%

\strut \indent \hskip\leftskip

\dimen0 = \parindent

\advance\dimen0 by \leftskip

\advance\displaywidth by -\dimen0

\@redefinealignmentdisplays

\ifeqno \ifleqno

\kern-\dimen0

\rlap{$\displaystyle\eqn$}%

\kern\dimen0

\fi\fi

$\displaystyle{\eq}$%

\ifeqno \ifleqno\else

\hfill $\displaystyle{\eqn}$%

\fi\fi}}}%

\def\centereddisplays{\let\displaysetup = \relax}%

TEX for the Impatient No 317

3 Jan 2020 2:18 p.m.

Time of day 297

\leftdisplays must go to some pains to make sure that \display-

lines, \eqalignno, and \leqalignno still work properly. \eq is typeset
in math mode, and \halign is illegal in math mode. We use \vcenter

to change the context so that \halign becomes legal again. We also
remove the \hfil commands at the left of the template to obtain the
flush left formatting. Other than those changes, the macros are the same
as in plain.tex.

\def\@redefinealignmentdisplays{%

\def\displaylines##1{\displ@y

\vcenter{\halign{\hbox to\displaywidth{$\@lign

\displaystyle####\hfil$}\crcr##1\crcr}}}%

\def\eqalignno##1{\displ@y

\vcenter{\halign to\displaywidth{%

$\@lign\displaystyle{####}$\tabskip\z@skip

&$\@lign\displaystyle{{}####}$

\hfil\tabskip\centering

&\llap{$\@lign####$}\tabskip\z@skip\crcr

##1\crcr}}}%

\def\leqalignno##1{\displ@y

\vcenter{\halign to\displaywidth{%

$\@lign\displaystyle{####}$\tabskip\z@skip

&$\@lign\displaystyle{{}####}

$\hfil\tabskip\centering

&\kern-\displaywidth

\rlap{\kern-\parindent\kern-\leftskip$

\@lign####$}%

\tabskip\displaywidth\crcr

##1\crcr}}}}%

Time of day

When TEX starts up, it sets the values of the \time, \day, \month, and
\year parameters. \monthname produces the name of the month, abbre-
viated to three letters. \timestring produces the current time, as in
“1:14 p.m.”. \timestamp produces the text of the complete date, as in
“23 Apr 1964 1:14 p.m.”.

\def\monthname{%

\ifcase\month

\or Jan\or Feb\or Mar\or Apr\or May\or Jun%

\or Jul\or Aug\or Sep\or Oct\or Nov\or Dec%

\fi}%

TEX for the Impatient No 318

3 Jan 2020 2:18 p.m.

298 A compendium of useful macros \ §12

\def\timestring{\begingroup

\count0 = \time \divide\count0 by 60

\count2 = \count0 % The hour.

\count4 = \time \multiply\count0 by 60

\advance\count4 by -\count0 % The minute.

\ifnum\count4<10 \toks1 = {0}% Get a leading zero.

\else \toks1 = {}%

\fi

\ifnum\count2<12 \toks0 = {a.m.}%

\else \toks0 = {p.m.}%

\advance\count2 by -12

\fi

\ifnum\count2=0 \count2 = 12 \fi % Make midnight ‘12’.

\number\count2:\the\toks1 \number\count4

\thinspace \the\toks0

\endgroup}%

\def\timestamp{\number\day\space\monthname\space

\number\year\quad\timestring}%

Lists

\numberedlist produces numbered lists; \endnumberedlist ends them.
\unorderedlist is analogous. For either of these, items inside the lists
begin with \li (“list item”). You can put \listcompact at the beginning
of a list if you don’t want any additional space between the items of that
list. Lists can be nested arbitrarily.

You can control the spacing between the items more generally by as-
signing values to the registers listed below. If the items in your lists tend
to be long, you might want to make \interitemskip nonzero. The left in-
dentation of each list item is given by \parindent plus \listleftindent;
the right indentation of each list item is given by \listrightindent.

\newskip\abovelistskip \abovelistskip = .5\baselineskip

\newskip\interitemskip \interitemskip = 0pt

\newskip\belowlistskip \belowlistskip = .5\baselineskip

\newdimen\listleftindent \listleftindent = \parindent

\newdimen\listrightindent \listrightindent = 0pt

\def\listcompact{\interitemskip = 0pt \relax}%

Both numbered and unnumbered lists use the macros that follow. We
don’t change \parindent, since many existing macros, e.g., \footnote,
depend on \parindent. We must account for the possibility that items
are more than one paragraph long. In this case, all paragraphs after

TEX for the Impatient No 319

3 Jan 2020 2:18 p.m.

Lists 299

the first will be indented. We use \leftskip and \rightskip to indent
the list items. Indentation of displays is accounted for by changes to
\everydisplay.

\newdimen\@listindent

\def\beginlist{%

\@listindent = \parindent

\advance\@listindent by \listleftindent

\everydisplay = \expandafter{\the\everydisplay

% Don’t lose user’s \everydisplay:

\advance\displayindent by \@listindent

\advance\displaywidth by -\@listindent

\advance\displaywidth by -\listrightindent}%

\nobreak\vskip\abovelistskip

\parskip = 0pt

% \leftskip shifts nested lists to the right on the page.

\advance\leftskip by \@listindent

\advance\rightskip by \listrightindent}%

\def\printitem{\par\noindent

\llap{\hskip-\listleftindent \marker \enspace}}%

\def\endlist{\vskip\belowlistskip}%

You can change the way the item labels are typeset by redefining the
\numberedmarker macro.

\newcount\numberedlistdepth \newcount\itemnumber

\newcount\itemletter

\def\numberedmarker{%

\ifcase\numberedlistdepth

(impossible)%

\or \itemnumberout)%

\or \itemletterout)%

\else *%

\fi}%

Here are the definitions of \numberedlist and \unorderedlist. Both
definitions have the same structure.

\def\numberedlist{\environment{@numbered-list}%

\advance\numberedlistdepth by 1

\itemnumber = 1 \itemletter = ‘a

\beginlist \let\marker = \numberedmarker

\def\li{%

\ifnum\itemnumber=1\else \vskip\interitemskip \fi

\printitem

\advance\itemnumber by 1 \advance\itemletter by 1

}}%

\def\itemnumberout{\number\itemnumber}%

TEX for the Impatient No 320

3 Jan 2020 2:18 p.m.

300 A compendium of useful macros \ §12

\def\itemletterout{\char\itemletter}%

\def\endnumberedlist{\par

\endenvironment{@numbered-list}\endlist}%

\newcount\unorderedlistdepth

\def\unorderedmarker{%

\ifcase\unorderedlistdepth

(impossible)%

\or \blackbox

\or ---%

\else *%

\fi}%

\def\unorderedlist{\environment{@unordered-list}%

\advance\unorderedlistdepth by 1

\beginlist \itemnumber = 1

\let\marker = \unorderedmarker

\def\li{%

\ifnum\itemnumber=1\else \vskip\interitemskip \fi

\printitem \advance\itemnumber by 1

}}%

\def\endunorderedlist{\par

\endenvironment{@unordered-list}\endlist}%

Verbatim listing

The \listing macro produces a verbatim listing of a specified file in
the \tt font. It is based on the code on page 380 of The TEXbook.
Tabs produce a fixed amount of space, and form feeds produce a page
break. Other control characters produce whatever happens to be at that
font position, which is generally not very useful. By redefining \setup-

listinghook, you can take additional actions that are appropriate for
your particular fonts and/or environment before the file is read in.

\def\listing#1{%

\par \begingroup \@setuplisting \setuplistinghook

\input #1 \endgroup}%

\let\setuplistinghook = \empty

\def\@setuplisting{%

\uncatcodespecials

\obeywhitespace \makeactive\‘ \makeactive\^^I

\def^^L{\vfill\eject}\tt}%

{\makeactive\‘ \gdef‘{\relax\lq}}% Defeat ligatures.

TEX for the Impatient No 321

3 Jan 2020 2:18 p.m.

Tables of contents 301

{\makeactive\^^I\gdef^^I{\hskip8\fontdimen2\tt \relax}}%

Tables of contents

The macro \writetocentry writes a macro call to the file \jobname.toc.
The first argument of \writetocentry, e.g., “chapter”, is used to com-
pose the name of the called macro. The second argument is the text to
appear in the table of contents entry. \writetocentry appends the page
number to the macro call. For example:

\writetocentry{chapter}{Introduction}

will produce the line:

\tocchapterentry{Introduction}{2}

in the .toc file, indicating that ‘Introduction’ started on page 2.
You can use \writenumberedtocentry to provide a third parameter,

such as a chapter number. For example:

\writenumberedtocentry{chapter}{The second chapter}{2}

will write a line:

\tocchapterentry{The second chapter}{2}{14}

You can also \write to \tocfile yourself.

\newwrite\tocfile \newif\iftocfileopened

\def\opentocfile{\iftocfileopened\else

\tocfileopenedtrue

\immediate\openout\tocfile = \jobname.toc

\fi}%

\def\writetocentry#1#2{\ifrewritetocfile

\opentocfile

\write\tocfile{%

\expandafter\noexpand \csname toc#1entry\endcsname

{#2}{\folio}}%

\fi\ignorespaces}%

%

\def\writenumberedtocentry#1#2#3{\ifrewritetocfile

\opentocfile

\write\tocfile{%

\expandafter\noexpand \csname toc#1entry\endcsname

{#2}{#3}{\folio}}%

\fi\ignorespaces}%

To produce a table of contents, read the .toc file with \readtocfile.
You should call \readtocfile before the first \writetocentry. When

TEX for the Impatient No 322

3 Jan 2020 2:18 p.m.

302 A compendium of useful macros \ §12

you’re processing the table of contents without regenerating it, you should
not rewrite the .toc file—if you do, its contents will be lost. The com-
mand \rewritetocfilefalse will prevent the rewrite.

\newif\ifrewritetocfile \rewritetocfiletrue

\def\readtocfile{\testfileexistence{toc}%

\iffileexists

\input \jobname.toc

\ifrewritetocfile \opentocfile \fi

\fi}%

Here are some definitions of possible \toc. . . entry macros. These def-
initions are meant only as examples—running leaders across the line is
usually not the best way to typeset a table of contents.

\def\tocchapterentry#1#2{\line{\bf #1 \dotfill\ #2}}%

\def\tocsectionentry#1#2{%

\line{\quad\sl #1 \dotfill\ \rm #2}}%

\def\tocsubsectionentry#1#2{%

\line{\qquad\rm #1 \dotfill\ #2}}%

Cross-references

The macros that follow provide symbolic cross-referencing, so that you
can refer to something in another part of a document by name instead
of by its actual page number. \xrdef{foo} defines a label foo to be
the current page number, and \xrefn{foo} produces that page number,
e.g., 77. More often you’ll want to say something like “see p. 77”, so
\xref{foo} produces “p. 77”. If foo is not defined, a warning message
will be given. \xrefwarningfalse suppresses the warning.

These macros provide no protection against duplicate definitions. You
can check for duplicate definitions by sorting the cross-reference file and
checking, either mechanically or by eye, for adjacent definitions of the
same symbol.

\newif\ifxrefwarning \xrefwarningtrue

\def\xrdef#1{\begingroup

\xrlabel{#1}%

\edef\@wr{\@writexrdef{\the\@xrlabeltoks}}%

\@wr

\endgroup \ignorespaces}%

\def\@writexrdef#1{\write\reffile{%

\string\gdef

\expandafter\string\csname#1\endcsname

TEX for the Impatient No 323

3 Jan 2020 2:18 p.m.

Cross-references 303

{\noexpand\folio}\percentchar}}%

\def\xrefnumber#1{%

\xrlabel{#1}%

% \@xrlabeltoks now has the control sequence name.

\toks0 =

\expandafter{\csname\the\@xrlabeltoks\endcsname}%

\expandafter \ifx\the\toks0\relax

\ifxrefwarning \message{Undefined label

‘\tokstostring{#1}’.}\fi

{\let\spacesub = \space

\expandafter\xdef\the\toks0

{‘{\tt \tokstostring{#1}}’}}\fi

\the\toks0}%

\def\xref#1{p.\thinspace\xrefnumber{#1}}%

\def\xrefn#1{\xrefnumber{#1}}%

This macro turns a label into a list of character tokens in the token
register \labeltoks. A label can include blanks and control sequences in
it as well as normal characters, but it can’t include braces.

\newtoks\@xrlabeltoks

\def\xrlabel#1{\begingroup

\escapechar = ‘_ \edef\tts{\tokstostring{#1_}}%

\global\@xrlabeltoks = \expandafter{\tts}%

\endgroup}%

It takes two passes to get the cross-references right, since the definitions
are written out to the auxiliary file \jobname.aux. \readreffile reads
them back in. If you don’t issue this command before the first definition,
you’ll lose all the definitions from the previous run.

\newwrite\reffile \newif\ifreffileopened

\def\openreffile{\ifreffileopened\else

\reffileopenedtrue

\immediate\openout\reffile = \jobname.aux

\fi}%

\def\readreffile{%

\testfileexistence{aux}%

\iffileexists

\begingroup

\@setletters

\input \jobname.aux

\endgroup

\else

\message{No cross-reference file; I won’t give you

warnings about undefined labels.}%

\xrefwarningfalse

TEX for the Impatient No 324

3 Jan 2020 2:18 p.m.

304 A compendium of useful macros \ §12

\fi

\openreffile}%

\def\@setletters{%

\catcode‘_ = \letter \catcode‘+ = \letter

\catcode‘- = \letter \catcode‘@ = \letter

\catcode‘0 = \letter \catcode‘1 = \letter

\catcode‘2 = \letter \catcode‘3 = \letter

\catcode‘4 = \letter \catcode‘5 = \letter

\catcode‘6 = \letter \catcode‘7 = \letter

\catcode‘8 = \letter \catcode‘9 = \letter

\catcode‘(= \letter \catcode‘) = \letter}%

You can give symbolic names to equations in a similar way, using
\eqdef and \eqref. \eqdef inserts its own \eqno command, so it must
be invoked in a place where \eqno is legal.

\newcount\eqnumber

\def\eqdef#1{\global\advance\eqnumber by 1

\expandafter\xdef

\csname#1eqref\endcsname{\the\eqnumber}%

\immediate\write\reffile{\string\def

\expandafter\string\csname#1eqref\endcsname

{\the\eqnumber}}%

\eqno

\eqprint{\the\eqnumber}}%

\eqref produces “(equation number)”. You can handle fancier format-
ting by redefining \eqprint. For example, you could redefine it so that
the equation numbers include the chapter number.

\def\eqref#1{%

\expandafter \ifx \csname#1eqref\endcsname \relax

\ifxrefwarning \message{Undefined equation label

‘#1’.}\fi

\expandafter\def\csname#1eqref\endcsname{00}%

\else \eqprint{\csname#1eqref\endcsname}%

\fi}%

\def\eqprint#1{(#1)}%

Environments

These macros let you define your own named groups (environments) for
parts of your manuscript. Like TEX groups, these groups can be nested,
and in fact their nesting can be intertwined with the nesting of TEX

TEX for the Impatient No 325

3 Jan 2020 2:18 p.m.

Environments 305

groups. If the names at the beginning and end of an environment don’t
match, you’ll get an error message. The macros are designed so that the
message you get when such an error occurs will give you a good chance
of localizing the cause of the error easily.

You begin an environment with \environment {foo} and end it with
\endenvironment{foo}, where foo is the name of the environment. Our
macros slightly improve on the answer to Exercise 5.7 of The TEXbook,
by doing some checks on \begingroup and \endgroup pairs, as well as
making sure \environment and \endenvironment pairs match.

\def\environment#1{\ifx\@groupname\undefined\else

\errhelp = \@unnamedendgrouphelp

\errmessage{‘\@groupname’ was not closed by

\string\endenvironment}\fi

\def\@groupname{#1}%

\begingroup

\let\@groupname = \undefined \ignorespaces}%

\def\endenvironment#1{\endgroup

\def\@thearg{#1}%

\ifx\@groupname\@thearg

\else

\ifx\@groupname\undefined

\errhelp = \@isolatedendenvironmenthelp

\errmessage{Isolated

\string\endenvironment\space for ‘#1’}%

\else

\errhelp = \@mismatchedenvironmenthelp

\errmessage{Environment ‘#1’ ended,

but ‘\@groupname’ started}%

\endgroup % Probably a typo in the names.

\fi

\fi

\let\@groupname = \undefined \ignorespaces}%

We also define help messages for each of the errors above.

\newhelp\@unnamedendgrouphelp{%

Most likely, you just forgot an^^J%

\string\endenvironment.

Maybe you should try inserting another^^J%

\string\endgroup to recover.}%

\newhelp\@isolatedendenvironmenthelp{%

You ended an environment X, but^^J%

no \string\environment\space to start it

is anywhere in sight.^^J%

You might also be at an

TEX for the Impatient No 326

3 Jan 2020 2:18 p.m.

306 A compendium of useful macros \ §12

\string\endenvironment\space that would match^^J%

a \string\begingroup, i.e., you forgot an

\string\endgroup.}%

\newhelp\@mismatchedenvironmenthelp{%

You started an environment X, but^^J%

you ended it with Y. Maybe you made a typo

in one or the other^^J%

of the names.}%

Some environments should not be allowed to occur within another envi-
ronment. Let’s call these environments “outer environments”. \checkenv
checks that no outer environment is currently in effect and complains if
one is. To use \checkenv, you must issue the command \environment-

true at the beginning of every outer environment.

\newif\ifenvironment

\def\checkenv{%

\ifenvironment

\errhelp = \@interwovenenvhelp

\errmessage{Interwoven environments}%

\endgroup

\fi}%

\newhelp\@interwovenenvhelp{%

Perhaps you forgot to end the previous^^J%

environment? I’m finishing off the current group,^^J%

hoping that will fix it.}%

Justification

The three macros \flushleft, \flushright, and \center justify the
text on the following lines in the indicated way. The command should
appear on a line by itself. Both the command and the text should be
enclosed in a group—the end of the group indicates the end of the text.
The entire group is set as a single paragraph, with lines filled out on one
side or another as appropriate. Blank lines are reproduced.

