SOFTWARE CONTROL OF THE DISK II OR IWM CONTROLLER

PREPARED BY

N L

' APRIL 26, 1984

REVISION 1, MAY 10, 1984

TN



IS

SOFTWARE CONTROL OF THE DISK II OR IWM CONTROLLER

Each of the eight expansion slots of the Apple I1 computer has the exclusive
use of sixteen memory locations for 1/0 control. These memory locatioms can
be used as software switches. A software routine can instruct the interface
card in a particular slot to perform a predefined hardware task by toggling a
software switch. Whenever the Apple II addresses one of the sixteen 1/0 loca-
tions allocated to a particular slot, the signal on pin 41 of that slot, called
DEVICE SELECT/, switches to the active low state. This signal, in conjunction
with the four low-order address lines (A0 - A3), can be used to emable logic
in the peripheral card to perform a particular task. The following table
illustrates the memory space for the sixteen I1/0 locations for each expansion
slot.

TABLE 1: PERIPHERAL CARD I/0 SPACE

SLOT LOCATIONS
0 $C080 - $COSF
1 $C090 = $CO9F
2 $COAO - S$COAF
3 $COBO - $COBF
4 $COCO - $COCF
5 $CODO - $CODF
6 $COEQ = $COEF
7 $COFO = $COFF

One common method of accessing peripheral card I/0 control softswitches through
software is to use the Apple's (6502) indexed addressing mode. For example,

a LDA $C080, X instruction can be used to access softswitch O in any slot, if
the index register X is loaded with a value equal to the slot number times
sixteen.

Sixteen peripheral I/0 addresses are used to control the functions of the disk
I1 controller. The following table illustrates the functions of the sixteen
software switches.

TABLE 2: DISK II CONTROLLER SOFTSWITCHES

ADDRESS FUNCTION
$C080, X PHASE O OFF
$CO81, X PHASE O ON
$C082, X PHASE 1 OFF
$C083, X PHASE 1 ON
$C084, X PHASE 2 OFF
$C085, X PHASE 2 ON
$C086, X PHASE 3 OFF
$C087, X PHASE 3 ON
$c088, X TURN MOTOR OFF
$C089, X TURN MOTOR ON
$CO8A, X SELECT DRIVE 1
$CO8B, X SELECT DRIVE 2
$cosc, X Q6L
$CO8D, X Q6H
$CO8E, X Q7L
$CO8F, X Q7H



The index register X has the value of slot number times 16. The last four
addresses have the following functioans.

Q6 Q7 FUNCTION
‘ L L READ
H L SENSE WRITE PROTECT OR PREWRITE STATE
L H WRITE
H d WRITE LOAD

In general, any valid 6502 instruction can be used to access the above soft-
switch address, except a load instruction is used to read a byte of encoded
data from the controller and a store instruction is used to write a byte of
encoded data to the controller. Below are typical examples demonstrating the
use of the disk II controller softswitches. It is assumed that both Q6 and
Q7 are low at the beginning of the read/write examples.

SELECT DRIVE

LDA $C08A, X SELECT DRIVE 1
LDA $C08B, X SELECT DRIVE 2

The hardware design of the controller allows only one drive to be selected at
one time. A LDA $CO8A, X instruction will select drive 1 and deselect drive
2. A LDA $C08B, X instruction will select drive 2 and deselect drive 1.

MOTOR ON
LDA  $C089, X TURN MOTOR ON
LDA  $C088, X TURN MOTOR OFF

It should be noted that there is only one interface signal (ENABLE/), going
from the controller to each floppy disk drive, which is used to enable the
drive's read/write function and to turn on the motor. Both the select drive
and the motor on instructions must be executed in order to activate the ENABLE/
signal of a particular drive. A typical program will select the drive first
and then turn on the motor at a later time. After the completion of the motor
on instruction, the program should wait at least 1 second for the motor to coume
up to speed, before read/write functions can be performed reliably.

