

Project focus

To create high quality simulation that

minimises short cuts and runs on ordinary computers
extensible and encourages local modifications

Slide 2 /

32

- Started April 1996 by David Murr
 - Open source (GPL) No commercial backing as yet
 - Curt Olson made a multiplatform release in July 1997
- Since then, it expanded beyond flight aerodynamics
 - improving graphics, clouds and fog,
 - a shaded sky with sun, moon and stars correctly drawn,
 - automated worldwide scenery, network play,
 - electronic navigation systems, airports and runways,
 - head up display and instrument panel and much more ...

Scales up from commodity computers

For commercial and research applications.

Custom airport 2000

Custom airport 2001

Slide 3 / 32

Slide 4 /

32

Portability between Operating Systems

- When PLIB runs, FlightGear is generally ok
- Mith inveticke for oxomplo:

Slide 6 / 32

Slide 5 / 32

Simulator Execution

FlightGear can be running in less than an hour ...

- 1. Install Linux normally
 - Ensure zlib and its headers are present
- 2. Install and test 3D support
 - On video card, maximum of 25% of memory for 2D display
 Then enable hardware accel (may need XFree86 3 and Utah)
 Verify at least 100fps using gears (or play glTron)
- 3. Install PLIB 1.2 or later with headers
 Already packaged in many distributions
 - Test with the supplied examples to ensure working
- 4. Install SimGear and FlightGear
 - Prepackaged in SuSE, Mandrake and Debian unstable
 - Or download SimGear, FlightGear source and base
 - Compile and install SimGear, then FlightGear, then
 - Finish installing the base and added scenery

Features beyond minimal install

Slide 7 / 32

Slide 8 /

32

It's lonely being alone in the sky

- Network play support is built-in
- Each aircraft has to be reported to all others
- Considerable network load, can degrade performance
- The FlightGear Daemon is a standalone program
- Runs on separate computer to do coordination

View is more like passenger portholes on airlines

- Not the wraparound windows of general aviation aircraft
- Especially when the simulated aircraft has an open cockpit
- Use multiple displays, as shown on next slide

Base package only has a small area

- San Francisco and adjacent Bay area, California
- New pilots soon want to go somewhere else
- The scenery server has the whole world, see later

Multiple displays for the pilot

Multiple displays implementation

- Multiple cards in one computer is slow
 They compete for the limited bus bandwidth
- Use network socket communications
 One machine runs FDM, and exports FDM data
 Others use dummy FDM and import that data
 No intrinsic limit to number of displays
- runfgfs --fov=45.0 --view-offset=0
 - --native=socket,out,60,s1,5500,udp
 - --native=socket,out,60,s2,5500,udp
- runfgfs --fov=45.0 --view-offset=-50
 - --native=socket,in,60,,5500,udp --fdm=external
- runfgfs --fov=45.0 --view-offset=50
 - --native=socket,in,60,,5500,udp --fdm=external

Slide 10 / 32

Simulating the Aircraft

- The aerodynamic simulation is only one part
 - Of the whole environment being simulated
 - Its performance is critical to the user's experience
 - Errors in Flight Dynamics Model (FDM) are distracting
- Other simulator components such as the autopilot
 - Are designed to expect a realistic aircraft
 - May respond incorrectly as a result of FDM errors
 - Provide additional pilot distractions
- Can ruin the user's immersive experience
- The FDM is created as an object abstraction
 - Allows multiple FDMs to be installed
 - Permits R&D use and future expansion

Simulating - Flight Dynamics Model

- LaRCsim, models a Cessna 172 or Navion
 - Dedicated C source with coefficients hard coded
 - Supports all normal flight maneuvers
- University of Illinois, parametric derivative
 - Simplified the models for cruise flight regimes
 - A configuration file is loaded at simulation start
 - Supports many different light aircraft choices

JSBSim, completely parametric FDM

- All the information is retrieved from XML format files
- Can run independently of a full environmental sim
- As of this year, supports the Cessna 172 fairly well and
- The X-15 (a hypersonic rocket propelled research vehicle)

Slide 12 / 32

XML appearing everywhere ?