\begingroup

\catcode ‘\^^M = \active

\globaldefs = 1 %

\def\flushleft{\beforejustify %

\aftergroup\@endflushleft %

\def^^M{\null\hfil\break}%

\def\@eateol^^M{}\@eateol}%

\def\flushright{\beforejustify %

TEX for the Impatient No 327

3 Jan 2020 2:18 p.m.

Tables 307

\aftergroup\@endflushright %

\def^^M{\break\null\hfil}%

\def\@eateol^^M{\hfil\null}\@eateol}%

\def\center {\beforejustify %

\aftergroup\@endcenter %

\def^^M{\hfil\break\null\hfil}%

\def\@eateol^^M{\hfil\null}\@eateol}%

\endgroup

The following commands are called as a result of the \aftergroup in
the definitions of \flushleft, \flushright, and \center. They perform
the necessary cleanup operations.

\def\@endflushleft{\unpenalty

{\parfillskip = 0pt plus 1 fil\par}%

\ignorespaces}%

\def\@endflushright{%

% Remove the \hfil\null\break we just put on.

\unskip \setbox0=\lastbox \unpenalty

% We have fil glue at the left of the line;

% \parfillskip shouldn’t affect that.

{\parfillskip = 0pt \par}\ignorespaces}%

\def\@endcenter{%

% Remove the \hfil\null\break we just put on.

\unskip \setbox0=\lastbox \unpenalty

% We have fil glue at the left of the line;

% \parfillskip must balance it.

{\parfillskip = 0pt plus 1fil \par}\ignorespaces}%

\def\beforejustify{%

\par\noindent

\catcode‘\^^M = \active

\checkenv \environmenttrue}%

Tables

The \makecolumns macro enables you to give all the entries in a table
without having to worry about where the columns break. For example,
if you’re typing a long alphabetical list that will be formatted in several
columns, you usually won’t know in advance where one column ends
and the next begins. Moreover, if another item gets added, the column
breaks will change.
\makecolumns takes two (delimited) arguments: the total number of

entries in the table and the number of columns in the table. For example,

TEX for the Impatient No 328

3 Jan 2020 2:18 p.m.

308 A compendium of useful macros \ §12

‘\makecolumns 37/3:’ specifies a three-column table whose entries are
the next 37 lines. You can adjust the positioning of the table on the
page by changing \parindent, which determines the space to the left,
and \hsize, which determines the space from the left margin of the page
to the right of the block. You can allow a page break above the \valign

by changing \abovecolumnspenalty.

\newcount\abovecolumnspenalty

\abovecolumnspenalty = 10000

\newcount\@linestogo % Lines remaining to process.

\newcount\@linestogoincolumn % Lines remaining in column.

\newcount\@columndepth % Number of lines in a column.

\newdimen\@columnwidth % Width of each column.

\newtoks\crtok \crtok = {\cr}%

\def\makecolumns#1/#2: {\par \begingroup

\@columndepth = #1 \advance\@columndepth by #2

\advance\@columndepth by -1

\divide \@columndepth by #2

\@linestogoincolumn = \@columndepth \@linestogo = #1

\def\@endcolumnactions{%

\ifnum \@linestogo<2

\the\crtok \egroup \endgroup \par

% End \valign and \makecolumns.

\else

\global\advance\@linestogo by -1

\ifnum\@linestogoincolumn<2

\global\@linestogoincolumn = \@columndepth

\the\crtok

\else &\global\advance\@linestogoincolumn by -1

\fi

\fi}%

\makeactive\^^M\letreturn\@endcolumnactions

\@columnwidth = \hsize

\advance\@columnwidth by -\parindent

\divide\@columnwidth by #2

\penalty\abovecolumnspenalty

\noindent % It’s not a paragraph (usually).

\valign\bgroup

&\hbox to \@columnwidth{\strut ##\hfil}\cr

}% The next end-of-line starts everything going.

TEX for the Impatient No 329

3 Jan 2020 2:18 p.m.

Footnotes 309

Footnotes

Footnotes are most commonly typeset by using a raised number as the
reference mark. We define the \numberedfootnote macro to do this.
It also redefines \vfootnote to allow slightly more general formatting
of footnotes than plain TEX does. The dimension register \footnote-

markseparation controls the space between the footnote mark (e.g., the
number) and the beginning of the text. The \everyfootnote tokens are
inserted before producing the footnote.

The plain TEX definitions of \footnote and \vfootnote are preserved
in \@plainfootnote and \@plainvfootnote in case you should need
them.

\newcount\footnotenumber \newtoks\everyfootnote

\newdimen\footnotemarkseparation

\footnotemarkseparation = .5em

\let\@plainfootnote = \footnote

\let\@plainvfootnote = \vfootnote

\def\vfootnote#1{\insert\footins\bgroup

\interlinepenalty\interfootnotelinepenalty

\splittopskip\ht\strutbox \splitmaxdepth\dp\strutbox

\floatingpenalty\@MM

\leftskip\z@skip \rightskip\z@skip \spaceskip\z@skip

\xspaceskip\z@skip

\everypar = {}%

\the\everyfootnote

\indent\llap{#1\kern\footnotemarkseparation}\footstrut

\futurelet\next\fo@t}%

\def\numberedfootnote{\global\advance\footnotenumber by 1

\@plainfootnote{$^{\number\footnotenumber}$}}%

Double columns

The \doublecolumns command begins double-column output, while the
\singlecolumn command restores single-column output. You can switch
back and forth between them on a single page. The glue specified by
\abovedoublecolumnskip and \belowdoublecolumnskip is inserted be-
fore and after the double-column material.

The approach is derived from page 417 of The TEXbook.

\newskip\abovedoublecolumnskip

TEX for the Impatient No 330

3 Jan 2020 2:18 p.m.

310 A compendium of useful macros \ §12

\newskip\belowdoublecolumnskip

\abovedoublecolumnskip = \bigskipamount

\belowdoublecolumnskip = \bigskipamount

\newdimen\gutter \gutter = 2pc

\newdimen\doublecolumnhsize \doublecolumnhsize = \hsize

\newbox\@partialpage \newdimen\singlecolumnhsize

\newdimen\singlecolumnvsize \newtoks\previousoutput

\def\doublecolumns{\par % Don’t start in horizontal mode.

\previousoutput = \expandafter{\the\output}

\advance\doublecolumnhsize by -\gutter

\divide\doublecolumnhsize by 2

\output = {\global\setbox\@partialpage =

\vbox{\unvbox255\vskip\abovedoublecolumnskip}}%

\pagegoal = \pagetotal \break % Expands \output above.

\output = {\doublecolumnoutput}%

\singlecolumnhsize = \hsize

\singlecolumnvsize = \vsize

\hsize = \doublecolumnhsize \vsize = 2\vsize}%

The \@doublecolumnsplit macro does the actual splitting. Insertions
are assumed to be single-column material. If you don’t want this to be
the case, you’ll have to modify the output routine. After \@double-

columnsplit has done its work, \box255 will have the double-column
material. The double-column material will be preceded by any single-
column material that was typeset before \doublecolumns was invoked.
\box4 will have the material that didn’t fit on the page.

\def\@doublecolumnsplit{%

\splittopskip = \topskip \splitmaxdepth = \maxdepth

\dimen0 = \singlecolumnvsize

\advance\dimen0 by -\ht\@partialpage

\advance\dimen0 by -\ht\footins

\advance\dimen0 by -\skip\footins

\advance\dimen0 by -\ht\topins

\begingroup

\vbadness = 10000

\global\setbox1=\vsplit255 to \dimen0 \wd1=\hsize

\global\setbox3=\vsplit255 to \dimen0 \wd3=\hsize

\endgroup

\global\setbox4=\vbox{\unvbox255

\penalty\outputpenalty}%

\global\setbox255=\vbox{\unvbox\@partialpage

\hbox to \singlecolumnhsize{\box1\hfil\box3}%

\vfill}}%

TEX for the Impatient No 331

3 Jan 2020 2:18 p.m.

Finishing up 311

\doublecolumnoutput is the real output routine. We call the old
\output to do the work of actually shipping out the box.

\def\doublecolumnoutput{\@doublecolumnsplit

\hsize = \singlecolumnhsize \vsize = \singlecolumnvsize

\previousoutput \unvbox4}%

\singlecolumn resumes typesetting in one column. It assumes that
\doublecolumns has been called.

\def\singlecolumn{\par % Don’t start in horizontal mode.

\output = {\global\setbox1 =

\vbox{\unvbox255\vskip\abovedoublecolumnskip}}%

\pagegoal = \pagetotal \break \setbox255 = \box1

{\singlecolumnvsize = \ht255

\divide\singlecolumnvsize by 2

\advance\singlecolumnvsize by +\ht\@partialpage

\advance\singlecolumnvsize by +\ht\footins

\advance\singlecolumnvsize by +\skip\footins

\advance\singlecolumnvsize by +\ht\topins

\@doublecolumnsplit}%

\hsize = \singlecolumnhsize

\vsize = \singlecolumnvsize

\output = \expandafter{\the\previousoutput}%

\unvbox255}%

Finishing up

We now must undo the changes that we made when we started (see
p. 292). We also give a version identification, which is subsequently avail-
able in \fmtname and \fmtversion.

\let\wlog = \@plainwlog \catcode‘@ = \other

\def\fmtname{eplain}%

{\edef\plainversion{\fmtversion}%

\xdef\fmtversion{1.0: 15 May 1990

(and plain \plainversion)}%

}%

TEX for the Impatient No 332

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 333

3 Jan 2020 2:18 p.m.

13 Capsule summary
of commands

This section contains one-line descriptions of the primitive TEX com-
mands and the TEX commands defined in plain TEX. These include both
control sequences and special characters. We’ve omitted those commands
that are only intended for internal use in the plain TEX definition (Ap-
pendix B of The TEXbook). Note that ordinary characters such as ‘a’
or ‘6’ are also commands, and indeed the most common ones (see “char-
acter”, p. 55).

To keep the descriptions brief, we’ve adopted certain conventions:

An asterisk in front of a command indicates that the command is
primitive, i.e., built into the TEX computer program (see “primi-
tive”, p. 88).

The words “music”, “punctuation”, “function”, “symbol”, “rela-
tion”, “delimiter”, or “operator” in a command description imply
that the command is only legal in math modes.

The verb “display” applies to information that TEX sends to the log
file, unless otherwise indicated. If \tracingonline is positive, TEX
also sends that output to the terminal. We use the noun “display” to
refer to math displays (see p. 61), i.e., material between $$’s.

The phrase “produce x” indicates that the command will typeset x
and put the result in a box. We sometimes omit “produce” when the
omission is unlikely to cause confusion. For example, we describe
\alpha as “math Greek letter α”, not “produce the math Greek
letter α”.

*\ interword space (p. 104)

\! negative thin space for math (p. 214)

\" umlaut accent for text, as in ö (p. 100)

TEX for the Impatient No 334

3 Jan 2020 2:18 p.m.

314 Capsule summary of commands \ §13

introduce a macro parameter, or indicate where the text of an entry
goes in an alignment preamble (p. 75, p. 45)

\# produce # character from current font (p. 98)

$ begin or end a math formula (p. 16)

\$ produce $ character from current font (p. 98)

* % begin a comment (p. 13)

\% produce % character from current font (p. 98)

& separate templates and entries in an alignment (p. 178)

\& produce & character from current font (p. 98)

’ prime symbol for math, as in p′ (p. 188)

\’ acute accent for text, as in é (p. 100)

* multiplication symbol that allows a line break (p. 190)

\+ begin tabbed line (p. 176)

\, thin space for math (p. 214)

*\- specify a legal hyphenation point (p. 126)

\. dot accent for text, as in ṅ (p. 100)

*\/ italic correction for the previous character (p. 106)

\; thick space for math (p. 214)

\= macron accent for text, as in r̄ (p. 100)

* \ begin a control sequence (p. 10)

\> medium space for math (p. 214)

^ produce a specified subformula as a superscript (p. 197)

\^ circumflex accent for text, as in ô (p. 100)

^^L equivalent to the \par primitive (p. 110)

*^^M an end-of-line (p. 105)

_ produce a specified subformula as a subscript (p. 197)

_ underscore: (p. 98)

\‘ grave accent for text, as in è (p. 100)

{ start a group (p. 227)

\{ left brace delimiter for math: { (p. 191)

\| parallel lines for math: ‖ (p. 188)

} end a group (p. 227)

\} right brace delimiter for math: } (p. 191)

~ interword space at which a line will not break (p. 105)

\~ tilde accent for text, as in ã (p. 100)

\aa Scandinavian letter: å (p. 97)

\AA Scandinavian letter: Å (p. 97)

*\above produce a fraction with a bar of specified thickness (p. 200)

*\abovedisplayshortskip glue TEX inserts before a display when the
previous line fits in the display’s indentation, by default 0 pt plus
3 pt (p. 217)

TEX for the Impatient No 335

3 Jan 2020 2:18 p.m.

Capsule summary of commands 315

*\abovedisplayskip glue TEX inserts before a display when the
previous line doesn’t fit in the display’s indentation, by default
12 pt plus 3 pt minus 9 pt (p. 217)

*\abovewithdelims produce a fraction with a bar of specified thickness
and surrounded by specified delimiters (p. 201)

*\accent put specified accent over the next character (p. 100)

\active category code for active characters, viz., the number 13
(p. 251)

\acute acute accent for math, as in x́ (p. 199)

*\adjdemerits additional demerits for a line break which would result
in adjacent lines with incompatible word spacing, by default 10000
(p. 125)

*\advance add a number to a \count register (p. 245)

\advancepageno if \pageno is positive, add one; if it’s negative,
subtract one (p. 142)

\ae æ ligature (p. 97)

\AE Æ ligature (p. 97)

*\afterassignment wait to expand the following token until the next
assignment is done (p. 229)

*\aftergroup wait to expand the following token until the end of the
current group (p. 229)

\aleph only Hebrew letter for math: ℵ (p. 188)

\allowbreak do \penalty0, i.e., allow a line or page break where one
could not ordinarily occur (p. 121, p. 136)

\alpha math Greek letter α (p. 187)

\amalg amalgamation operator: q (p. 189)

\angle angle symbol: 6 (p. 188)

\approx approximation relation: ≈ (p. 190)

\arccos arc cosine function: arccos (p. 193)

\arcsin arc sine function: arcsin (p. 193)

\arctan arc tangent function: arctan (p. 193)

\arg argument (phase) function: arg (p. 193)

\arrowvert vertical portion of an extensible double arrow (p. 212)

\Arrowvert vertical portion of an extensible single arrow (p. 212)

\ast asterisk operator: ∗ (p. 189)

\asymp asymptote relation: � (p. 190)

*\atop produce a fraction without a fraction bar (p. 200)

*\atopwithdelims produce a fraction without a fraction bar and
surrounded by specified delimiters (p. 201)

\b bar-under accent for math, as in x
¯

(p. 199)

\backslash backslash symbol: \ (p. 188)

*\badness the badness of the glue setting in the last box made (p. 170)

TEX for the Impatient No 336

3 Jan 2020 2:18 p.m.

316 Capsule summary of commands \ §13

\bar bar accent for math, as in x̄ (p. 199)

*\baselineskip glue for the normal vertical distance from one baseline
to the next, by default 12 pt (p. 133)

*\batchmode don’t stop at errors and don’t output to terminal (p. 253)

*\begingroup start a group to be ended by \endgroup (p. 227)

\beginsection begin a major subdivision of a document (p. 129)

*\belowdisplayshortskip glue TEX inserts after a display when the
previous line fits in the display’s indentation, by default 7 pt plus
0.3 pt minus 4 pt (p. 217)

*\belowdisplayskip glue TEX inserts after a display when the previous
line doesn’t fit in the display’s indentation, by default 12 pt plus
3 pt minus 9 pt (p. 217)

\beta math Greek letter β (p. 187)

\bf use boldface, i.e., do \tenbf\fam=\bffam (p. 103)

\bffam boldface family for math (p. 210)

\bgroup implicit beginning-of-group character (p. 227)

\big make the specified delimiter larger than an ordinary one, but still
small enough for text (p. 211)

\Big make the specified delimiter about 11.5 pt tall (p. 211)

\bigbreak indicate desirable page break with \penalty-200 and
produce \bigskipamount glue (p. 137)

\bigcap large cap operator (no, it doesn’t produce a large capital
letter!):

⋂
(p. 194)

\bigcirc large circle operator: © (p. 189)

\bigcup large cup operator:
⋃

(p. 194)

\bigg make the specified delimiter about 14.5 pt tall (p. 211)

\Bigg make specified delimiter about 17.5 pt tall (p. 211)

\biggl sized like \bigg, but spaced as an opening (p. 211)

\Biggl sized like \Bigg, but spaced as an opening (p. 211)

\biggm sized like \bigg, but spaced as a relation (p. 211)

\Biggm sized like \Bigg, but spaced as a relation (p. 211)

\biggr sized like \bigg, but spaced as a closing (p. 211)

\Biggr sized like \Bigg, but spaced as a closing (p. 211)

\bigl sized like \big, but spaced as an opening (p. 211)

\Bigl sized like \Big, but spaced as an opening (p. 211)

\bigm sized like \big, but spaced as a relation (p. 211)

\Bigm sized like \Big, but spaced as a relation (p. 211)

\bigodot large circled dot operator:
⊙

(p. 194)

\bigoplus large circled plus operator:
⊕

(p. 194)

\bigotimes large circled times operator:
⊗

(p. 194)

\bigr sized like \big, but spaced as a closing (p. 211)

\Bigr sized like \Big, but spaced as a closing (p. 211)

TEX for the Impatient No 337

3 Jan 2020 2:18 p.m.

Capsule summary of commands 317

\bigskip produce \bigskipamount glue (p. 154)