The disk II controller hardware will keep the ENABLE/ signal to its active low
state for approximately one second after the execution of the motor off in-
struction, therefore read/write can be performed reliably within this period.
To be on the safe side, the program should verify that the motor is spinning
by monitoring the change in data pattern read from the drive. This delay

in turning off the motor facilitate rapid and repeat access to the same drive.

SENSE WRITE PROTECT

LDA Q6d, X WRITE PROTECT SENSE MODE
LDA Q7L, X READ CONTROLLER STATUS REG.
BMI WRPROT BRANCH IF BIT 7 OF STATUS REG. IS HIGH

The above instruction will load the content of the controller's status reg-
ister into the accumulator. Bit 7 of the status register is the write protect
lag. A "one” in bit 7 of the status register indicates that a write protected
diskette is inserted into the drive. A BMI instruction will check the write
protect flag. The program will branch to the WRPROT address label 1if the
write protect flag 1is set.



READ A DATA BYTE

LDA Q7L, X MAKE SURE IN READ MODE
LOOP LDA Q6L, X READ THE BYTE
. BPL  LOOP STAY IN THE LOOP IF THE M.S. BIT IS LOwW
LP LDA Q6L, X READ ANOTHER BYTE
BPL LpP SAY IN THE LOOP IF THE M.S. BIT IS LOW

NOTE: THERE SHOULD BE NO PAGE CROSSING FOR THE BPL INSTRUCTIONS.

The LDA Q7L, X instruction makes sure that the controller is in read
mode. The LDA  Q6L, X instruction loads the contents of the controller's
data shift register into the accumulator. Since the Apple GCR code requires
that the most significant bit of every encoded data byte is high, the BPL
instruction will force the program to stay in a two instruction loop until
the M.S. bit of the controller data shift register is high. At the beginning
of every byte time, the controller internal logic will clear the data shift
register. As data bits are shifted into the data shift register, the M.S.
bit of the register is high, if and only 1f a full byte of data is assembled
in the register. The data byte will stay in the register for a little more
than 7 us. Therefore, it is important to make sure that the BPL instruction
does not cross the page boundary. This is necessary to ensure that the exe-
cution time of the two instruction loop (LDA, BPL) is no more than.7 us.

WRITE A DATA BYTE

LDA Q6H, X GO TO
LDA Q7L, X PREWRITE STATE
« LDA DATA - .
STA Q7H, X PARALLEL LOAD DATA INTO CONTROLLER
LDA Q6L, X CONTROLLER SHIFT DATA OUT SERIALLY
EXECUTION TIME .
OF THESE INSTRUCTIONS .
MUST BE EXACTLY .
32 CLOCK CYCLES .
STA Q6H, X PARALLEL LOAD ANOTHER BYTE
LDA Q6L, X SHIFT OUT DATA
LDA Q7L, X OUT OF WRITE MODE
LDA Q6L, X TO READ MODE

NOTE: It 4s important to write a garbage byte (HEX FF) before turning
off the write mode, so that the drive electronics has enough time
to write the last valid data byte.



The first two instructions force the controller into the prewrite state. These
are the same instructions to sense the write protect flag. It is importaat
to execute these two instructions even the programmer does not want to sense
the write protect flag. The STA instruction loads the contents of the accum~
ulator into the controller's data shift register. The next instruction [LDA
Q6L,' X] causes the data in the register to shift out serially. Q6H and Q7H
are the conditions required for parallel loading the data into the controller.
Shifting out the data serially to the disk drive requires Q6L and Q7H. The
first STA instruction sets Q7 high, because the conditions are Q6H and Q7L
before executing this instruction. The conditions are Q6L and Q7H before the
second STA instruction, therefore the second STA fnstruction sets Q6H.

The execution time of the instructions between the end of two consecutive
parallel load instructions [STA] has to be exactly 32 clock cycles, otherwise
invalid data will be written on the diskette. In order to calculate the exe-
cution time, it is important to note that the 6502 processor requires one
additional execution cycle for branching or indexing operations crossing the
page boundary. The program should switch the controller back to the read mode
after all the data has been written.