This year, most configuration files are XML

- The engine models,
- The instrument panel layouts, instrument designs,
- The head up display layout,
- The user preferences and the saved state
- The real benefit of using XML here ?
 - For people with no software development background
 - Pilots, instructors, maintenance techs, researchers
 - They can easily and effectively contribute
 - •All have in-depth technical knowledge of value
 - How an aircraft and hence the simulator should behave
- Previously, Windows binary users were excluded
 - Much system configuration was done at compile-time

Slide 9 / 32

Simulating Instruments and Radios

All real-life instruments have errors
 As well as subtle failures to catch inattentive pilots
 We calculate the physics and determine the error

- Without this, the simulator is much too easy
- Note that the HUD is computer generated

The computer can do the physics modelling too
Real-life HUDs generally don't have these errors

Navigation radios have been implemented this year

Errors are not (they make real-life use challenging)

Communication radios are not implemented

- Pilots cannot use their microphone inputs to interact
- Radio usage is a large part of aviation complexity

Simulator Structure - Properties

Slide 14 /

32

- Core is directly interacting objects
 - High level state is also generalized out of them
- Property database is new this year

• Relates a hierarchical name: /position/latitude

- To an object with getter and setter methods
- Ideal for user interface needs and saved state
- Used for parametric graphics elements, configuration files
- Properties are network accessible
 - runfgfs --props=socket,bi,20,,5555,tcp
 - telnet localhost 5555
 - Especially useful for Flight Instructor activities
 - Independent programs can interact with the simulation

Simulating the World - TerraGear

TerraGear - Screen dump

Slide 15 / 32

Slide 16 /

32

Slide 19 / 32

Slide 20 /

32

TerraGear - Storage size

Clearly a synthetic image, but sufficient
 Navigate by pilotage - comparing view to a chart

- Compact, about one kilobyte per square kilometer
 - Necessary, since about 10000 sq km may be in view
- Stored in a 4 level hierarchy, each 10-100 smaller
 - One planet, currently only the Earth
 - 10 deg x 10 deg rectangle
 - I deg x 1 deg, approx 100 km x 60 km
 - A rectangular tile of 100 km² approximately

Tiles are demand loaded and unloaded
 Runs slower when the visibility is better
 Needs more memory to store tiles too

Slide 18 / 32

Slide 17 /

32

National data limitations

- Poor worldwide data already being used
- Good data is often country specific

• Need special code to read and process file format

- A lot of effort to do this for every country
- Rapidly reaches the point of diminishing returns

Many organizations collect/transform the data

- Creates a standardized format, for these applications
- There is a huge amount of effort involved
- So their prices are extremely high to fund it
- They cannot give the data away for us to use

Maybe those organization will sell us scenery

Run their data through TerraGear and burn some CDs
You can expect a high price tag for such reliable data

Mismatched Charts - Atlas

Public domain data is generally of reduced quality

• or out of date, or selective, or local coverage, etc

- The scenery generated from that data is actually wrong
 - Compared to the real world out there
- Synthetic charts Atlas project
 - Automatic translation of TerraGear files
 - Generates usable aviation style charts
 - Inaccurate compared to the real world
 - Therefore useless for flight in an aircraft

The Atlas application is for browsing

- This year, it connects directly to FlightGear
- Display aircraft current location on moving map
- Most small aircraft do not have moving man CDS

Synthetic chart - example

Worldwide detail within airports

This year, added support for various databases

Slide 21 / 32

32

- These list worldwide airport details
- And their runway positions, lengths, etc
- With hints on surface type and markings
- This is sufficient to generate all runways

What about the rest of the airport

- Taxiways and ramp areas available in CVS version
 Courtesy of Robin Peel's taxiway database
- Control tower, hangars, terminals and similar
 Not available, users can add them manually using PPE
- Surface navigation signs and markings
 No general support available, a lot of work with PPE

Clearly, realism is poor below stalling speed

- No central government control of those areas
- Thus, no convenient data archive we can use

Standard landing screenshot 2001

Example of future support for signs

Simulator Applications

Slide 24 /

32

Shrinkwrap sale

- Reselling open source software ?
 - It has not been a good revenue source for other companies
 Partly because of the rapid version changes

Slide 25 /

Slide 26 /

32

32

- And because of the low cost of bandwidth for the consumer
- Yet, several organizations are considering it
 - Can FlightGear be a viable profit center?
- It is being repackaged by many distributions
 - To ensure a painless installation for the community
 - There appears to be little benefit in making a product here
 - Closed source flight sim games are available at under \$20
- Separate the database of visual scenery
 - Everything else user needs is only few megabytes
 - Which easily fits into a corner of a scenery CD
 - Will readily he downloaded when new versions available