\bigskipamount glue for a big vertical skip, by default 12 pt plus 4 pt
minus 4 pt (p. 155)

\bigsqcup large square cup operator:
⊔

(p. 194)

\bigtriangledown triangle operator pointing downward: 5 (p. 189)

\bigtriangleup triangle operator pointing upward: 4 (p. 189)

\biguplus large cupped plus operator:
⊎

(p. 194)

\bigvee large logical “or” operator:
∨

(p. 194)

\bigwedge large logical “and” operator:
∧

(p. 194)

*\binoppenalty additional penalty for breaking after a binary math
operator, by default 700 (p. 126)

\bmod modulus operator, as in n mod 2 (p. 193)

\bordermatrix produce matrix with labelled rows and columns (p. 205)

\bot lattice bottom symbol: ⊥ (p. 188)

*\botmark the last mark item on the page just boxed (p. 144)

\bowtie bowtie relation: ./ (p. 190)

*\box append the box in a specified box register to the current list, and
void the register (p. 164)

*\boxmaxdepth maximum depth of vboxes, by default \maxdimen

(p. 163)

\brace $n\brace k$ produces braced notation:
{
n
k

}
(p. 200)

\bracevert vertical portion of extensible large brace (p. 212)

\brack $n\brack k$ produces bracketed notation:
[
n
k

]
(p. 200)

\break do \penalty-10000, i.e., force a line or page break (p. 120,
p. 136)

\breve breve accent for math, as in x̆ (p. 199)

*\brokenpenalty penalty for line break at a discretionary item, by
default 100 (p. 139)

\buildrel produce specified formula over the specified relation (p. 202)

\bullet bullet operation: • (p. 189)

\bye \vfill the last page with blank space, \supereject it, and \end

the job (p. 246)
\c cedilla accent for text, as in ç (p. 100)

\cal use calligraphic font for uppercase letters in math, as in XYZ
(p. 209)

\cap cap operator: ∩ (p. 189)

\cases produce cases for math, as in
{ ···
··· (p. 201)

*\catcode the category code of a specified character (p. 251)

\cdot centered dot operator: · (p. 189)

\cdotp centered dot punctuation: · (p. 196)

\cdots centered dots for math: · · · (p. 203)

\centerline produce line with its text centered (p. 108)

TEX for the Impatient No 338

3 Jan 2020 2:18 p.m.

318 Capsule summary of commands \ §13

*\char produce the character from the current font with the specified
code (p. 99)

*\chardef define a specified control sequence to be a character’s code,
a number between 0 and 255 (p. 232)

\check check accent for math, as in x̌ (p. 199)

\chi math Greek letter χ (p. 187)

\choose $n\choose k$ produces combinatorial notation:
(
n
k

)
(p. 200)

\circ circle operation: ◦ (p. 189)

*\cleaders produce leaders with half of leftover space before the first
box, and half after the last (p. 174)

\cleartabs clear all the tabs for tabbing alignments (p. 177)

*\closein close a specified input stream (p. 248)

*\closeout close a specified output stream (p. 249)

*\clubpenalty additional penalty for a single line remaining before a
page break, by default 150 (p. 138)

\clubsuit club suit symbol: ♣ (p. 188)

\colon colon punctation symbol for math: : (p. 196)

\cong congruence relation: ∼= (p. 190)

\coprod coproduct operator:
∐

(p. 194)

*\copy like \box, but don’t void the register (p. 164)

\copyright copyright mark: c© (p. 98)

\cos cosine function: cos (p. 193)

\cosh hyperbolic cosine function: cosh (p. 193)

\cot cotangent function : cot (p. 193)

\coth hyperbolic cotangent function: coth (p. 193)

*\count the specified integer register (p. 242)

*\countdef define a specified control sequence to be a number
corresponding to a \count register (p. 245)

*\cr end a row (or column) within an alignment (p. 180)

*\crcr does nothing if the last command was \cr or \noalign;
otherwise, equivalent to \cr (p. 180)

\csc cosecant function: csc (p. 193)

*\csname start a control sequence name to be ended by \endcsname

(p. 233)
\cup cup operator: ∪ (p. 189)

\d underdot accent for text, as in r. (p. 100)

\dag dagger symbol for text: † (p. 98)

\dagger dagger operator for math: † (p. 189)

\dashv right turnstile relation: a (p. 190)

*\day current day of the month, as a number (p. 225)

\ddag double dagger symbol for text: ‡ (p. 98)

\ddagger double dagger operator for math: ‡ (p. 189)

TEX for the Impatient No 339

3 Jan 2020 2:18 p.m.

Capsule summary of commands 319

\ddot double dot accent for math: ẍ (p. 199)

\ddots diagonal dots for math:
. . . (p. 203)

*\deadcycles number of \output initiations since the last \shipout

(p. 148)

*\def define a control sequence to be a macro (p. 230)

*\defaulthyphenchar default hyphenation character code (p. 129)

*\defaultskewchar default accent skewing character code (p. 213)

\deg degree function: deg (p. 193)

*\delcode the delimiter code of a specified character (p. 251)

*\delimiter produce a specified delimiter (p. 204)

*\delimiterfactor 1000 times the ratio of the minimum size of a
delimiter to the size that would completely cover the formula, by
default 901 (p. 205)

*\delimitershortfall minimum difference between formula height
and delimiter height, by default 5 pt (p. 205)

\delta math Greek letter δ (p. 187)

\Delta math Greek letter ∆ (p. 187)

\det determinant function: det (p. 193)

\diamond diamond operator: � (p. 189)

\diamondsuit diamond suit symbol: ♦ (p. 188)

\dim dimension function: dim (p. 193)

*\dimen the specified dimension register (p. 242)

*\dimendef define a specified control sequence to be a number
corresponding to a \dimen register (p. 245)

*\discretionary specify three texts, the first two for before and after
a line break, the third for no line break (p. 127)

*\displayindent TEX sets this to the indentation of a display (p. 216)

*\displaylimits place limits above and below operators only in display
styles (p. 195)

\displaylines produce specified multiline display with each line
centered (p. 208)

*\displaystyle use displaystyle size in a formula (p. 198)

*\displaywidowpenalty penalty for a single line beginning a page just
before a display, by default 50 (p. 138)

*\displaywidth TEX sets this to the width of a display (p. 216)

\div division operator: ÷ (p. 189)

*\divide divide a specified \count register by a specified integer (p. 246)

\dot dot accent for math, as in ẋ (p. 199)

\doteq dotted equality relation:
.
= (p. 190)

\dotfill fill enclosing horizontal space with dots (p. 175)

\dots ellipsis for sequences: x1, . . . , xn (p. 99)

TEX for the Impatient No 340

3 Jan 2020 2:18 p.m.

320 Capsule summary of commands \ §13

*\doublehyphendemerits demerits for two consecutive lines ending
with hyphens, by default 10000 (p. 125)

\downarrow relation: ↓ (p. 192)

\Downarrow relation: ⇓ (p. 192)

\downbracefill fill enclosing hbox with a downwards facing brace:︷ ︸︸ ︷ (p. 211)
*\dp the depth of the box in a specified box register (p. 167)

*\dump end the job and produce a format file (p. 263)

*\edef define a control sequence to be a macro, immediately expanding
the replacement text (p. 230)

\egroup implicit end-of-group character (p. 227)

\eject end current paragraph and force a page break, stretching out
current page (p. 137)

\ell script letter for math: ` (p. 188)

*\else false or default case alternative for a conditional (p. 239)

*\emergencystretch additional stretch added to every line if
\tolerance is not satisfied (p. 124)

\empty macro that expands to nothing (p. 241)

\emptyset empty set symbol: ∅ (p. 188)

*\end \output the last page and end the job (p. 247)

*\endcsname end a control sequence name started by \csname (p. 233)

\endgraf equivalent to the \par primitive (p. 111)

*\endgroup end a group started by \begingroup (p. 227)

*\endinput terminate input from the current file (p. 247)

\endinsert end insertion (p. 147)

\endline equivalent to the \cr primitive (p. 180)

*\endlinechar character TEX inserts at the end of each input line, by
default ^^M (p. 252)

\enskip horizontal glue with width 1/2 em (p. 154)

\enspace kern 1/2 em (p. 154)

\epsilon math Greek letter ε (p. 187)

\eqalign produce specified multiline display whose indicated parts are
vertically aligned (p. 208)

\eqalignno produce specified multiline display with equation numbers
whose indicated parts are vertically aligned (p. 208)

*\eqno put a specified equation number on the right of a display (p. 207)

\equiv equivalence relation: ≡ (p. 190)

*\errhelp token list whose expansion TEX displays when the user asks
for help in response to an \errmessage (p. 261)

*\errmessage give specified error message (p. 261)

*\errorcontextlines the number of lines of context TEX displays at
an error, by default 5 (p. 262)

TEX for the Impatient No 341

3 Jan 2020 2:18 p.m.

Capsule summary of commands 321

*\errorstopmode stop for interaction at error messages (p. 252)

*\escapechar character with which TEX precedes control sequence
names that are displayed (p. 226)

\eta math Greek letter η (p. 187)

*\everycr token list TEX expands after a \cr, or a \crcr not following
\cr or \noalign (p. 185)

*\everydisplay token list TEX expands when a math display begins
(p. 218)

*\everyhbox token list TEX expands when an hbox begins (p. 164)

*\everyjob token list TEX expands when a job begins (p. 263)

*\everymath token list TEX expands when text math mode begins
(p. 218)

*\everypar token list TEX expands when a paragraph begins (p. 113)

*\everyvbox token list TEX expands when a vbox begins (p. 164)

*\exhyphenpenalty additional penalty for a line break after an explicit
hyphen, by default 50 (p. 125)

\exists “there exists” symbol: ∃ (p. 188)

\exp exponential function: exp (p. 193)

*\expandafter expand the next token only after expanding the token
following it (p. 233)

*\fam font family TEX uses for characters with class seven (i.e., variables)
in math (p. 210)

*\fi end a conditional (p. 240)

\filbreak force a page break unless the text up to another \filbreak
also fits on the page (p. 137)

*\finalhyphendemerits penalty for the second to last line breaking at
a hyphen, by default 5000 (p. 126)

*\firstmark first mark item on the page just boxed (p. 144)

\fivebf use 5-point bold font, cmbx5 (p. 102)

\fivei use 5-point math italic font, cmmi5 (p. 102)

\fiverm use 5-point roman font, cmr5 (p. 102)

\fivesy use 5-point symbol font, cmsy5 (p. 102)

\flat flat symbol for music: [(p. 188)

*\floatingpenalty penalty for insertions that are split across pages,
by default 0 (p. 139)

\fmtname name of the current format (p. 225)

\fmtversion version number of the current format (p. 225)

\folio produce \pageno as characters; in roman numerals if it’s
negative (p. 143)

*\font define a specified control sequence to select a font (p. 221)

*\fontdimen a specified parameter of a specified font (p. 222)

*\fontname produce the filename of a specified font as characters
(p. 227)

TEX for the Impatient No 342

3 Jan 2020 2:18 p.m.

322 Capsule summary of commands \ §13

\footline token list that produces line at the bottom of each page
(p. 143)

\footnote produce a specified footnote with a specified reference mark
(p. 145)

\forall “for all” symbol: ∀ (p. 188)

\frenchspacing make interword spacing independent of punctuation
(p. 106)

\frown frown relation: _ (p. 190)

*\futurelet assign the third following token to a specified control
sequence, then expand the second following token (p. 232)

\gamma math Greek letter γ (p. 187)

\Gamma math Greek letter Γ (p. 187)

\gcd greatest common denominator function: gcd (p. 193)

*\gdef equivalent to \global\def, i.e., globally define a macro (p. 231)

\ge greater than or equal relation: ≥ (p. 190)

\geq equivalent to \ge (p. 190)

\gets gets relation: ← (p. 192)

\gg much greater than relation: � (p. 190)

*\global make the following definition global (p. 228)

*\globaldefs overrides \global prefixes on assignments (p. 228)

\goodbreak indicate desirable page break with \penalty-500 (p. 137)

\grave grave accent for math, as in x̀ (p. 199)

\H Hungarian umlaut accent for text, as in ő (p. 100)

*\halign align text in columns (p. 178)

\hang indent the current paragraph by \parindent (p. 117)

*\hangafter starting line number for hanging indentation (p. 117)

*\hangindent space for hanging indentation (p. 117)

\hat hat accent for math, as in x̂ (p. 199)

*\hbadness badness threshold for reporting underfull or overfull hboxes,
by default 1000 (p. 170)

\hbar math symbol: h̄ (p. 188)

*\hbox produce a specified hbox (p. 160)

\headline token list that produces the line at the top of every page
(p. 143)

\heartsuit heart suit symbol: ♥ (p. 188)

*\hfil produce infinitely stretchable horizontal glue (p. 157)

*\hfill produce horizontal glue even more infinitely stretchable than
that produced by \hfil (p. 157)

*\hfilneg produce infinitely negative stretchable horizontal glue
(p. 159)

*\hfuzz space threshold for reporting overfull hboxes, by default 0.1 pt
(p. 171)

TEX for the Impatient No 343

3 Jan 2020 2:18 p.m.

Capsule summary of commands 323

\hglue produce horizontal glue that doesn’t disappear at line breaks
(p. 156)

\hidewidth ignore width of an entry in an alignment, so that it extends
out from its box in the direction of the \hidewidth (p. 184)

*\hoffset page offset relative to one inch from the paper’s left edge
(p. 140)

*\holdinginserts if positive, do not remove insertions from the current
page (p. 149)

\hom homology function: hom (p. 193)

\hookleftarrow relation: ←↩ (p. 192)

\hookrightarrow relation: ↪→ (p. 192)

\hphantom produce an invisible formula with zero height and depth
but natural width (p. 169)

*\hrule produce a horizontal rule; legal only in vertical modes (p. 172)

\hrulefill fill enclosing space with a horizontal rule (p. 175)

*\hsize line length, by default 6.5 in (p. 114)

*\hskip produce specified horizontal glue (p. 155)

*\hss produce horizontal glue that is infinitely stretchable and infinitely
shrinkable (p. 158)

*\ht the height of the box in a specified box register (p. 167)

*\hyphenation add specified words to the hyphenation exception
dictionary (p. 127)

*\hyphenchar the hyphenation character in a specified font (p. 129)

*\hyphenpenalty additional penalty for a line break at a hyphen, by
default 50 (p. 125)

\i dotless letter ‘ı’ for use with accents (p. 100)

\ialign start an \halign with the \tabskip glue zero and \everycr

empty (p. 180)

*\if test if two specified tokens have the same character code (p. 235)

*\ifcase expand case n for specified value n (p. 239)

*\ifcat test if two specified tokens have the same category code (p. 235)

*\ifdim test for a specified relationship between two specified dimensions
(p. 237)

*\ifeof test for being at the end of a specified file (p. 239)

\iff if and only if relation: ⇐⇒ (p. 192)

*\iffalse test that is always false (p. 239)

*\ifhbox test if a specified box register contains an hbox (p. 238)

*\ifhmode test if TEX is in a horizontal mode (p. 238)

*\ifinner test if TEX is in an internal mode (p. 238)

*\ifmmode test if TEX is in a math mode (p. 238)

*\ifnum test for a specified relationship between two specified numbers
(p. 237)

TEX for the Impatient No 344

3 Jan 2020 2:18 p.m.

324 Capsule summary of commands \ §13

*\ifodd test if a specified number is odd (p. 237)

*\iftrue test that is always true (p. 239)

*\ifvbox test if a specified box register contains a vbox (p. 238)

*\ifvmode test if TEX is in a vertical mode (p. 238)

*\ifvoid test if a specified box register is void (p. 238)

*\ifx test if two tokens are the same, or if two macros have the same
top-level definition (p. 236)

*\ignorespaces ignore any following space tokens (p. 252)

\Im complex imaginary part symbol: = (p. 188)

\imath dotless letter ‘ı’ for use with math accents (p. 188)

*\immediate perform the specified file operation without delay (p. 250)

\in containment relation: ∈ (p. 190)

*\indent produce an empty box of width \parindent and enter
horizontal mode (p. 111)

\inf inferior function: inf (p. 193)

\infty infinity symbol: ∞ (p. 188)

*\input begin to read from a specified file (p. 247)

*\inputlineno the current line number of the current input file (p. 247)

*\insert produce an insertion of a specified class (p. 147)

*\insertpenalties sum of penalties due to insertions (p. 139)

\int integral symbol:
∫

(p. 194)

*\interlinepenalty additional penalty for a page break between lines
of a paragraph, by default 0 (p. 138)

\iota math Greek letter ι (p. 187)

\it use italics, i.e., do \tenit\fam=\itfam (p. 103)

\item begin a paragraph with hanging indentation of \parindent and
preceded by a specified label (p. 130)

\itemitem like \item, but with indentation of 2\parindent (p. 130)

\itfam italic family for math (p. 210)

\j dotless letter ‘’, for use with accents (p. 100)

\jmath dotless letter ‘’ for use with math accents (p. 188)

*\jobname base name of the file with which TEX was invoked (p. 225)

\jot unit of measure for opening up displays (p. 215)

\kappa math Greek letter κ (p. 187)

\ker kernel function: ker (p. 193)

*\kern produce a specified amount of space at which a break is not
allowed (p. 157)

\l Polish letter: l (p. 97)

\L Polish letter: L (p. 97)

\lambda math Greek letter λ (p. 187)

\Lambda math Greek letter Λ (p. 187)

TEX for the Impatient No 345

3 Jan 2020 2:18 p.m.

Capsule summary of commands 325

\land logical “and” operator: ∧ (p. 189)

\langle left angle delimiter: 〈 (p. 191)

*\language the current set of hyphenation patterns (p. 128)

*\lastbox retrieve and remove the last item from the current list, if it’s
a box (p. 171)

*\lastkern retrieve the last item from the current list, if it’s a kern
(p. 171)

*\lastpenalty retrieve the last item from the current list, if it’s a
penalty (p. 171)