WRITE SELF SYNC BYTE

LDA  Q6H, X
LDA Q7L, X

LDA  {#$FF
STA Q7H, X " PARALLEL LOAD AUTO SYNC BYTE
ORA Q6L, X START TO SHIFT OUT AUTO SYNC BYTE
EXECUTION TIME . ORA IS USED SO THAT LDA  #$FF IS NOT
OF THESE INSTRUCTIONS . NEEDED TO WRITE THE NEXT SYNC CYCLE
MUST BE EXACTLY . '
40 CLOCK CYCLES
| STA Q6H, X PARALLEL LOAD ANOTHER AUTO SYNC BYTE
ORA Q6L, X SHIFT OUT SYNC BYTE
SELF SYNC BYTE .
40 CLOCK CYCLES . .
LDA  DATA
STA Q6H, X LOAD FIRST DATA BYTE
LDA Q6L, X SHIFT OUT DATA BYTE
DATA BYTE .
32 CLOCK CYCLES .
| STA Q6H, X
LDA Q6L, X
LDA Q7L, X OUT OF WRITE MODE
LDA Q6L, X TO READ MODE

NOTE: Write a garbage byte (HEX FF) before turning off write mode.



T LR SR

O 7 ¥ R ORPIE J0 S 2T SN

The' Apple GCR code uses a unique synchronization technique to determine the
byte boundary. A self sync byte consists of eight bits of "1" and two bits
of 0. The procedure to write a sync byte is the same as to write a data
byte, except that the execution time of the instructions between the end of
two consecutive parallel load sync byte instructions has to be exactly 40 us.
During the write sync byte time, the processor loads eight bits of “1° into
the controller. After ghifting out 8 bits of "1", the controller hardware
will shift out "0" until the next parallel load instruction. Since there are
40 us between two consecutive parallel load instructions and a & us it time,
8 bits of "1” from the processor and 2 bits of "0" appended by the comtroller
hardware are shifted out to the drive. It 1is necessary to write at least five
self sync bytes at the beginning of both the address and data field.

READ SELF SYNC BYTE

Due to the Apple GCR code's unique synchronization technique, the coatroller
hardware will determine the byte boundary automatically. The following is a
brief description of the Apple synchronization technique.

FIGURE 1l: SYNCHRONIZATION PROCESS

1ST STH
SYNC BYTE SYNC BYTE

J1111111001111111100111111110011111111001111111100

11111111001111111100111111110011111111003111111100

11111111001111111100111111110011111111001111111100 .

11111111001111111100111111110011111111001111111100

11111111001111111100111111110011111111001111111100

11'111‘1110011],}1111001,3.111111‘Q0‘111'11111,001.111111],00

11111111001111111100111111110011111111001111111100

11111111001111111100111111110011111111Q01111111100

In the above diagram, each row of brackets represeat what the controller will
send out to the Apple II should the controller start reading at any given bit
in the first self sync byte. The controller groups the self sync read data
stream into 8-bit byte with a "1 in the most significant bit of each byte.
Any "0" bit between bytes are dropped out. From the above diagram, it is shown
that the controller is able to group the data at the correct byte boundary
within five byte time after the beginning of the read. This is always true
for any bit position to start the reading. Therefore, a minimum of five self
sync bytes are required for the controller to sync on the read data. After
the fifth self sync byte, the controller has established the byte boundary and
is able to read the data following the sync bytes correctly. The "D5 AA 96~
and "D5 AA AD" address mark sequences follows the self sync bytes im the
address and data field respectively. It 1is not necessary to read and verify
the sync byte. 1In order to read/write a sector, the program should look for
the "D5 AA 96" sequence which are the address mark bytes for the address field.



gt e L S R L SRR SRR

The. D5 and AA patterns are reserved for address mark. These patterns are not
used to encode data. Therefore, byte syncronization for the address field is
achieved by searching for the "D5 AA 96" sequence. Byte synchronization for
the data field is done by looking for the "D5 AA AD" sequence.