Shrinkwrap sale - Scenery

- The scenery needs lots of space
 - About a gigabyte for each continent currently
 - Is unlikely to get any smaller in future
 - This still represents a significant download
- The scenery is relatively stable over time
 - Old versions are usually useful with newer binary software
 Upgrades only add detail to an existing and viable database
- There is clearly a retail opportunity
 - Probably a DVD or a dozen CDs of the world
 - Trivial marginal cost of adding a few dozen binaries • for popular distros and driver combinations
 - Thus, this retail package is likely to be fully functional

Streaming scenery - concept

Consider general aviation aircraft Cruise usually below 200 knots, often only 120 knots Flight visibility is (in real life) usually below 20 miles For lower altitudes used by non-turbocharged piston engines Maximum of 8000 square miles per hour Even when flying in a straight line (worst case) This is new terrain that will come into view Currently, database uses 1 MB/ 600 sq miles

- Streaming rate 12 megabytes/hour will be sufficient
 - That will fit through a normal 56K modem link
 - An airliner at cruising altitude needs all your DSL

Bandwidth is often much lower

- Because some scenery may already be downloaded
- Will be zero in your favorite flight areas
- Then there is no need to be on-line while flying

Slide 28 / 32

Streaming scenery - implementation

No change to FlightGear source is needed

- The latitude and longitude of the aircraft are exported
- Scenery is stored in convenient 100 sqkm pieces
- An independent program can make directed requests
- For example, by spawning "wget" calls
- Still any need for retail scenery packages ?
- Multiply this bandwidth by worldwide community
 - That is a sizeable traffic impact on the servers
 - Latency is critical; we must keep ahead of the pilot
 - Is the total still low enough to be supported for goodwill ?
 - Will free servers transition to monthly access fees ?
 - •Would they then start delivering proprietary content ?
- Who knows ... until we try it

Slide 27 / 32

Slide 29 / 32

Slide 30 /

32

Flight Training

- Could also be helpful when learning to fly
- Flight training is carefully regulated by government
 - To ensure that aircraft generally stay in the sky
 - Until their pilot intends for them to come down safely
 - There are real concerns, before authorities can approve a system
- What does the U.S. government want?
 - Any pilot can sit down and immediately use it
 - It isn't dangerously different or deceptively easy
 - The instructor can specify the flight environment
- Flight Gear Avation Training Device
 - http://fgatd.sourceforge.net
 - Goal is to implement requirements to achieve approval
 - Most of the work is documentation and testing

Flight training - OverRegulated ?

- The FAA is responding to human nature
 - That doesn't go away just because it's inconvenient
- The things learnt first
 - Leave an almost unshakeable impression
 - At times of severe stress, will over-rule later training
 Any false impressions are learned by a beginning student
 - Tend to remain hidden until a potentially lethal situation
 - At that time the pilot may react wrongly
- An excessively optimistic opinion
 - Of piloting skills will result if simulator is easy
 Or if it does not exhibit common instrument flaws
 A pilot will willingly fly into dangerous situations
 - that are beyond their skill proficiency and be at risk
- Only a trained instructor can judge
 - Whether the learning experience is beneficial
 - The documentation materials are essential to that

What's in the future?

- FDMs are not (yet) accurate enough
 - Only suitable for conservative flights
 - Don't reflect the challenges of acrobatic maneuvering

Higher performance human input devices

- Beyond the 8-bit joystick resolution limit
- Rugged and rigid, like real aircraft controls
- New consumer technologies for immersion
 - Surround projectors, head mounted displays
 - Directional sound and cockpit motion effects
 - Users will fly safe, forgetting they're not in danger
- Recent radar and visual satellite surveys
 - Enough detail to be used as photorealistic scenery

Conclusions

Slide 32 / 32

- FlightGear is a simple Open Source project
 - Builds on many existing projects
 - In the community tradition
- Due to the subject it addresses
 - It has many issues and concerns
 - Are raised that rarely inconvenience other projects
- These elements are providing the exciting challenges
 - And variety of associated activities
 - Enjoyed by the developers
- Thank you for your interest.
 - Questions ?

Slide 31 / 32