*\lastskip retrieve the last item from the current list, if it’s glue
(p. 171)

\lbrace left brace delimiter: { (p. 191)

\lbrack left bracket delimiter: [(p. 191)

*\lccode the character code for the lowercase form of a letter (p. 103)

\lceil left ceiling delimiter: d (p. 191)

\ldotp dot on baseline as punctuation: . (p. 196)

\ldots dots on baseline for math: . . . (p. 203)

\le less than or equal relation: ≤ (p. 190)

*\leaders fill a specified horizontal or vertical space by repeating a
specified box or rule (p. 174)

*\left produce the specified delimiter, sizing it to cover the following
subformula ended by \right (p. 204)

\leftarrow relation: ← (p. 192)

\Leftarrow relation: ⇐ (p. 192)

\leftarrowfill fill enclosing hbox with a \leftarrow: ←−−−−−
(p. 175)

\leftharpoondown relation: ↽ (p. 192)

\leftharpoonup relation: ↼ (p. 192)

*\lefthyphenmin size of the smallest word fragment TEX allows before
a hyphen at the beginning of a word, by default 2 (p. 128)

\leftline produce line with its text pushed to left margin (p. 108)

\leftrightarrow relation: ↔ (p. 192)

\Leftrightarrow relation: ⇔ (p. 192)

*\leftskip glue TEX inserts at the left of each line (p. 115)

\leq equivalent to \le (p. 190)

\leqalignno produce specified multiline display with equation numbers
on the left whose indicated parts are vertically aligned (p. 208)

*\leqno put a specified equation number on the left of a display (p. 207)

*\let define a control sequence to be the next token (p. 232)

\lfloor left floor delimiter: b (p. 191)

\lg logarithm function: lg (p. 193)

TEX for the Impatient No 346

3 Jan 2020 2:18 p.m.

326 Capsule summary of commands \ §13

\lgroup left group delimiter (the smallest size is shown here):


(p. 204)
\lim limit function: lim (p. 193)

\liminf inferior limit function: lim inf (p. 193)

*\limits place superscript above and subscript below a large operator
(p. 195)

\limsup superior limit function: lim sup (p. 193)

\line produce a justified line of type (p. 109)

*\linepenalty penalty for line breaking added to each line, by
default 10 (p. 125)

*\lineskip vertical glue from one baseline to the next if the lines are
closer together than \lineskiplimit, by default 1 pt (p. 133)

*\lineskiplimit threshold for using \lineskip instead of \baseline-
skip, by default 0 pt (p. 133)

\ll much less than relation: � (p. 190)

\llap produce text (with no width) extending to the left of the current
position (p. 109)

\lmoustache top half of a large brace:
 (p. 212)

\ln natural logarithm function: ln (p. 193)

\lnot logical “not” symbol: ¬ (p. 188)

\log logarithm function: log (p. 193)

*\long allow \par tokens in the argument(s) of the following definition
(p. 231)

\longleftarrow relation: ←− (p. 192)

\Longleftarrow relation: ⇐= (p. 192)

\longleftrightarrow relation: ←→ (p. 192)

\Longleftrightarrow relation: ⇐⇒ (p. 192)

\longmapsto relation: 7−→ (p. 192)

\longrightarrow relation: −→ (p. 192)

\Longrightarrow relation: =⇒ (p. 192)

\loop start a loop to be ended by \repeat (p. 240)

*\looseness difference between the number of lines you want a
paragraph to be relative to the optimal number (p. 124)

\lor logical “or” operator: ∨ (p. 189)

*\lower lower a specified box by a specified amount (p. 166)

*\lowercase convert uppercase letters in the specified text to lowercase
(p. 104)

\lq left quote character for text: ‘ (p. 98)

*\mag 1000 times the ratio for enlarging all dimensions (p. 223)

\magnification like \mag, but don’t enlarge the page size (p. 223)

\magstep 1000 · 1.2n for a specified n (p. 223)

TEX for the Impatient No 347

3 Jan 2020 2:18 p.m.

Capsule summary of commands 327

\magstephalf 1000 ·
√

1.2 (p. 224)

\mapsto relation: 7→ (p. 192)

*\mark produce a mark item with a specified text (p. 144)

*\mathaccent put specified math accent over the next character (p. 199)

*\mathbin space a specified subformula as a binary operator (p. 218)

*\mathchar produce the math character with the specified mathcode
(p. 99)

*\mathchardef define a specified control sequence to be a mathcode, a
number between 0 and 215 − 1 (p. 232)

*\mathchoice select one of four specified math subformulas depending
on the current style (p. 198)

*\mathclose space a specified subformula as a closing delimiter (p. 218)

*\mathcode the mathcode of a specified character (p. 251)

*\mathinner space a specified subformula as an inner formula, e.g., a
fraction (p. 218)

*\mathop space a specified subformula as a large math operator (p. 218)

*\mathopen space a specified subformula as an opening delimiter (p. 218)

*\mathord space a specified subformula as an ordinary character (p. 218)

\mathpalette produce a \mathchoice which expands a specified
control sequence depending on the current style (p. 198)

*\mathpunct space a specified subformula as punctuation (p. 218)

*\mathrel space a specified subformula as a relation (p. 218)

\mathstrut produce an invisible box with the height and depth of a
left parenthesis and no width (p. 168)

*\mathsurround space TEX kerns before and after math in text (p. 217)

\matrix produce a specified matrix (p. 205)

\max maximum function: max (p. 193)

*\maxdeadcycles value of \deadcycles at which TEX complains, and
then uses its own output routine, by default 25 (p. 148)

*\maxdepth maximum depth of the bottom box on a page, by default
4 pt (p. 141)

\maxdimen largest dimension acceptable to TEX (p. 244)

*\meaning produce the human-understandable meaning of a specified
token as characters (p. 226)

\medbreak indicate desirable page break with \penalty-100 and
produce \medskipamount glue (p. 137)

*\medmuskip glue for a medium math space, by default 4 mu plus 2 mu
minus 4 mu (p. 214)

\medskip produce \medskipamount glue (p. 154)

\medskipamount glue for a medium vertical skip, by default 6 ptplus
2 pt minus 2 pt (p. 155)

*\message show expansion of the specified text on the terminal (p. 261)

\mid middle relation: | (p. 190)

TEX for the Impatient No 348

3 Jan 2020 2:18 p.m.

328 Capsule summary of commands \ §13

\midinsert produce the specified text at the current position if
possible, otherwise at the top of the next page (p. 146)

\min minimum function: min (p. 193)

\mit use math italics, i.e., do \fam=1 (p. 209)

*\mkern produce a specified kern in units of mu for math (p. 215)

\models models relation: |= (p. 190)

*\month current month, as a number (p. 225)

*\moveleft move a specified box left by a specified space; legal only in
vertical modes (p. 166)

*\moveright move a specified box right by a specified space; legal only
in vertical modes (p. 166)

\mp minus and plus operator: ∓ (p. 189)

*\mskip produce specified glue in units of mu for math (p. 215)

\mu math Greek letter µ (p. 187)

*\multiply multiply a specified \count register by a specified integer
(p. 246)

\multispan make next alignment entry span a specified number of
columns (or rows) (p. 182)

*\muskip the specified muglue register (p. 242)

*\muskipdef define a specified control sequence to be a number
corresponding to a \muskip register (p. 245)

\nabla backwards difference symbol: ∇ (p. 188)

\narrower make both left and right margins narrower by \parindent

(p. 114)
\natural natural symbol for music: \ (p. 188)

\nearrow northeast arrow relation: ↗ (p. 192)

\ne not equal relation: 6= (p. 190)

\neg logical “not” symbol: ¬ (p. 188)

\negthinspace kern −1/6 em (p. 153)

\neq not equal relation: 6= (p. 190)

\newbox reserve and name a \box register (p. 244)

\newcount reserve and name a \count register (p. 244)

\newdimen reserve and name a \dimen register (p. 244)

\newfam reserve and name a math family (p. 244)

\newhelp name a specified help message (p. 262)

\newif define a new conditional with the specified name (p. 240)

\newinsert name an insertion class, and reserve a corresponding \box,
\count, \dimen, and \skip registers (p. 244)

\newlanguage reserve and name a \language (p. 244)

*\newlinechar end-of-line character for \write, etc. (p. 250)

\newmuskip reserve and name a \muskip register (p. 244)

\newread reserve and name an input stream (p. 244)

TEX for the Impatient No 349

3 Jan 2020 2:18 p.m.

Capsule summary of commands 329

\newskip reserve and name a \skip register (p. 244)

\newtoks reserve and name a \toks register (p. 244)

\newwrite reserve and name an output stream (p. 244)

\ni “reverse in” relation: 3 (p. 190)

*\noalign insert material between rows (or columns) of an alignment
(p. 183)

*\noboundary inhibit ligatures or kerns involving the current font’s
boundarychar (p. 101)

\nobreak do \penalty10000, i.e., inhibit a line or page break (p. 121,
p. 136)

*\noexpand suppress expansion of the next token (p. 234)

*\noindent enter horizontal mode without indenting the paragraph
(p. 112)

\nointerlineskip inhibit interline glue before the next line (p. 135)

*\nolimits place superscript and subscript after large operators (p. 195)

\nonfrenchspacing make interword spacing depend on punctuation
(p. 106)

*\nonscript inhibit any following glue or kern when in script and
scriptscript styles (p. 215)

*\nonstopmode don’t stop at errors, even those about missing files
(p. 253)

\nopagenumbers inhibit printing of page numbers, i.e., do \footline

= \hfil (p. 142)
\normalbaselines set \baselineskip, \lineskip, and \line-

skiplimit to the normal values for the current type size
(p. 134)

\normalbaselineskip value of \baselineskip for the current type
size (p. 134)

\normalbottom make the bottom margin be the same from page to
page (p. 137)

\normallineskip value of \lineskip for the current type size (p. 134)

\normallineskiplimit value of \lineskiplimit for the current type
size (p. 134)

\not a slash with zero width for constructing negations of math
relations, as in 6= (p. 191)

\notin noninclusion relation: /∈ (p. 190)

\nu math Greek letter ν (p. 187)

\null expands to an empty hbox (p. 169)

*\nulldelimiterspace space produced by a null delimiter, by default
1.2 pt (p. 217)

*\nullfont primitive font with no characters in it (p. 102)

*\number produce a specified number as characters (p. 224)

\nwarrow northwest arrow relation: ↖ (p. 192)

TEX for the Impatient No 350

3 Jan 2020 2:18 p.m.

330 Capsule summary of commands \ §13

\o Danish letter: ø (p. 97)

\O Danish letter: Ø (p. 97)

\obeylines make each end-of-line in the input file equivalent to \par

(p. 122)
\obeyspaces produce space in the output for each space character in

the input (p. 107)

\odot centered dot operation: � (p. 189)

\oe œ ligature (p. 97)

\OE Œ ligature (p. 97)

\offinterlineskip inhibit interline glue from now on (p. 135)

\oint contour integral operator:
∮

(p. 194)

\oldstyle use old style digits:  (p. 209)

\omega math Greek letter ω (p. 187)

\Omega math Greek letter Ω (p. 187)

\ominus circled minus operator: 	 (p. 189)

*\omit skip a column’s (or row’s) template in an alignment (p. 181)

*\openin prepare a specified input stream to read from a file (p. 247)

*\openout prepare a specified output stream to write to a file (p. 249)

\openup increase \baselineskip, \lineskip, and \lineskiplimit

by a specified amount (p. 135)

\oplus circled plus operator: ⊕ (p. 189)

*\or separate the cases of an \ifcase (p. 239)

\oslash circled slash operator: � (p. 189)

\otimes circled times operator: ⊗ (p. 189)

*\outer make the following macro definition illegal in contexts in which
tokens are absorbed at high speed (p. 232)

*\output token list TEX expands when it finds a page break (p. 148)

*\outputpenalty if the page break occurred at a penalty, the value of
that penalty; otherwise zero (p. 149)

*\over produce a fraction with a bar of default thickness (p. 200)

\overbrace produce a brace covering the top of a formula, as in
︷ ︸︸ ︷
h+ w

(p. 202)

*\overfullrule width of the rule appended to an overfull box (p. 170)

\overleftarrow produce a left arrow covering the top of a formula, as
in ←−−−r + a (p. 202)

*\overline produce a line covering the top of a formula, as in 2b (p. 202)

\overrightarrow produce a right arrow covering the top of a formula,
as in

−−→
i+ t (p. 202)

*\overwithdelims produce a fraction with a bar of the default thickness
and surrounded by specified delimiters (p. 201)

\owns owns relation: 3 (p. 190)

TEX for the Impatient No 351

3 Jan 2020 2:18 p.m.

Capsule summary of commands 331

\P paragraph character for text: ¶ (p. 98)

*\pagedepth TEX sets this to the current depth of the current page
(p. 139)

*\pagefilllstretch TEX sets this to the amount of filll stretch on
the current page (p. 140)

*\pagefillstretch TEX sets this to the amount of fill stretch on the
current page (p. 140)

*\pagefilstretch TEX sets this to the amount of fil stretch on the
current page (p. 140)

*\pagegoal TEX sets this to the desired height for the current page (i.e.,
\vsize when the first box is put on the page) (p. 139)

\pageinsert produce the specified text on the following page, and use
up the full page (p. 146)

\pageno the register \count0, which contains the (possibly negative)
page number (p. 142)

*\pageshrink TEX sets this to the total amount of shrinkability on the
current page (p. 140)

*\pagestretch TEX sets this to the total amount of stretchability on
the current page (p. 140)

*\pagetotal TEX sets this to the natural height of the current page
(p. 139)

*\par finish paragraph and terminate horizontal mode (p. 110)

\parallel parallel relation: ‖ (p. 190)

*\parfillskip horizontal glue TEX inserts at the end of a paragraph
(p. 111)

*\parindent horizontal space TEX inserts at the start of a paragraph
(p. 113)

*\parshape specify the width and length of each line in the next
paragraph (p. 118)

*\parskip vertical glue TEX inserts before a paragraph (p. 141)

\partial partial derivative symbol: ∂ (p. 188)

*\pausing if positive, stop after reading each line of input for a possible
replacement (p. 253)

*\penalty produce penalty (or bonus, if negative) for breaking line or
page here (p. 121, p. 136)

\perp perpendicular relation: ⊥ (p. 190)

\phantom produce an invisible formula with the dimensions of a
specified subformula (p. 168)

\phi math Greek letter φ (p. 187)

\Phi math Greek letter Φ (p. 187)

\pi math Greek letter π (p. 187)

\Pi math Greek letter Π (p. 187)

\plainoutput plain TEX’s \output routine (p. 148)

TEX for the Impatient No 352

3 Jan 2020 2:18 p.m.

332 Capsule summary of commands \ §13

\pm plus and minus operator: ± (p. 189)

\pmatrix produce a parenthesized matrix (p. 205)

\pmod parenthesized modulus notation to put at the end of a formula,
as in x ≡ y + 1 (mod 2) (p. 194)

*\postdisplaypenalty additional penalty for a line break just after a
display, by default 0 (p. 138)

\Pr probability function: Pr (p. 193)

\prec precedes relation: ≺ (p. 190)

\preceq precedes or equals relation: � (p. 190)

*\predisplaypenalty additional penalty for a line break just before a
display, by default 0 (p. 138)

*\predisplaysize TEX sets this to the width of the line preceding a
display (p. 216)

*\pretolerance badness tolerance for line breaks without hyphenation,
by default 100 (p. 123)

*\prevdepth depth of the last nonrule box on the current vertical list
(p. 134)

*\prevgraf TEX sets this to the number of lines in the paragraph so
far (in horizontal mode) or in the previous paragraph (in vertical
mode) (p. 120)

\prime prime math symbol, as in r′ (p. 188)

\proclaim begin a theorem, lemma, hypothesis, . . . (p. 131)

\prod large product operator:
∏

(p. 194)

\propto proportional to relation: ∝ (p. 190)

\psi math Greek letter ψ (p. 187)

\Psi math Greek letter Ψ (p. 187)

\qquad produce horizontal glue with width 2 em (p. 154)

\quad produce horizontal glue with width 1 em (p. 154)

*\radical produce a specified radical symbol (p. 207)

\raggedbottom allow the bottom margin to vary from page to page
(p. 137)

\raggedright allow the right margin to vary from line to line (p. 116)

*\raise raise a specified box by a specified amount (p. 166)

\rangle right angle delimiter: 〉 (p. 191)

\rbrace right brace delimiter: } (p. 191)

\rbrack right bracket delimiter:] (p. 191)

\rceil right ceiling delimiter: e (p. 191)

\Re complex real part symbol: < (p. 188)

*\read read a line from a specified input stream (p. 248)

*\relax do nothing (p. 241)

*\relpenalty additional penalty for breaking after a relation, by
default 500 (p. 126)

TEX for the Impatient No 353

3 Jan 2020 2:18 p.m.

Capsule summary of commands 333

\repeat end a loop started with \loop (p. 240)

\rfloor right floor delimiter: c (p. 191)

\rgroup right group delimiter (the smallest size is shown here):


(p. 204)
\rho math Greek letter ρ (p. 187)

*\right produce the specified delimiter at the right end of a subformula
started with \left (p. 204)

\rightarrow relation: → (p. 192)

\Rightarrow relation: ⇒ (p. 192)

\rightarrowfill fill enclosing hbox with a \rightarrow: −−−−−→
(p. 175)

\rightharpoondown relation: ⇁ (p. 192)

\rightharpoonup relation: ⇀ (p. 192)

\rightleftharpoons relation: ⇀↽ (p. 192)

\rightline produce line with its text pushed to right margin (p. 108)

*\rightskip glue TEX inserts at the right of each line (p. 115)

*\righthyphenmin size of the smallest word fragment TEX allows after
a hyphen at the end of a word, by default 3 (p. 128)

\rlap produce text (with no width) extending to the right of the
current position (p. 109)

\rm use roman type, i.e., do \tenrm\fam=0 (p. 103)