SEEK 'TO ANOTHER TRACK

The stepper motor in the Disk II is a four phase stepper motor. Eight 1/0
control softswitches are used to toggle the four phase on and off as shown in
table 2. Two adjacent phases have to be activated in sequence in order to
move the R/W head to the adjacent track. Activating the phases in ascending
order (0, 1, 2, 3, 0, 1, ...) moves the head towards (inward) the center of
the diskette. The head moves away (outward) from the center of the diskette
when the phases are activated in descending order (3, 2, 1, 0, 3, 2, ...).

All even numbered tracks are positioned under phase 0 and all odd numbered
tracks are under phase 2. In order to step in a track, the phase 1 and then
phase 2 have to be activated in sequence from an even numbered track, while
the phase 3 and then phase 0 is activated in sequence from an odd numbered
track. The phase 3 and then phase 2 sequence is used to step out a track from
an even numbered track. For stepping out a track from an odd numbered track,
the phase 1 and then phase 0O sequence is used. The spindle motor should be on
for 150 ms before starting the seek operation. The following is an example tol
step in a track from an even numbered track.

LDA $Cc083, X TURN ON PHASE 1

11.5 msec delay loop

LDA  $C085, X TURN ON PHASE 2

0.1 msec delay loop

LDA $CO84, X TURN OFF PHASE 1

36.6 msec delay loop

L]

LDA  $C086, X TURN OFF PHASE 2

The above programming example is used to illustrate the timing required to
step in a track from an even numbered track. The user may use a indexed look
up table for the parameter required for different delay loops. No matter how
many tracks to step, the user has to allow the last phase to be on for 36.6 msec,
because this timing includes the head settling time requirement (25 ms) of the
drive. For long seek (step a number of tracks), two adjacent phases can over-
lap the phase on time in order to increase the torque of the stepper motor
and to reduce the seek time. Since the timing between the phase ON/OFF time
is critical, it is recommended that the user calls upon the SEEK routine in
the Apple DOS for seeking. Figure 2 shows the waveforms of the phases to seek
from track O to track 9.



"SANODASITIIW NI FAV WVHOVIQ ZHL NI NMOHS SYI4WAN FHL TTV ‘410N

L2 68 s'g [ £°01 _ @ ASVH4
e | Les |

R I el | weslle | zes k| |
] 76 | €6 _ m.m_ %6 z°91 1 dSVHd
Ak _ ez _ o g _ i R _ » e gy

9°9¢ N Lot | ] é 7 dSVH4

€ dSVH4

6 AOVIL 0L 0 AOVUL HO¥d NAIS OL SWUOJAAVA dSVHd 7 3unolid



®
kR
1 34

RAkekAk K  ARARR DATE: May 29, 1984
REARRRKAAAARRARARR

RAkEREANRARRRARR TO: Distribution
RRAKRARRARRKXKRK

RAARRAAkARAR KRR FROM: N L 7/[ 3(
AhkRRhRARRAKRKK ) :

AhAAkAkAARRARA SUBJECT: Softwars Routine to Determine A
State Machine or IWM Controller

The attached software routine will determine whether a state machine disk II
controller or an IWM controller is installed in the system. This routine may be
useful for programmer writing copy protection codes for Apple II.

Upon exiting from the routine, the IWM controller will restore back to

synchronous mode (line no. 46 and 47), since all our current applications of IWM

for Apple II 1s in that mode. Future application of the IWM may require the

asynchronous mode, the user should set up the mode register (line 46)
accordingly.