\rmoustache bottom half of a large brace:
 (p. 212)

\romannumeral produce the lowercase roman numeral representation
of a specified number as characters (p. 224)

\root produce a specified root of a specified subformula, as in 3
√

2
(p. 207)

\rq right quote character for text: ’ (p. 98)

\S section character for text: § (p. 98)

\sb implicit subscript character (p. 197)

*\scriptfont the script style font in a specified math family (p. 210)

*\scriptscriptfont the scriptscript style font in a specified math
family (p. 210)

*\scriptscriptstyle use scriptscriptstyle size in a formula (p. 198)

*\scriptspace additional space TEX kerns after a subscript or
superscript, by default 0.5 pt (p. 218)

*\scriptstyle use scriptstyle size in a formula (p. 198)

*\scrollmode don’t stop at most errors, but do stop at errors about
missing files (p. 252)

\searrow southeast arrow relation: ↘ (p. 192)

\sec secant function: sec (p. 193)

*\setbox define a specified box register to be a box (p. 164)

TEX for the Impatient No 354

3 Jan 2020 2:18 p.m.

334 Capsule summary of commands \ §13

*\setlanguage change to a specified set of hyphenation rules, but don’t
change \language (p. 128)

\setminus set difference operator: \ (p. 189)

\settabs define the tabs for a tabbing alignment (p. 176)

\sevenbf use 7-point bold font, cmbx7 (p. 102)

\seveni use 7-point math italic font, cmmi5 (p. 102)

\sevenrm use 7-point roman font, cmr7 (p. 102)

\sevensy use 7-point symbol font, cmsy7 (p. 102)

*\sfcode the space factor code of a specified character (p. 107)

\sharp sharp symbol for music:] (p. 188)

*\shipout output a box to the .dvi file (p. 148)

*\show show, in the log and on the terminal, the meaning of a specified
token (p. 253)

*\showbox display the contents of a specified box register (p. 253)

*\showboxbreadth maximum number of items shown on each nesting
level, by default 5 (p. 261)

*\showboxdepth maximum nesting level shown, by default 3 (p. 261)

\showhyphens show, in the log and on the terminal, hyphenations in
the specified text (p. 128)

*\showlists display all lists being worked on (p. 253)

*\showthe show, in the log and on the terminal, what \the would
produce (p. 253)

\sigma math Greek letter σ (p. 187)

\Sigma math Greek letter Σ (p. 187)

\sim similarity relation: ∼ (p. 190)

\simeq similar or equal relation: ' (p. 190)

\sin sine function: sin (p. 193)

\sinh hyperbolic sine function: sinh (p. 193)

\skew shift a specified accent by a specified amount on a specified
accented character (p. 212)

*\skewchar character in a specified font used for positioning accents
(p. 213)

*\skip the specified glue register (p. 242)

*\skipdef define a specified control sequence to be a number
corresponding to a \skip register (p. 245)

\sl use slanted type, i.e., do \tensl\fam=\slfam (p. 103)

\slash / character that allows a line break (p. 122)

\slfam slanted family for math (p. 210)

\smallbreak indicate somewhat desirable page break with \penalty-50

and produce \smallskipamount glue (p. 137)
\smallint small integral symbol: ∫ (p. 194)

\smallskip produce \smallskipamount glue (p. 154)

TEX for the Impatient No 355

3 Jan 2020 2:18 p.m.

Capsule summary of commands 335

\smallskipamount glue for a small vertical skip, by default 3 pt plus
1 pt minus 1 pt (p. 155)

\smash produce formula with zero height and depth (p. 169)

\smile smile relation: ^ (p. 190)

\sp implicit superscript character (p. 197)

\space produce normal interword glue (p. 105)

*\spacefactor modifies stretch and shrink of interword glue if not 1000
(p. 107)

*\spaceskip if nonzero and \spacefactor < 2000, overrides the normal
interword glue (p. 107)

\spadesuit spade suit symbol: ♠ (p. 188)

*\span either combine entries in an alignment body or expand tokens in
a preamble (p. 181)

*\special write tokens to the .dvi file to be interpreted by a
DVI-reading program (p. 250)

*\splitbotmark last mark item in a box resulting from \vsplit (p. 144)

*\splitfirstmark first mark item in a box resulting from \vsplit

(p. 144)
*\splitmaxdepth maximum depth of a box resulting from \vsplit

(p. 150)
*\splittopskip glue TEX inserts at the top of a box resulting from

\vsplit (p. 150)
\sqcap square cap operator: u (p. 189)

\sqcup square cup operator: t (p. 189)

\sqrt produce square root of a subformula, as in
√

2 (p. 206)

\sqsubseteq square subset or equal relation: v (p. 190)

\sqsupseteq square superset or equal relation: w (p. 190)

\ss German letter: ß (p. 97)

\star star operator: ? (p. 189)

*\string produce a specified token, most commonly a control sequence,
as characters (p. 226)

\strut box with zero width, but height and depth of a standard line,
from baseline to baseline, in the current font (p. 167)

\subset subset relation: ⊂ (p. 190)

\subseteq subset or equal relation: ⊆ (p. 190)

\succ successor relation: � (p. 190)

\succeq successor or equal relation: � (p. 190)

\sum large summation operator:
∑

(p. 194)

\sup superior function: sup (p. 193)

\supereject force a page break, and output all insertions (p. 137)

\supset superset relation: ⊃ (p. 190)

\supseteq superset or equal relation: ⊇ (p. 190)

TEX for the Impatient No 356

3 Jan 2020 2:18 p.m.

336 Capsule summary of commands \ §13

\surd surd symbol:
√

(p. 188)

\swarrow southwest arrow relation: ↙ (p. 192)

\t tie-after accent for text, as in �uu (p. 100)

\tabalign equivalent to \+, except it’s not \outer (p. 176)

*\tabskip glue between columns (or rows) of an alignment (p. 184)

\tan tangent function: tan (p. 193)

\tanh hyperbolic tangent function: tanh (p. 193)

\tau math Greek letter τ (p. 187)

\tenbf use 10-point bold font, cmbx10 (p. 102)

\tenex use 10-point math extension font, cmex10 (p. 102)

\teni use 10-point math italic font, cmmi10 (p. 102)

\tenit use 10-point text italic font, cmti10 (p. 102)

\tenrm use 10-point roman text font, cmr10 (p. 102)

\tensl use 10-point slanted roman font, cmsl10 (p. 102)

\tensy use 10-point math symbol font, cmsy10 (p. 102)

\tentt use 10-point typewriter font, cmtt10 (p. 102)

\TeX produce the TEX logo (p. 98)

*\textfont the text style font in a specified math family (p. 210)

\textindent like \item, but doesn’t do hanging indentation (p. 112)

*\textstyle use textstyle size in a formula (p. 198)

*\the give the value of a specified token (p. 234)

\theta math Greek letter θ (p. 187)

\Theta math Greek letter Θ (p. 187)

*\thickmuskip glue for a thick math space, by default 5 mu plus 5 mu
(p. 214)

*\thinmuskip glue for a thin math space, by default 3 mu (p. 214)

\thinspace kern 1/6 em (p. 153)

\tilde tilde accent for math, as in x̃ (p. 199)

*\time the time of day, in minutes since midnight (p. 224)

\times times operator: × (p. 189)

*\toks the specified token register (p. 242)

*\toksdef define a specified control sequence to be a number
corresponding to a \toks register (p. 245)

*\tolerance badness tolerance for line breaks with hyphenation (p. 123)

\to mapping relation: → (p. 192)

\top lattice top symbol: > (p. 188)

\topglue produce specified vertical glue at the top of a page (p. 156)

\topinsert produce the specified text at top of a page (p. 146)

*\topmark \botmark before the current page was boxed (p. 144)

*\topskip glue between the headline and the first line of text on a page,
by default 10 pt (p. 141)

TEX for the Impatient No 357

3 Jan 2020 2:18 p.m.

Capsule summary of commands 337

\tracingall turn on maximal tracing (p. 261)

*\tracingcommands display execution of commands (p. 257)

*\tracinglostchars display characters that are asked for, but not
defined (p. 257)

*\tracingmacros display macro expansions (p. 258)

*\tracingonline show diagnostic output on the terminal as well as in
the log file (p. 256)

*\tracingoutput display contents of shipped-out boxes (p. 258)

*\tracingpages display page break calculations (p. 259)

*\tracingparagraphs display line break calculations (p. 259)

*\tracingrestores display values restored at the end of a group
(p. 260)

*\tracingstats display memory usage statistics (p. 260)

\triangle triangle symbol: 4 (p. 188)

\triangleleft left triangle operator: / (p. 189)

\triangleright right triangle operator: . (p. 189)

\tt use typewriter type, i.e., do \tentt\fam=\ttfam (p. 103)

\ttfam typewriter family for math (p. 210)

\ttraggedright use typewriter type and allow right margins of
paragraphs to vary from line to line (p. 116)

\u breve accent for text, as in r̆ (p. 100)

*\uccode the character code for the uppercase form of a letter (p. 103)

*\uchyph if positive, consider hyphenating words that start with a
capital letter (p. 128)

\underbar underline the specified text without avoiding any descenders,
as in fog (p. 163)

\underbrace produce a brace covering the bottom of a formula, as in
x+ x︸ ︷︷ ︸ (p. 202)

*\underline underline a math formula below the descenders, as in
x+ y (p. 202)

*\unhbox append the contents of the box in a specified box register
to the current list, and void the register; legal only in horizontal
modes (p. 165)

*\unhcopy like \unhbox, but doesn’t void the register (p. 165)

*\unkern if the last item on the current list is a kern, remove it (p. 172)

*\unpenalty if the last item on the current list is a penalty, remove it
(p. 172)

*\unskip if the last item on the current list is glue, remove it (p. 172)

*\unvbox append the contents of the box in a specified box register to
the current list, and void the register; legal only in vertical modes
(p. 165)

*\unvcopy like \unvbox, but doesn’t void the register (p. 165)

TEX for the Impatient No 358

3 Jan 2020 2:18 p.m.

338 Capsule summary of commands \ §13

\uparrow relation: ↑ (p. 192)

\Uparrow relation: ⇑ (p. 192)

\upbracefill fill enclosing hbox with an upwards facing brace:︸ ︷︷ ︸ (p. 211)

\updownarrow relation: l (p. 192)

\Updownarrow relation: m (p. 192)

\uplus cupped plus operator:] (p. 189)

*\uppercase convert lowercase letters in the specified text to uppercase
(p. 104)

\upsilon math Greek letter υ (p. 187)

\Upsilon math Greek letter Υ (p. 187)

\v check accent for text, as in ǒ (p. 100)

*\vadjust produce vertical mode material after the current line (p. 120)

*\valign align text in rows (p. 179)

\varepsilon variant math Greek letter ε (p. 187)

\varphi variant math Greek letter ϕ (p. 187)

\varpi variant math Greek letter $ (p. 187)

\varrho variant math Greek letter % (p. 187)

\varsigma variant Greek letter ς (p. 187)

\vartheta variant math Greek letter ϑ (p. 187)

*\vbadness badness threshold for reporting underfull or overfull vboxes,
by default 1000 (p. 170)

*\vbox produce a vbox whose baseline is that of the bottom box enclosed
(p. 161)

*\vcenter center the specified text on the math axis (p. 213)

\vdash left turnstile symbol: ` (p. 190)

\vdots vertical dots for math:
... (p. 203)

\vec vector accent for math, as in ~x (p. 199)

\vee logical “or” operator: ∨ (p. 189)

\vert bar relation: | (p. 188)

\Vert double bar relation: ‖ (p. 188)

*\vfil produce infinitely stretchable vertical glue (p. 157)

*\vfill produce even more infinitely stretchable vertical glue than that
produced by \vfil (p. 157)

*\vfilneg produce infinitely negative stretchable vertical glue (p. 159)

\vfootnote produce a specified footnote with a specified reference
mark, but don’t produce the reference mark in the text (p. 145)

*\vfuzz space threshold for reporting overfull vboxes, by default 0.1 pt
(p. 171)

\vglue produce specified vertical glue that doesn’t disappear at page
breaks (p. 156)

TEX for the Impatient No 359

3 Jan 2020 2:18 p.m.

Capsule summary of commands 339

*\voffset vertical offset relative to one inch from the paper’s top edge
(p. 140)

\vphantom produce an invisible formula with zero width but natural
height and depth (p. 169)

*\vrule produce a vertical rule; legal only in horizontal modes (p. 172)

*\vsize page height, by default 8.9 in (p. 140)

*\vskip produce specified vertical glue (p. 155)

*\vsplit break the contents of a specified box register to the specified
height (p. 149)

*\vss produce vertical glue that is infinitely stretchable and infinitely
shrinkable (p. 158)

*\vtop produce a vbox whose baseline is that of the top box enclosed
(p. 161)

*\wd the width of the box in a specified box register (p. 167)

\wedge logical “and” operator: ∧ (p. 189)

\widehat math accent, as in ̂y + z + a (p. 199)

\widetilde math accent ˜b+ c+ d (p. 199)

*\widowpenalty penalty for a single line beginning a page, by default 150
(p. 138)

\wlog \write the specified token list in the log file (p. 261)

\wp Weierstraß ‘p’ symbol: ℘ (p. 188)

\wr wreath product operator: o (p. 189)

*\write write a line to a specified output stream (p. 249)

*\xdef equivalent to \global\edef, i.e., globally define a macro,
immediately expanding the replacement text (p. 231)

\xi math Greek letter ξ (p. 187)

\Xi math Greek letter Ξ (p. 187)

*\xleaders produce leaders with leftover space distributed equally
between the leader boxes (p. 174)

*\xspaceskip if nonzero and \spacefactor ≥ 2000, overrides the
normal interword glue (p. 107)

*\year the current year, as a number (p. 225)

\zeta math Greek letter ζ (p. 187)

TEX for the Impatient No 360

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 361

3 Jan 2020 2:18 p.m.

GNU Free Documentation
License

Version 1.3, 3 November 2008
Copyright c© 2000,2001,2002,2007,2008 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this li-
cense document, but changing it is not allowed.

1. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document “free” in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be
used for any textual work, regardless of subject matter or whether it is

TEX for the Impatient No 362

3 Jan 2020 2:18 p.m.

342 GNU Free Documentation License

published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed
as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject (or
to related matters) and contains nothing that could fall directly within
that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the sub-
ject or with related matters, or of legal, commercial, philosophical, ethical
or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that says
that the Document is released under this License. If a section does not fit
the above definition of Secondary then it is not allowed to be designated
as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable
copy, represented in a format whose specification is available to the gen-
eral public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a
variety of formats suitable for input to text formatters. A copy made in an

TEX for the Impatient No 363

3 Jan 2020 2:18 p.m.

VERBATIM COPYING 343

otherwise Transparent file format whose markup, or absence of markup,
has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used
for any substantial amount of text. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LATEX input format,
SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human
modification. Examples of transparent image formats include PNG,
XCF and JPG. Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML
for which the DTD and/or processing tools are not generally avail-
able, and the machine-generated HTML, PostScript or PDF produced
by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

The ”publisher” means any person or entity that distributes copies of
the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses follow-
ing text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title”
of such a section when you modify the Document means that it remains
a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these
Warranty Disclaimers may have is void and has no effect on the meaning
of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-

TEX for the Impatient No 364

3 Jan 2020 2:18 p.m.

344 GNU Free Documentation License

ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you
make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must
also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you must enclose the copies in
covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the
title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as
they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when
you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at
least one year after the last time you distribute an Opaque copy (directly
or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

TEX for the Impatient No 365

3 Jan 2020 2:18 p.m.

MODIFICATIONS 345

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document un-
der the conditions of sections 2 and 3 above, provided that you release the
Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modifica-
tion of the Modified Version to whoever possesses a copy of it. In addition,
you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from
that of the Document, and from those of previous versions (which should,
if there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release you
from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent
to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the terms
of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to
it an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise the
network locations given in the Document for previous versions it was
based on. These may be placed in the “History” section. You may omit a
network location for a work that was published at least four years before

TEX for the Impatient No 366

3 Jan 2020 2:18 p.m.

346 GNU Free Documentation License

the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are not
considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appen-
dices that qualify as Secondary Sections and contain no material copied
from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties–for
example, statements of peer review or that the text has been approved by
an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and
a passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through arrange-
ments made by) any one entity. If the Document already includes a cover
text for the same cover, previously added by you or by arrangement made
by the same entity you are acting on behalf of, you may not add another;
but you may replace the old one, on explicit permission from the previous
publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified

TEX for the Impatient No 367

3 Jan 2020 2:18 p.m.

COLLECTIONS OF DOCUMENTS 347

versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as
Invariant Sections of your combined work in its license notice, and that
you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of
the combined work.

In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “His-
tory”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and dis-
tribute it individually under this License, provided you insert a copy of
this License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting
from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works
of the Document.

TEX for the Impatient No 368

3 Jan 2020 2:18 p.m.

348 GNU Free Documentation License

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing In-
variant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all In-
variant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the li-
cense notices in the Document, and any Warranty Disclaimers, provided
that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagree-
ment between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedi-
cations”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and
until the copyright holder explicitly and finally terminates your license,
and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of viola-
tion of this License (for any work) from that copyright holder, and you
cure the violation prior to 30 days after your receipt of the notice.

TEX for the Impatient No 369

3 Jan 2020 2:18 p.m.

FUTURE REVISIONS OF THIS LICENSE 349

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does not
give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License
“or any later version” applies to it, you have the option of following
the terms and conditions either of that specified version or of any later
version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this
License, you may choose any version ever published (not as a draft) by
the Free Software Foundation. If the Document specifies that a proxy
can decide which future versions of this License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING
”Massive Multiauthor Collaboration Site” (or ”MMC Site”) means any

World Wide Web server that publishes copyrightable works and also pro-
vides prominent facilities for anybody to edit those works. A public wiki
that anybody can edit is an example of such a server. A ”Massive Multi-
author Collaboration” (or ”MMC”) contained in the site means any set
of copyrightable works thus published on the MMC site.

”CC-BY-SA” means the Creative Commons Attribution-Share Alike
3.0 license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco, Califor-
nia, as well as future copyleft versions of that license published by that
same organization.

”Incorporate” means to publish or republish a Document, in whole or
in part, as part of another Document.

An MMC is ”eligible for relicensing” if it is licensed under this License,
and if all works that were first published under this License somewhere
other than this MMC, and subsequently incorporated in whole or in part
into the MMC, (1) had no cover texts or invariant sections, and (2) were
thus incorporated prior to November 1, 2008.

TEX for the Impatient No 370

3 Jan 2020 2:18 p.m.

350 GNU Free Documentation License

The operator of an MMC Site may republish an MMC contained in
the site under CC-BY-SA on the same site at any time before August 1,
2009, provided the MMC is eligible for relicensing.

11. ADDENDUM: How to use this License
for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and license
notices just after the title page:

Copyright c© YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover
Texts, replace the “with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the

Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of free
software license, such as the GNU General Public License, to permit their
use in free software.

TEX for the Impatient No 371

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 372

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 373

3 Jan 2020 2:18 p.m.

Index

In the entries of this index, a page number in italics indicates a principal
or defining entry.

 , 3, 53

\ , 104, 105, 313

!, 13

\!, 214, 313

\", 100, 313

#, 26, 45, 75, 314

category code of, 53

in ordinary text, 15

\#, 15, 98, 314

$, 16, 26, 93, 314

category code of, 53

in ordinary text, 15

\$, 15, 98, 314

$$, 16, 61

%, 13, 26, 314

category code of, 53

in ordinary text, 15

to eliminate unwanted spaces, 270

writing out, 292

\%, 15, 98, 314

&, 26, 44, 45, 314

category code of, 53

in ordinary text, 15

\&, 15, 98, 314

’, 188, 314

\’, 100, 314

), 59

*, 190, 314

\+, 44–45, 176, 314

\,, 214, 314

-, 14

leads to \hyphenpenalty, 125

\-, 70, 126, 314

in line breaking, 74, 268

--, 14

---, 14

., 13

\., 100, 314

/, 59

\/, 106, 314

\;, 214, 314

=, 191

\=, 100, 314

\>, 214, 314

?, 13

[, 59

\, 26, 57, 61, 314

category code of, 53

in ordinary text, 15

], 59

^, 26, 197, 314

category code of, 53

in ordinary text, 15

\^, 100, 314

^^?, 53

^^@, 53

^^A, 53, 54

^^I, 53, 55

^^J, 55

^^K, 53, 54

TEX for the Impatient No 374

3 Jan 2020 2:18 p.m.

354 Index

^^L, 53, 292, 314

^^M, 55, 105, 291, 314

category code of, 53

_, 26, 197, 314

category code of, 53

in ordinary text, 15

_, 15, 98, 314

\‘, 100, 314

{, 26, 227, 314

category code of, 53

in ordinary text, 15

starting a group, 15, 68

with \expandafter, 233

\{, 59, 191, 314

|, 189

\|, 188, 314

}, 26, 227, 314

category code of, 53

ending a group, 15, 68

in ordinary text, 15

\}, 59, 191, 314

~, 13, 26, 53, 105, 268, 314

in line breaking, 74

in ordinary text, 15

\~, 100, 314

\aa, 97, 314

\AA, 97, 314

\above, 200, 314

\abovecolumnspenalty, 308

\abovedisplayshortskip, 217, 271,
314

\abovedisplayskip, 217, 271, 315

abovewithdelims, 58

\abovewithdelims, 201, 315

\accent, 100, 315

accents, 26, 100, 199

aligning, 212–213

\active, 43, 251, 315

active characters, 43–44, 53, 54

\acute, 199, 315

acute accent, 100, 199

\adjdemerits, 125, 315

\advance, 245, 315

\advancepageno, 142, 315

\ae, 97, 315

\AE, 97, 315

\afterassignment, 229, 315

\aftergroup, 229, 307, 315

\aleph, 188, 315

alignments, 44–46

commands for, 176–185

outer control sequence in, 279

space between rows of, 135

tab character for, 53

using \offinterlineskip in, 135

\allowbreak, 121, 136, 315

\alpha, 187, 315

\amalg, 189, 315

AMS-TEX, viii, 18

\AMSTeX, 294

anatomy of TEX, 16, 46–47

\angle, 188, 315

\approx, 190, 191, 315

\arccos, 193, 315

\arcsin, 193, 315

\arctan, 193, 315

\arg, 193, 315

〈argument〉, 4

arguments, 4, 11, 48–49

arithmetic, 245–246

arrows, 175, 192–193, 202

\arrowvert, 212, 315

\Arrowvert, 212, 315

ASCII, 49 , 53, 55, 64

assignments, 49–50, 87

of boxes, 164

of registers, 242

\ast, 189, 315

\asymp, 190, 191, 315

\atop, 200, 315

\atopwithdelims, 58, 201, 315

auxiliary files, 226

axis, 213

\b, 199, 315

backslash, 227

\backslash, 59, 188, 315

badness, 50, 60

\badness, 18, 170, 315

\bar, 199, 316

bar accent, 199

bar-under accent, 199

baselines, 28, 51, 88

\baselineskip, 70, 133–134, 135, 316

and \smallskipamount, etc., 155

and preserving end of page, 267

\batchmode, 253, 316

\begingroup, 227, 316

\beginsection, 129, 316

\belowdisplayshortskip, 217, 316

\belowdisplayskip, 217, 316

beta, 188

\beta, 187, 316

\bf, 103, 316

TEX for the Impatient No 375

3 Jan 2020 2:18 p.m.

Index 355

\bffam, 210, 316

\bgroup, 227, 316

bibliographies, 14

BIBTEX, 19

\BibTeX, 294

\big, 211, 316

\Big, 211, 316

\bigbreak, 137, 316

\bigcap, 194, 316

\bigcirc, 189, 316

\bigcup, 194, 316

\bigg, 211, 316

\Bigg, 211, 316

\biggl, 211, 316

\Biggl, 211, 316

\biggm, 211, 316

\Biggm, 211, 316

\biggr, 211, 316

\Biggr, 211, 316

\bigl, 58, 211, 316

\Bigl, 211, 316

\bigm, 189, 211, 316

\Bigm, 211, 316

\bigodot, 194, 316

\bigoplus, 194, 316

\bigotimes, 194, 316

\bigr, 58, 211, 316

\Bigr, 211, 316

\bigskip, 137, 154, 317

\bigskipamount, 155, 317

\bigsqcup, 194, 317

\bigtriangledown, 189, 317

\bigtriangleup, 189, 317

\biguplus, 194, 317

\bigvee, 194, 317

\bigwedge, 194, 317

\binoppenalty, 126, 317

\blackbox, 294

\bmod, 193, 317

\bordermatrix, 205, 317

\bot, 188, 317

\botmark, 79, 80, 144, 317

bottom margin, 66

\bowtie, 190, 317

\box, 164, 165, 317

box commands, 160–171

box registers, 52, 89, 164–166, 167

reserved by \newbox, 244

boxes, 17, 51–53

baselines of, 51

copying, 164, 165

depth of, 60

drawing, 30

empty, 169

extracting contents of, 165

glue with, 66

height of, 69

invisible, 92

last box in a list, 171

overfull, 170–171, 268–270

phantom, 168–169

reference point of, 88

shifting, 166–167

testing if void, 238

underfull, 170–171, 268–270

width of, 95

\boxmaxdepth, 52, 162, 163, 317

\box255, 84, 90, 144, 148

\brace, 200, 317

braces, 202, 211

mismatched, 275

space after, 270

\bracevert, 212, 317

\brack, 200, 317

\break, 74, 120, 136, 317

correcting line breaks with, 268

end of line as, 278

\breve, 199, 317

breve accent, 100, 199

\brokenpenalty, 139, 317

\buildrel, 202, 317

\bullet, 189, 317

\bye, 246, 317

\c, 100, 317

\cal, 209, 317

\cap, 189, 317

card suits, 26, 188

case conversion, 103–104

case testing, 239

\cases, 201, 317

\catcode, 43, 53, 61, 251, 317

category codes, 53–55

attached during input, 55

cause of unwanted spaces, 270

changing, 280

for verbatim text, 277

in \catcode table, 251

of active characters, 43

testing, 235

useful definitions for, 291

\cdot, 189, 196, 317

\cdotp, 196, 317

\cdots, 203, 317

cedilla accent, 100

\center, 306

TEX for the Impatient No 376

3 Jan 2020 2:18 p.m.

356 Index

centered text, 68, 71, 306–307

\centereddisplays, 295

centering, 32, 108–109

\centerline, 68, 108, 317

centimeter, 60

\char, 53, 56, 99, 318

character tokens, 292

characters, 49, 55–56, 99

ASCII codes for, 82

category code of, 53

defined by \chardef, 232

special, 26

〈charcode〉, 4

\chardef, 232, 234, 318

\check, 199, 318

check accent, 100, 199

\chi, 187, 318

\choose, 200, 318

cicero, 60

\circ, 189, 318

circumflex accent, 100

class, 56, 210, 218

of a delimiter, 59

\cleaders, 72–73, 174, 318

\cleartabs, 177, 318

\closein, 63, 248, 318

\closeout, 63, 249, 318

whatsit produced by, 95

with \immediate, 250

closing, 191

club line, 138

\clubpenalty, 138, 318

\clubsuit, 188, 318

cmex10, 212

cmtt10, 109

\colon, 196, 318

combinations, notation for, 201

commands, 3, 10–11, 56

arguments of, 48

versus control sequences, 11

comments, 13, 22, 53

Computer Modern fonts, 34, 49, 64,

109

computer programs, typesetting, 122,
277, 280

conditional tests, 57, 235–240

\cong, 190, 191, 318

control characters, 7, 49, 55

control sequences, 10–11, 57

absorbing spaces, 10

as tokens, 16

converting to strings, 226

defining with \let, 232

versus commands, 11

control space, 10, 104, 270

control symbols, 10, 57, 58

control words, 10, 57, 58

controlling TEX, 252–253

\coprod, 194, 318

\copy, 164, 318

\copyright, 98, 318

\cos, 193, 318

\cosh, 193, 318

\cot, 193, 318

\coth, 193, 318

\count, 48, 242, 246, 318

count registers, 89, 242

reserved by \newcount, 244

\countdef, 245, 318

\count0, 142

\cr, 44–46, 180, 318

cramped variants, 93

\crcr, 180, 318

cross-references, 302

\csc, 193, 318

\csname, 226, 233, 318

expanded by \edef rules, 231

\cup, 189, 318

\d, 100, 318

\dag, 98, 318

\dagger, 189, 318

dashes, 14, 22

\dashv, 190, 318

date, 225, 297

\day, 225, 297, 318

\ddag, 98, 318

\ddagger, 189, 318

\ddot, 199, 319

\ddots, 203, 319

\deadcycles, 148, 319

debugging, 253–261

decimal constant, 58, 83

decimal point, 83

\def, 57, 230, 319

making global, 66

\defaulthyphenchar, 129, 319

\defaultskewchar, 213, 319

\deg, 193, 319

\delcode, 59, 207, 251, 319

delimited arguments, 48

\delimiter, 59, 204, 319

delimiter codes, 59–60, 207, 251

\delimiterfactor, 205, 319

delimiters, 58–60, 191–192, 204–205

enlarging, 211

TEX for the Impatient No 377

3 Jan 2020 2:18 p.m.

Index 357

height of, 205

null, space for, 217

parts of, 212

\delimitershortfall, 205, 319

\delta, 187, 319

\Delta, 187, 319

demerits, 60, 74

depth, 51, 60, 167

description lists, 30

design size, 78

\det, 193, 197, 319

device drivers, 8, 64, 222, 250

instructions from \special, 250

page origin known to, 141

diacritical marks. See accents

diagnostic aids, 253–261

\diamond, 189, 319

\diamondsuit, 188, 319

didôt point, 60

\dim, 193, 319

\dimen, 242, 246, 319

〈dimen〉, 4, 276

\dimendef, 245, 319

dimension registers, 89, 242

reserved by \newdimen, 244

dimensions, 60–61

comparing, 237

maximum, 244

negative, 61

of box registers, 167

\discretionary, 127, 319

discretionary hyphens, 70, 74, 125,
126

bad line breaks, correcting with,

268

overfull boxes, correcting with,

269

display math, 16, 61

display math mode, 80, 81

display style, 93, 194, 198

\displayindent, 216, 319

\displaylimits, 195, 319

\displaylines, 208, 297, 319

displays

actions for every display, 218

multiline, 208–209

spacing parameters for, 216–217

displays, formatting, 295

\displaysetup, 296

\displaystyle, 93, 198, 319

\displaywidowpenalty, 138, 319

\displaywidth, 216, 319

\div, 189, 319

\divide, 246, 319

\dot, 199, 319

dot accent, 100, 199

\doteq, 190, 319

\dotfill, 175, 319

dotless letters, 100

dots, 99, 203

\dots, 99, 319

double columns, 309

double dot accent, 199

double spacing, 134

\doublehyphendemerits, 125, 320

\downarrow, 59, 192, 320

\Downarrow, 59, 192, 320

\downbracefill, 211, 320

\dp, 167, 320

drawing lines. See rules

drivers. See device drivers

\dump, 65, 263, 320

.dvi file, 8

as a result file, 62

boxes recorded in log file, 258

converted by driver, 65

created by TEX’s intestines, 16,

47

material from output routine, 83,

84, 85

material inserted by \special, 95

receives boxes from \shipout, 148

whatsits in, 95

\edef, 230, 320

expansion of \’c in, 82

making global, 66

\egroup, 227, 320

\ehrule, 292

\eject, 137, 266, 320

El Paso, 93

\ell, 188, 320

ellipsis, 99

\else, 57, 239, 320

em, 60

\emergencystretch, 18, 123, 124, 268,

320

\empty, 241, 320

\emptyset, 188, 320

en, 154

\end, 247, 320

end of file, testing for, 239

end of line, 53, 91, 105

\endcsname, 320

\endgraf, 111, 320

\endgroup, 227, 320

TEX for the Impatient No 378

3 Jan 2020 2:18 p.m.

358 Index

ending the job, 246

\endinput, 247, 320

\endinsert, 147, 320

\endline, 180, 320

\endlinechar, 252, 281, 320

\enskip, 154, 320

\enspace, 154, 320

entry (column or row), 44, 178–179

enumerations, 298–300

\environment, 305

environments, 304

eplain.tex, 19, 291–311

\epsilon, 187, 320

\eq, 295

\eqalign, 208, 320

\eqalignno, 208, 297, 320

\eqdef, 304

\eqn, 295

\eqno, 207, 320

\eqprint, 304

\eqref, 304

equation numbers, 208

equations, labelling, 304

\equiv, 190, 191, 320

\errhelp, 261, 262, 320

\errmessage, 261, 320

expanded by \edef rules, 231

error messages, 9, 261–262, 283–288

\errorcontextlines, 18, 262, 288, 320

\errorstopmode, 252, 321

escape character, 57, 58, 61

category code of, 53

represented by \escapechar, 226

\escapechar, 61, 226, 250, 321

\eta, 187, 321

European alphabets, 97

European languages, 74, 128

\everycr, 180, 185, 321

\everydisplay, 218, 296, 299, 321

\everyfootnote, 309

\everyhbox, 164, 321

\everyjob, 263, 321

\everymath, 218, 321

\everypar, 87, 110, 113, 321

for hanging indentation, 117

for setting \looseness, 124

\everyvbox, 164, 321

\evrule, 292

ex, 60

exclamation point, 13

\exhyphenpenalty, 125, 321

\exists, 188, 321

\exp, 193, 321

\expandafter, 231, 233, 321

expanding tokens, 16

extra space, 214, 258

eyes, 16, 46

See also anatomy of TEX

factor, 61

\fam, 210, 321

family, 62

as part of mathcode, 80

given by \fam, 210

reserved by \newfam, 244

script size in, 91

scriptscript size in, 91

text size in, 93

variable, 81

\fi, 57, 240, 321

fil, 61, 67

\filbreak, 137, 266, 321

file names, 63

files, 62–63, 247–251

testing for existence of, 295

fill, 175

fill, 61, 67

filll, 61, 67

\finalhyphendemerits, 126, 321

\firstmark, 79, 80, 144, 321

\fivebf, 102, 321

\fivei, 102, 321

\fiverm, 102, 321

\fivesy, 102, 321

\flat, 188, 321

floating material, 139, 146

\floatingpenalty, 139, 321

flush left, 32, 68, 108–109, 306–307

flush right, 32, 68, 108–109, 306–307

\flushleft, 306

\flushright, 306

\fmtname, 225, 321

\fmtversion, 225, 321

\folio, 143, 321

\font, 129, 213, 221, 293, 321

font files, 8

\fontdimen, 222, 293, 321

\fontname, 227, 321

fonts, 26, 64–65, 102, 209

composite, 276–277

families of, 62

hyphenation characters for, 129

names of, 227

naming and modifying, 221–224

parameters of, 222

footers, 65, 86

TEX for the Impatient No 379

3 Jan 2020 2:18 p.m.

Index 359

marks used in, 79

multiple-line, 274–275

\footline, 65, 86, 143, 274, 322

\footnote, 70, 145, 147, 322

\footnotemarkseparation, 309

footnotes, 22, 309

using \textindent with, 112

\for, 293

for loop, 293

\forall, 188, 322

forbidden control sequence, 279

foreign languages, 18

See also European languages

form feed, 53

format file, 65, 263

\frac, 294