NL:ﬁpk
Attachment

DISTRIBUTION

WL O
(2]



PRV FOEPERSES. 2 U LT U R T SR S

CE FILE W8l =)1uM

wc.d1! l
9000 2
8800 3 # THIS ROUTINE WILL DETERMINE WHETHER A STATE MACHINE DISK 11 CONTROLL|
9088: 4 * OR AN IWM CONTROLLER 1S INSTALLED IN THE SYSTEM.
88080 S # UPON EXIT FROM THE ROUTINE, Y=1 MEANS IWM CONTROLLER AND Y=8 MEANS
8808: é ®# STATE MACHINE DISK 11 CONTROLLER.
80608: 7 %
0008 8 ® ASSUME A MOTOR OFF INSTRUCTION (LDA $C888,X] HAS BEEN EXECUTED FOR
9008 9 # TWO SECONDS BEFORE THE USER CALLS ON THIS ROUTINE. OTHERWISE, A
8880 18 ® TWO SECOND DELAY LOOP MUST BE ADDED AFTER THE FIRST MOTOR OFF
28088: 11 # INSTRUCTION (LDA $C888,X) AT THE BEGINNING OF THIS ROUTINE.
28008 12 # :
8088: 13 # THE ENABLED DISK DRIVE WILL CONTINUE TO BE ON FOR § SEC
p0oee: 14 ® AFTER EXIT FROM THIS ROUTINE.
80808 15 #
89880: 16 »
----- NEXT OBJECT FILE NAME IS 1WM.08
1888: 1088 17 ORG +1888
1888 :AE 41 18 18 LDX SLOTX14 {X REG=SLOT NO. X 16
1803:8D 88 C8 19 LDA $C888,X . ;MOTOR OFF
1884:A8 80 28 LDY LI ;CLEAR REG. Y
1888:8D 8D C8 21 LDA  ¢C88D,X ;QéH
1888:8D 8F C8 22 LDA  $C88F,X ;@7H, ADDRESS MODE REG.
17 A9 84 23 - LDA #$04 .
.9D 8F C8 24 STA  $C88F,X ;DISABLE TIMER BIT IN MODE REG.
1813:8D B8E C8 25 LDA  $CB88E,X ;@7L, OUT OF WRITE MODE
1814:8D 89 CO 26 LDA  $C889,X sMOTOR ON
1819:48 27 LOOP PHA ;18 MSEC DELAY LOOP
181A:468 28 PLA . jWAIT FOR THE MOTOR ON
181B:48 29 ' PHA ;SIGNAL TO BE ACTIVE IN
181C:468 38 PLA jTHE CONTROLLER CARD
181D:48 31 PHA
181E:468 32 PLA
181F:48 33 PHA
1828:48 34 PLA
1821:48 335 PHA
1822:48 36 PLA
1823:C8 37 INY
1024:008 F3 1619 38 BNE LOOP ;END OF DELAY LOOP
1826:8D 8E C8 " 39 LDA  $C88E,X ;Q7L, READ STATUS REG.
1829:9D 88 C8 40 STA  $C888,X {MOTOR OFF
182C:29 IF 41 AND WSiF {MASK S5 L.S. BITS
182E:C9 64 42 CMP Hs04 ;CHECK TIMER BIT
18308:D8 @9 163B 43 BNE DISK1l ;DISK 11 CONTROLLER IF NOT EQ
1832:C8 44 1L INY ; INCREMENT Y REG.
1833:8D 8F C8 45 LDA  sC88F,X ;Q7H, ADDRESS MODE REG.
1836:A9 68 44 LDA #s88
1838:9D BF C8 47 STA  $C88F,X ;Q7H, RESTORE MODE REG.
1P 8D BE C8 48 DISKI11 LDA  $C88E,X ;Q7L, o
1. .8D 8C Ca 49 LDA  ¢C88C,X ;06L, RESTORE TO READ MODE
1841 ‘ 1841 S8 FIN EQU * '

1841:48 S1 SLOTX1é6 DFB  $é8



1el. DISKIl 21841 FIN 21032 1WM
1841 SLOTX14
ws SUCCESSFUL ASSEMBLY 1= NO ERRORS
& “SSEMBLER CREATED ON 15-JAN-84 2128
- TAL LINES ASSEMBLED  Si
REE SPACE PAGE COUNT 89

i819 LOOP