fractions, 200–202

produced by \over, 200

slashed form, 294

\frenchspacing, 14, 106, 322

\frown, 190, 322

functions, names of, 193–194

\futurelet, 232, 322

\gamma, 187, 322

\Gamma, 187, 322

\gcd, 193, 322

\gdef, 66, 228, 231, 322

\ge, 190, 191, 322

\generaldisplay, 296

\geq, 190, 191, 322

\gets, 192, 322

.gf file, 8, 65

\gg, 190, 322

global, 65–66

\global, 65, 228, 229, 322

\globaldefs, 65, 228, 281, 322

glue, 17, 66–68, 215

creating space with, 91

infinitely shrinkable, 68

infinitely stretchable, 157–158

last glue item in a list, 171

mathematical, 82

negative, 159

glue registers, 89

〈glue〉, 4

\gobble, 291

\gobblethree, 291

\gobbletwo, 291

\goodbreak, 137, 322

\grave, 199, 322

grave accent, 100, 199

Greek letters, 187–188, 210

groups, 15–16, 53, 68–69, 227–229

gullet, 46, 47, 53

\H, 100, 322

\halign, 45–46, 178, 180, 322

grouping for, 16

illegal in math mode, 297

inherently vertical, 69

\hang, 117, 272, 322

\hangafter, 117, 118, 322

\hangindent, 87, 117, 118, 272, 322

hanging indentation, 117

\hat, 199, 322

hat accent, 199

\hbadness, 123, 170, 322

\hbar, 188, 322

hbox

constructing with \hbox, 161

\hbox, 51, 160, 268, 322

overfull box from, 269–270

hboxes, 51, 69

constructing with \hbox, 160

controlling line breaks, 74

horizontal mode for, 69

testing for, 238

headers, 69, 86

marks used in, 79

multiple-line, 274–275

\headline, 69, 86, 143, 274, 322

\heartsuit, 188, 322

height, 51, 69, 167

help message, 262

help text, 262

hexadecimal digit, 55

hexadecimal numbers, 82

\hfil, 157, 159, 160, 270, 322

\hfill, 157, 322

\hfilneg, 159, 322

\hfuzz, 123, 171, 269, 322

\hglue, 156, 157, 323

\hidewidth, 184, 323

\hoffset, 79, 86, 140, 323

\holdinginserts, 18, 149, 323

\hom, 193, 323

\hookleftarrow, 192, 323

\hookrightarrow, 192, 323

horizontal braces, 211

horizontal glue, 155, 156

horizontal lists, 51, 66, 69

can’t contain vertical commands,
69

hboxes formed from, 69

penalties in, 88

TEX for the Impatient No 380

3 Jan 2020 2:18 p.m.

360 Index

rule in, 90

horizontal mode, 69–70, 81

rules in, 173

testing for, 238

horizontal rules, 90–91, 172–173

horizontal skip, 155

horizontal space, 153–154, 155–159

horizontal tab, 53

\hphantom, 169, 323

\hrule, 90–91, 172, 273, 323

inherently vertical, 69

\hrulefill, 175, 323

\hsize, 79, 86, 114, 140, 323

set by \magnification, 223

\hskip, 66, 155, 323

\hss, 158, 269, 323

\ht, 167, 323

Hungarian umlaut accent, 100

hyphenation, 32, 70, 126–129, 139

German, 127

penalties for, 125–126

\hyphenation, 70, 127, 323

hyphenation rules, 128

\hyphenchar, 129, 234, 323

\hyphenpenalty, 125, 139, 323

hypotheses, 131

\i, 100, 323

\ialign, 180, 323

\if, 235, 323

\ifcase, 239, 323

\ifcat, 235, 323

\ifdim, 237, 323

\ifempty, 293

\ifeof, 239, 323

\ifeqno, 295

\iff, 192, 323

\iffalse, 239, 323

\ifhbox, 238, 323

\ifhmode, 238, 323

\ifinner, 238, 323

\ifleqno, 295

\ifmmode, 238, 323

\ifnum, 237, 323

\ifodd, 237, 324

\iftrue, 239, 324

\ifvbox, 238, 324

\ifvmode, 238, 324

\ifvoid, 147, 238, 324

\ifx, 236, 324

ignored characters, 53

\ignorespaces, 252, 324

\Im, 188, 324

\imath, 100, 188, 324

\immediate, 63, 95, 249, 250, 324

\in, 190, 324

inch, 60

incomplete conditional, 279

\indent, 87, 111, 324

indentation, 24, 111–119

\inf, 193, 324

\infty, 188, 324

initex, 65, 263

\input, 7, 46, 62, 247, 324

input characters, 280

input files, 9, 46, 247–248

embedded, 9

input lines, 252

input streams, 70

opening, 248

reading with \read, 62, 248

reserved by \newread, 244

input, preparing, 10

\inputlineno, 247, 324

\insert, 70, 147, 324

<inserted text>, 286

insertions, 70

commands for, 146–148

forced out by \supereject, 137

numbers reserved by \newinsert,
244

penalties for, 139

\insertpenalties, 139, 324

\int, 194, 195, 196, 324

limits after, 195

interline glue, 52, 70, 133–134

\interlinepenalty, 138, 324

internal mode

testing for, 238

internal vertical mode, 81, 94

interword spacing, 50, 106, 107

intestines, 16, 46, 47

See also anatomy of TEX

invalid character, 53, 54

\iota, 187, 324

\it, 103, 324

italic correction, 106

\item, 130, 324

\itemitem, 130, 324

itemized lists, 32, 130, 298–300

items, 71

\itfam, 210, 324

\j, 100, 324

\jmath, 100, 188, 324

\jobname, 225, 324

TEX for the Impatient No 381

3 Jan 2020 2:18 p.m.

Index 361

\jot, 215, 324

justification, 71, 108–109, 116

\kappa, 187, 324

\ker, 193, 324

\kern, 157, 324

kerns, 71–72, 157

as list items, 51

creating space with, 91

in math formulas, 215

last kern in a list, 171

Knuth, Donald E., 18, 294

\l, 97, 324

\L, 97, 324

\lambda, 187, 324

\Lambda, 187, 324

Lamport, Leslie, 18

\land, 189, 325

\langle, 59, 191, 325

\language, 18, 95, 128, 325

\lastbox, 171, 172, 325

\lastkern, 171, 234, 325

\lastpenalty, 171, 234, 325

\lastskip, 171, 234, 325

LATEX, viii, 18, 225

\LaTeX, 294

\lbrace, 59, 191, 325

\lbrack, 59, 98, 191, 325

\lccode, 103, 325

\lceil, 59, 191, 325

\ldotp, 196, 325

\ldots, 203, 325

\le, 190, 191, 325

leaders, 72–73, 174–176

\leaders, 72–73, 174, 325

\left, 58, 204, 325

\leftarrow, 192, 325

\Leftarrow, 192, 325

\leftarrowfill, 175, 325

\leftdisplays, 295, 296, 297

\leftharpoondown, 192, 325

\leftharpoonup, 192, 325

\lefthyphenmin, 18, 128, 325

\leftline, 68, 108, 325

\leftrightarrow, 192, 325

\Leftrightarrow, 192, 325

\leftskip, 71, 115, 272, 325

lemmas, 32, 131

\leq, 190, 191, 325

\leqalignno, 208, 297, 325

\leqno, 207, 325

\let, 57, 232, 325

\letreturn, 291, 293

letter, 53, 56

\letter, 291

\lfloor, 59, 191, 325

\lg, 193, 325

\lgroup, 204, 326

\li, 298

ligatures, 73–74, 97–98, 101

\lim, 193, 197, 326

\liminf, 193, 326

limits, 194

\limits, 195, 326

\limsup, 193, 326

\line, 109, 326

line breaking, 17, 47, 272

tracing, 259

line breaks, 74–75, 120–129

and paragraph shape, 114–120

bad, 268

badness for, 50

deleting, 13

demerits for, 60

encouraging or discouraging, 120–
122

in math formulas, 121

kerns at, 157

parameters affecting, 123–126

line length, 114

line spacing, 133

\linepenalty, 125, 326

\lineskip, 70, 133–134, 326

\lineskiplimit, 70, 133–134, 326

\listcompact, 298

\listing, 300

lists, 75

\ll, 190, 326

\llap, 109, 326

\lmoustache, 212, 326

\ln, 193, 326

\lnot, 188, 189, 326

local information, 7, 9, 128

\log, 193, 326

log file, 75, 313

as a result file, 62

error messages, 283

tracing statistics in, 260

written by \wlog, 261

written by \write, 250

\loggingall, 292

logos, 64

\long, 231, 236, 326

\longleftarrow, 192, 326

\Longleftarrow, 192, 326

TEX for the Impatient No 382

3 Jan 2020 2:18 p.m.

362 Index

\longleftrightarrow, 192, 326

\Longleftrightarrow, 192, 326

\longmapsto, 192, 326

\longrightarrow, 192, 326

\Longrightarrow, 192, 326

\loop, 240, 326

loops, 240–241

\looseness, 87, 124, 267, 326

\lor, 189, 326

\lower, 52, 166, 326

lower limits, 197

lowercase

conversion to, 103–104

\lowercase, 104, 326

\lq, 98, 326

macron accent, 100

macros, 75–78, 230–241

arguments of, 48, 280

controlling expansion of, 233–235

defining, 230–232

expanded in TEX’s stomach, 47

global, 66

in auxiliary files, 7

making readable, 281

named by active characters, 43

outer, 83, 279

parameters of, 48, 53, 75–77, 280

tracing, 258

using \begingroup and \endgroup

in, 227

using \bgroup and \egroup in,
228

\mag, 61, 78, 223, 326

magnification, 8, 61, 78

\magnification, 223, 326

\magstep, 78, 223, 326

\magstephalf, 78, 223, 224, 327

main vertical list, 84

\makeactive, 291

\makeblankbox, 294

\makecolumns, 307

\makefootline, 274

\makeheadline, 274

\mapsto, 192, 327

margins, 24, 79, 86

\mark, 79, 80, 144, 327

mark text, 79, 144

marks, 79–80, 144–145

for split lists, 144

with headers or footers, 86

math, 16, 38, 40, 187–219

accents, 199

math characters, 232

described by mathcodes, 80

math display, 138, 271

math extensions, 62

math mode, 80, 81

testing for, 238

math shift, 53

math symbols, 64, 198

\mathaccent, 199, 327

\mathbin, 218, 327

\mathchar, 99, 327

\mathchardef, 232, 234, 327

\mathchoice, 198, 327

\mathclose, 218, 327

\mathcode, 81, 205, 251, 252, 327

mathcodes, 80–81, 232

class encoded in, 56

mathematical units, 81, 82

\mathinner, 218, 327

\mathop, 218, 327

\mathopen, 218, 327

\mathord, 218, 327

\mathpalette, 198, 327

\mathpunct, 218, 327

\mathrel, 218, 327

\mathstrut, 92, 168, 327

\mathsurround, 217, 327

matrix, 205

\matrix, 205, 327

\max, 193, 327

\maxdeadcycles, 148, 327

\maxdepth, 141, 150, 327

\maxdimen, 244, 327

\meaning, 226, 327

\medbreak, 137, 327

\medmuskip, 214, 327

\medskip, 137, 154, 327

\medskipamount, 155, 327

\message, 261, 327

expanded by \edef rules, 231

messages, sending, 261–262

METAFONT, vii, 34

metrics file, 8, 59, 221

default hyphen in, 129

default skew character in, 213

italic correction in, 106

\MF, 294

\mid, 190, 327

\midinsert, 70, 146, 147, 328

millimeter, 60

\min, 193, 328

\mit, 209, 328

\mkern, 215, 328

TEX for the Impatient No 383

3 Jan 2020 2:18 p.m.

Index 363

\models, 190, 328

modes, 17, 81–82

modulus, 193, 194

\month, 225, 297, 328

\monthname, 297

mouth, 16, 46

See also anatomy of TEX

\moveleft, 52, 161, 166, 328

\moveright, 52, 161, 166, 328

\mp, 189, 328

\mskip, 82, 215, 328

mu, 82, 243

\mu, 187, 328

muglue, 82

muglue registers, 89

\multiply, 246, 328

\multispan, 182, 328

mushrooms, 36

music symbols, 26, 188

\muskip, 242, 246, 328

muskip registers, 243

reserved by \newmuskip, 244

\muskipdef, 245, 328

\nabla, 188, 328

\narrower, 114, 272, 328

\natural, 188, 328

\ne, 190, 328

\nearrow, 192, 328

\neg, 188, 189, 328

\negthinspace, 153, 328

\neq, 190, 328

\newbox, 53, 89, 244, 328

\newcount, 89, 242, 244, 328

\newdimen, 89, 244, 328

\newfam, 62, 244, 328

\newhelp, 262, 305, 328

\newif, 240, 328

\newinsert, 147, 244, 328

\newlanguage, 18, 244, 328

\newlinechar, 250, 261, 262, 328

\newmuskip, 89, 244, 328

\newread, 63, 244, 328

\newskip, 89, 244, 329

new TEX, 18, 156

\newtoks, 89, 244, 329

\newwrite, 63, 244, 329

\ni, 190, 329

\noalign, 46, 180, 183, 329

\noboundary, 18, 73, 101, 329

\nobreak, 74, 121, 136, 266, 329

\noexpand, 231, 234, 329

\noindent, 87, 112, 329

\nointerlineskip, 135, 329

\nolimits, 195, 329
\nonfrenchspacing, 106, 329

\nonscript, 215, 218, 329

\nonstopmode, 253, 329
\nopagenumbers, 142, 329

\normalbaselines, 134, 329

\normalbaselineskip, 134, 329
\normalbottom, 137, 329

\normallineskip, 134, 329
\normallineskiplimit, 134, 329

\not, 329

\notin, 190, 329
\nu, 187, 329

\null, 169, 329

\nulldelimiterspace, 60, 204, 217,
329

\nullfont, 102, 329

\number, 83, 224, 329
〈number〉, 4

\numberedfootnote, 309

\numberedlist, 298
\numberedmarker, 299

\numbername, 295
numbers, 82–83

comparing, 237

converting to characters, 224
testing for odd/even, 237

\nwarrow, 192, 329

\o, 97, 330

\O, 97, 330
\obeylines, 122, 278, 293, 330

\obeyspaces, 107, 122, 278, 293, 330

\obeywhitespace, 107, 278, 293
octal numbers, 82

\odot, 189, 330

\oe, 97, 330
\OE, 97, 330

\offinterlineskip, 92, 135, 167, 330
\oint, 194, 330

\oldstyle, 209, 330

\omega, 187, 330
\Omega, 187, 330
omicron, 188

\ominus, 189, 330
\omit, 181, 330

\openin, 63, 247, 248, 330

opening, 191
\openout, 63, 249, 330

whatsit produced by, 95

with \immediate, 250
\openup, 135, 183, 330

TEX for the Impatient No 384

3 Jan 2020 2:18 p.m.

364 Index

operating system, 62, 63

operations, 189–190

operators, 126

large, 194–196

\oplus, 189, 330

\or, 330

ordinary horizontal mode, 69, 81

ordinary mode, 83

ordinary symbol, 188

ordinary vertical mode, 81, 94

origin. See page origin

\oslash, 189, 330

\other, 291

other characters, 53, 56

\otimes, 189, 330

outer, 83, 232

\outer, 83, 232, 236, 279, 330

\output, 84, 148, 330

output devices, 8

output files, 249–251

output routine, 83–84, 147, 148–149

default in plain TEX, 148

insertions, treatment of, 70

meaning of \insertpenalties in,
139

output streams, 63, 84

closing, 249

opening, 249

reserved by \newwrite, 244

writing, 249

<output>, 288

\outputpenalty, 149, 330

\over, 200, 204, 330

\overbrace, 202, 212, 330

overfull boxes, 124, 268–270

\overfullrule, 170, 330

overlapping text, 109

\overleftarrow, 202, 330

\overline, 202, 330

overprinting, 109

\overrightarrow, 202, 330

\overwithdelims, 58, 201, 330

\owns, 190, 330

\P, 98, 331

page breaks, 85–86, 136–140

bad, 265–268

badness for, 50

encouraging or discouraging, 136–
138

glue at, 268

in split lists, 149

inserted by TEX’s stomach, 17

insertions at, 70

kerns at, 157

parameters for, 138–140

tracing, 259

page builder, 84, 86

page dimensions, 140

page footers. See footers

page headers. See headers

page layout, 86

page numbering, 90, 142–143

page origin, 140

\pagedepth, 139, 331

\pagefilllstretch, 140, 331

\pagefillstretch, 140, 331

\pagefilstretch, 140, 331

\pagegoal, 139, 140, 149, 331

\pageinsert, 70, 146, 147, 331

\pageno, 142, 143, 331

pages, 17, 84–85

assembled in TEX’s stomach, 47

\pageshrink, 140, 331

\pagestretch, 140, 331

\pagetotal, 139, 331

Palatino fonts, 34, 64

\par, 86, 110, 111, 331

ending a paragraph with, 86

from empty line, 91, 105

in macro arguments, 231

when changing paragraph shape,

272

paragraph skip, 141

paragraphs, 86–87

ending, 12, 22

glue at end of, 111

glue between, 141

indenting. See indentation

narrow, 24, 114

shaping, 110–120, 272

starting, 110

\parallel, 190, 331

parameters, 87–88

and arguments, 48

as commands, 4, 12

assignments to, 49

delimited, 77

indicated by #, 53

like registers, 89

undelimited, 76

using \the with, 234

parentheses, 58, 204

\parfillskip, 111, 331

TEX for the Impatient No 385

3 Jan 2020 2:18 p.m.

Index 365

\parindent, 4, 87, 113, 331

indentation for itemized lists, 130

\parshape, 87, 117, 118, 331

\parskip, 111, 112, 113, 141, 267, 269,
331

\partial, 188, 331

Patashnik, Oren, 19

\pausing, 253, 331

penalties, 88

in horizontal lists, 74

in vertical lists, 85

last penalty in a list, 171

\penalty, 121, 136, 331

\percentchar, 292

period, 12, 13

\perp, 190, 331

\phantom, 168, 331

phantoms, 168–169

\phi, 187, 331

\Phi, 187, 331

\pi, 187, 331

\Pi, 187, 194, 331

pica, 60

pixel file, 65

.pk file, 8, 65

\plainoutput, 148, 331

plain TEX, 3, 8, 9, 88

font families in, 62

\pm, 189, 332

\pmatrix, 205, 332

\pmod, 194, 332

poetry, typesetting, 122

point, 60

\postdisplaypenalty, 138, 332

pound sterling, 98

\Pr, 193, 332

preamble, 45, 178, 179

\prec, 190, 191, 332

\preceq, 190, 191, 332

\predisplaypenalty, 138, 332

\predisplaysize, 216, 332

preloaded, 65

\pretolerance, 123, 332

\prevdepth, 133, 134, 332

\prevgraf, 120, 332

previewer, 8

\prime, 188, 332

primitive, 88

command, 3, 48, 313

control sequence, 57

printable characters, 49

printers, 8

\proclaim, 131, 332

\prod, 194, 332

programming features, 221

\propto, 190, 332

\psi, 187, 332

\Psi, 187, 332

punctuation, 13, 22

punctuation in math formulas, 196

.pxl file, 8

\qquad, 154, 332

\quad, 154, 332

question mark, 13

quotation marks, 14, 22

\radical, 207, 332

ragged left, 71, 115

ragged right, 71, 116

\raggedbottom, 137, 332

\raggedright, 71, 116, 269, 332

\raise, 52, 166, 332

\rangle, 59, 191, 332

\rbrace, 59, 191, 332

\rbrack, 59, 98, 191, 332

\rceil, 59, 191, 332

\Re, 188, 332

\read, 62, 248, 332

reading a file, 248

\readreffile, 303

\readtocfile, 301

recent contributions, 84

recursive macros. See macros, recur-

sive

reference mark, 145

reference point, 51–52, 88

〈register〉, 4

registers, 89–90, 242–246

arithmetic in, 245–246

assignment to, 49

parameters as, 4, 12, 88

reserving, 244–245

with \the, 234

relations, 126, 190–191

putting formulas above, 202

\relax, 9, 241, 332

\relpenalty, 126, 332

\repeat, 240, 333

repeated actions, 240–241

resident fonts, 222

restricted horizontal mode, 69, 81

restricted mode, 90

horizontal, 272

result file, 62

revision bars, vii, 30

TEX for the Impatient No 386

3 Jan 2020 2:18 p.m.

366 Index

\rfloor, 59, 191, 333

\rgroup, 204, 333

\rho, 187, 333

\right, 58, 204, 333

right margin, 66

\rightarrow, 192, 333

\Rightarrow, 192, 333

\rightarrowfill, 175, 333

\rightharpoondown, 192, 333

\rightharpoonup, 192, 333

\righthyphenmin, 18, 128, 333

\rightleftharpoons, 192, 333

\rightline, 68, 108, 333

\rightskip, 71, 115, 333

\rlap, 109, 333

\rm, 103, 333

\rmoustache, 212, 333

Roman numerals, 224

\romannumeral, 83, 224, 333

\root, 207, 333

row, 179

\rq, 98, 333

rules, 90–91, 172–173, 273

thickness of, 292

running TEX, 9, 252–253

\S, 98, 333

\sb, 197, 333

scale factor, 223

scaled point, 60

script size, 62, 91

script style, 93, 197, 198, 210

\scriptfont, 62, 210, 333

scriptscript size, 62, 91

scriptscript style, 93, 197, 198, 210

\scriptscriptfont, 62, 210, 333

\scriptscriptstyle, 93, 197, 198, 333

\scriptspace, 218, 333

\scriptstyle, 93, 197, 198, 333

\scrollmode, 252, 333

\searrow, 192, 333

\sec, 193, 333

section headings, 129

\setbox, 164, 333

\setlanguage, 18, 95, 128, 334

\setminus, 189, 334

\settabs, 44–45, 176, 334

\setuplistinghook, 300

\sevenbf, 102, 334

\seveni, 102, 334

\sevenrm, 102, 334

\sevensy, 102, 334

\sfcode, 107, 334

shape file, 8, 65, 78

\sharp, 188, 334

\shipout, 63, 84, 148, 260, 334

\count registers displayed at, 142

\show, 253, 280, 334

\showbox, 253, 256, 261, 334

\showboxbreadth, 254, 258, 261, 334

\showboxdepth, 254, 258, 261, 334

\showhyphens, 128, 334

\showlists, 253, 256, 261, 334

\showthe, 90, 253, 334

shrink, 66–68, 91

\sigma, 187, 334

\Sigma, 187, 194, 334

\sim, 190, 191, 334

\simeq, 190, 191, 334

\sin, 193, 334

\singlecolumn, 309

\sinh, 193, 334

\skew, 212, 334

\skewchar, 213, 234, 334

\skip, 242, 246, 334

skip registers, 243

reserved by \newskip, 244

\skipdef, 245, 334

\sl, 103, 334

\slash, 74, 122, 334

\slfam, 210, 334

\smallbreak, 137, 334

\smallint, 194, 334

\smallskip, 137, 154, 334

\smallskipamount, 155, 335

\smash, 169, 335

\smile, 190, 335

solidus, 74, 122

source file, 62

\sp, 197, 335

space, 91–92

in math formulas, 214–216

lost, 270

producing, 153–159

unwanted, 270–271

\space, 105, 281, 335

space characters, 22, 293

category code of, 53

space factor, 107

\spacefactor, 107, 335

spaces, 12–13

interword, 66, 104–108

visible, 3

\spaceskip, 107, 335

\spacesub, 293

spacing

TEX for the Impatient No 387

3 Jan 2020 2:18 p.m.

Index 367

adjusting with kerns, 71

interline, 28

\spadesuit, 188, 335

\span, 181, 335

\special, 95, 250, 335

special characters, 98

special symbols, 62, 97

Spivak, Michael D., 18

\splitbotmark, 80, 144, 335

\splitfirstmark, 80, 144, 335

\splitmaxdepth, 150, 335

\splittopskip, 150, 335

\sqcap, 189, 335

\sqcup, 189, 335

\sqrt, 206, 335

\sqsubseteq, 190, 191, 335

\sqsupseteq, 190, 191, 335

\ss, 97, 335

stacking subformulas, 200–202

\star, 189, 335

stomach, 16, 46, 47

See also anatomy of TEX

stretch, 66–68, 92

\string, 226, 233, 335

\strut, 46, 92, 167, 168, 335

struts, 92, 135, 167–168

in vertical alignments, 179

styles, 92–93, 198–199

subscripts, 53, 197

\subset, 190, 191, 335

\subseteq, 190, 191, 335

\succ, 190, 191, 335

\succeq, 190, 191, 335

\sum, 194, 335

\sup, 193, 335

\supereject, 137, 335

superscripts, 53, 197

\supset, 190, 191, 335

\supseteq, 190, 191, 335

\surd, 188, 336

\swarrow, 192, 336

\t, 100, 336

\tabalign, 176, 336

tabbing alignments, 176–177

table of contents, 301

tables, 44–46
See also alignments

tabs, 53, 176

\tabskip, 46, 184, 336

\tan, 193, 336

\tanh, 193, 336

\tau, 187, 336

template, 45, 178–182

\tenbf, 102, 336

\tenex, 102, 336

\teni, 102, 336

\tenit, 102, 336

\tenrm, 102, 336

\tensl, 102, 336

\tensy, 102, 336

\tentt, 102, 336

terminal, 254

\testfileexistence, 295

\TeX, 98, 336

The TEXbook, viii, 43

TEX MEX, 93

text editor, 7

text math, 16, 93

text math mode, 80, 81

text size, 62, 93

text style, 93, 194, 198, 210

\textfont, 62, 210, 336

\textindent, 112, 336

\textstyle, 93, 198, 336

.tfm file, 8, 64, 72, 221

\the, 226, 234, 242, 243, 336

theorems, 32, 131

\theta, 187, 336

\Theta, 187, 336

\thickmuskip, 214, 336

\thinmuskip, 214, 336

\thinspace, 153, 336

tie, 13, 74, 105

tie-after accent, 100

\tilde, 199, 336

tilde accent, 100, 199

\time, 224, 297, 336

time of day, 224, 297

\times, 189, 336

\timestamp, 297

\timestring, 297

\to, 192, 336

<to be read again>, 285

token registers, 89, 243

reserved by \newtoks, 244

tokens, 16, 93

as commands, 56

assembled from characters, 47

displayed by \show, 253

passed to TEX’s stomach, 47

showing the meaning of, 226

\toks, 242, 336

\toksdef, 245, 336

\tokstostring, 292

\tolerance, 123, 124, 336

TEX for the Impatient No 388

3 Jan 2020 2:18 p.m.

368 Index

\top, 188, 336

\topglue, 18, 156, 268, 336

\topinsert, 70, 146, 147, 336

\topmark, 79, 144, 336

\topskip, 141, 150, 336

tracing, 253–261

\tracingall, 261, 337

\tracingboxes, 292

\tracingcommands, 257, 337

\tracinglostchars, 257, 337

\tracingmacros, 258, 337

\tracingonline, 254, 256, 257, 258,

259, 260, 261, 337

\tracingoutput, 258, 261, 337

\tracingpages, 259, 337

\tracingparagraphs, 259, 337

\tracingrestores, 260, 337

\tracingstats, 260, 337

\triangle, 188, 337

\triangleleft, 189, 337

\triangleright, 189, 337

true, 78

\tt, 103, 337

\ttfam, 210, 337

\ttraggedright, 116, 337

TEX Users Group, 19

TUGBoat, 19

type styles, 103, 210

typewriter font, 109

\u, 100, 337

\uccode, 103, 337

\uchyph, 128, 337

umlaut accent, 100

\unbox, 172

\uncatcodespecials, 291

undelimited arguments, 48

\underbar, 163, 337

\underbrace, 202, 212, 337

underdot accent, 100

underfull boxes, 268–270

\underline, 202, 337

\unhbox, 165, 337

\unhcopy, 165, 337

units of measure, 60, 61, 93

\unkern, 172, 337

\unorderedlist, 298

\unpenalty, 172, 337

\unskip, 172, 337

\unvbox, 165, 337

\unvcopy, 165, 337

unwanted space, 12

\uparrow, 59, 192, 338

\Uparrow, 59, 192, 338

\upbracefill, 211, 338

\updownarrow, 59, 192, 338

\Updownarrow, 59, 192, 338

\uplus, 189, 338

upper limits, 197

uppercase

conversion to, 103–104

\uppercase, 104, 338

\upsilon, 187, 338

\Upsilon, 187, 338

\v, 100, 338

\vadjust, 120, 266, 267, 338

\valign, 46, 179, 338

grouping for, 16

inherently horizontal, 94

used in \makecolumns, 308

\varepsilon, 187, 338

\varphi, 187, 338

\varpi, 187, 338

\varrho, 187, 338

\varsigma, 187, 338

\vartheta, 187, 338

\vbadness, 170, 338

\vbox, 51, 52, 94, 161, 338

fixing page breaks with, 265

overfull box from, 269–270

vboxes, 51, 94

interline glue for, 133

testing for, 238

vertical mode for, 94

width determined by \hsize, 114

\vcenter, 213, 297, 338

\vdash, 190, 338

\vdots, 203, 338

\vec, 199, 338

vector accent, 199

\vee, 189, 338

verbatim text, 277

verse, typesetting, 122

version number, 225

\vert, 59, 188, 338

\Vert, 59, 188, 189, 338

vertical glue, 155, 156

vertical lists, 51, 66, 94

can’t contain horizontal commands,

94

inserting in paragraphs, 120

penalties in, 88

rule in, 90

vboxes formed from, 94

vertical mode, 81, 94

TEX for the Impatient No 389

3 Jan 2020 2:18 p.m.

Index 369

rules in, 173

testing for, 238

vertical rules, 90–91, 172–173

vertical skip, 155

vertical space, 154–159

reserving at top of page, 267

\vfil, 157, 270, 338

filling a vbox, 162

needed with \eject, 137

\vfill, 157, 266, 338

\vfilneg, 159, 338

\vfootnote, 145, 147, 309, 338

\vfuzz, 171, 269, 338

\vglue, 156, 157, 338

virtex, 65, 263

visible space, 104

\voffset, 79, 86, 140, 274, 339

\vphantom, 169, 339

\vrule, 90–91, 172, 273, 339

inherently horizontal, 94

\vsize, 79, 86, 140, 274, 339

set by \magnification, 223

\vskip, 66, 155, 339

\vsplit, 144, 149, 339

\vss, 158, 269, 339

\vtop, 51, 52, 94, 161, 339

\wd, 167, 339

\wedge, 189, 339

whatsit, 94–95, 128

whitespace, preserving, 278

wide hat accent, 199

wide tilde accent, 199

\widehat, 199, 339

\widetilde, 199, 339

widow line, 138
\widowpenalty, 138, 339

width, 51, 95, 167

\wlog, 261, 339
expanded by \edef rules, 231

words run together, 270

\wp, 188, 339
\wr, 189, 339

\write, 249, 339

expanded by \edef rules, 231
expanded during \shipout, 148

expansion of \’c in, 82
output stream for, 63

whatsit produced by, 95

with \immediate, 250
writing % with, 292

<write>, 288

\writetocentry, 301
writing a file, 249

\xdef, 66, 228, 231, 339

\xi, 187, 339
\Xi, 187, 339

\xleaders, 72–73, 174, 339
\xrdef, 302

\xref, 302

\xrefn, 302
\xspaceskip, 107, 339

\year, 225, 297, 339

Zapf, Hermann, 34

\zeta, 187, 339

TEX for the Impatient No 390

3 Jan 2020 2:18 p.m.

TEX for the Impatient No 391

3 Jan 2020 2:18 p.m.

About the authors

Paul W. Abrahams, Sc.D., CCP, is a consulting computer scientist and
a past president of the Association for Computing Machinery. His spe-
cialties are programming languages, software systems design and imple-
mentation, and technical writing. He received his doctorate from the
Massachusetts Institute of Technology in 1963 in mathematics, studying
artificial intelligence under Marvin Minsky and John McCarthy. He is
one of the designers of the first LISP system and the designer of the
CIMS PL/I system, developed when he was a professor at New York
University. More recently, he has designed SPLASH, a Systems Pro-
gramming LAnguage for Software Hackers. Paul resides in Deerfield,
Massachusetts, where he writes, hacks, hikes, hunts wild mushrooms, and
listens to classical music.

Kathryn A. Hargreaves received her M.S. degree in computer science
from the University of Massachusetts, Boston, in August 1989. Her spe-
cialities are digital typography and human vision. She developed a set
of programs to produce high-quality, freely distributable digital type for
the Free Software Foundation and also worked with Robert A. Morris
as an Adjunct Research Associate. In 1986 she completed the Reentry
Program in Computer Science for Women and Minorities at the Univer-
sity of California at Berkeley, where she also worked in the TEX research
group under Michael Harrison. She has studied letterform design with
Don Adleta, André Gürtler, and Christian Mengelt at the Rhode Is-
land School of Design. A journeyman typographer, she has worked at
Headliners/Identicolor, San Francisco, and Future Studio, Los Angeles,
two leading typographical firms. She also holds an M.F.A. in Painting/
Sculpture/Graphic Arts from the University of California at Los Ange-
les. Kathy paints watercolors, designs letterforms, plays piano, and reads
feminist film criticism.

Like Kathy, Karl Berry received his M.S. degree in computer science
from the University of Massachusetts, Boston, in August 1989. He also
worked for the Free Software Foundation, did research with Morris, and
has studied with Adleta, Gürtler, and Mengelt. He has been working
with TEX since 1983 and has installed and maintained the TEX system at
a number of universities. He was the maintainer of the Web2c system de-
veloped by Tim Morgan for a number of years, among other TEX projects.
He became the president of the TEX Users Group in 2003.

TEX for the Impatient No 392

3 Jan 2020 2:18 p.m.

Colophon

This book was composed using TEX (of course), developed by Donald E.
Knuth. The main text is set in Computer Modern, also designed by
Knuth. The heads of the original book were set in Zapf Humanist (the
Bitstream version of Optima), designed by Hermann Zapf.

The paper was Amherst Ultra Matte 45 lb. The printing and binding
were done by Arcadia Graphics-Halliday. The phototypeset output was
produced at Type 2000, Inc., in Mill Valley, California. Proofs were made
on an Apple LaserWriter Plus and on a Hewlett Packard LaserJet II.

Cross-referencing, indexing, and the table of contents were done me-
chanically, using the macros of Section 12 together with additional macros
custom-written for this book. The production of the index was supported
by an additional program written in Icon.

TEX for the Impatient No 393

3 Jan 2020 2:18 p.m.

List of concepts

active character 43

alignment 44

anatomy of TEX 46

argument 48

ASCII 49

assignment 49

badness 50

baseline 51

box 51

category code 53

character 55

class 56

command 56

conditional test 57

control sequence 57

control symbol 58

control word 58

decimal constant 58

delimiter 58

demerits 60

depth 60

dimension 60

display math 61

escape character 61

family 62

file 62

file name 63

font 64

footer 65

format file 65

global 65

glue 66

group 68

hbox 69

header 69

height 69

horizontal list 69

horizontal mode 69

hyphenation 70

input stream 70

insertion 70

interline glue 70

item 71

justified text 71

kern 71

leaders 72

ligature 73

line break 74

list 75

log file 75

macro 75

magnification 78

margins 79

mark 79

math mode 80

mathcode 80

mathematical unit 81

mode 81

muglue 82

number 82

ordinary mode 83

outer 83

output routine 83

output stream 84

page 84

page break 85

page builder 86

page layout 86

paragraph 86

parameter 87

penalty 88

plain TEX 88

primitive 88

reference point 88

register 89

restricted mode 90

rule 90

script size 91

scriptscript size 91

shrink 91

space 91

stretch 92

strut 92

style 92

TEX MEX 93

text math 93

text size 93

token 93

unit of measure 93

vbox 94

vertical list 94

vertical mode 94

whatsit 94

width 95

TEX for the Impatient

