IOP Kernel ERS

IOP Kernel ERS X

Network Systems Development NI, A

B ocC X/PP) P y Lo
Sy 7
7 I\J'}/,/,/,\,ny

| 3'2;; P ’/ef\f-—f prt j
Se2d o 56/'?4,.0 ,vv"a-zf" =
opc 127 s et B
1oL 2.5 LAp T -
| oC i il 0P dris@s
Joy ? ompad INF himans

l Apple Confidential 10/5/89

[OP Kermnel ERS

Introduction

The IOP can be thought of as an intelligent [/O device. Although
this particular implementation deals mainly with the SCC there is
no reason other devices could not be mapped into the IOP 65C02
memory space. The implementation of the IOP Kernel was
undertaken to accomplish several design goals.

« The Kernel should support devices other than the SCC.

- Provide arbitration for the clients using the IOP.

+ Provide an environment for device drivers to operate without
knowledge of how other devices are operating.

« Provide methods for installing and disabling drivers.

« The Kernel should remain simple.

A simple multi-tasking approach suggested by Ron Hochsprung is
used to partition the IOP functions into three basic tasks.

. ‘.Kernel
« A Driver
« B Driver

The Kernel task would operate continuously, installing Driver A or
Driver B as task only when needed. In the SCC implementation the
A and B Drivers would correspond to drivers used for the A and B
channels of the SCC although other devices could be mapped into
the SCC bit of the interrupt latch.

The Memory

The IOP is controlled by a 65C02 processor. Devices connected to
the processor are generally memory mapped the SCC IOP being no
exception. The memory map is an integral part of the overall
design. The approach for the SCC implementation is to support only
fixed memory partitions for each task. The reasons for this are:

« Dynamic allocation would create significant over head.

+ 65C02 code is hard to relocate.

« It would be difficult to stop, relocate and restart a task currently
In operation.

(Y]

Apple Confidential 10/5/89

[OP Kernel ERS

Given the Kernel should eventually become stable and of fixed size
the remaining memory will be divided equally between the two
other task. Zero page allocation will be done the same. Zero page
locations not used by the Kernel will be divided equally between
the A and B drivers. Other special memory areas include the Host
to IOP message area, the IOP to Host message area and the I/O
memory map. The stack space for each task would also be divided
equally.

Main Memory
Zero Page
Zero Page
$00-$28 Kernel Cmd Vectors Stack
$200-32FF Receive Msg Area
$29-$54 Kernel Variables $300-$3FF Transmit Msg Area
$400-$2D54 Kernel
A $2D55-$56A9 A Driver
,1".. $55-$A9 Channel A Variables —
7 2 $56AA-$7EFF B Driver
E $AA-$FF Channel B Variables
//
$FF00-$FFFF /O

Message Area

The message areas are fixed memory locations used to pass
commands between the IOP and its host processor. There are seven
message boxes in both directions each 32 bytes in length. Like
memory the message boxes are divide equally among task. The
first message box in each direction is reserved for the Kernel. The
command format is only defined for the Kernel. Command formats
for drivers will be left up to the driver writer.

3 Apple Confidential 10/5/89

[OP Kernel ERS

Host To PIC PIC to Host
$0220 $0320
Reserved for Reserved fo
so2F Message 1 Kernel $033F Message | Kernel
$0240 $0340
Message 2 Message 2
$025F S $035F g
$0260 - $0360
i Message 3 A Driver Message 3 A Driver
$027F : $037F
$0280 $0380
Message 4 Message 4
$029F $039F
$02A0 $03A0
_ Message 5 Message 5
$02BF $03BF
$02C0 $03Co
Message 6 8 B Driver Message 6 B Driver
$02DF $03DF
$02E0 $03E0
Message 7 Message 7
S02FF $03FF

Message ownership between the sending and receiving processors
is controlled by 7 state bytes at the beginning of the respective
message areas ($200 and $300). The command sender places the
command in the appropriate message box, changes the message
state to NewMessageSent and interrupts the receiving processor.
Upon completion of the command the receiving processor fills the
message with appropriate information, changes the state to
MessageComplete and interrupts the sending processor to finish
the transaction. All message passing is done via the IOP Manager
described by Gary Davidian in the IOP ERS.

Kernel Commands

Currently the Kernel only receives commands from the host. An
IOP to host message box was reserved for future use if needed.
Kernel commands always begin with the command number
followed by its parameters. Completed commands always return
with the resulting error code followed by optional parameters. The
Kernel supports six commands.

4 Apple Confidential 10/5/89

[OP Kernel ERS

Allocate Driver Cmd # 301

struct AllocCmdType {
byte cmdNum; /* cmd # = $01 */
byte Driver; /* Driver A =300 */
/* Driver B = $01 */
byte ClientID ; /* Client ID > $00 */
}

Allocate Driver is used to allocate driver memory within the IOP. A
driver must be allocated before the actual driver code is down
loaded into the IOP memory. The Allocate driver command begins
with its message number ($01) and is followed by the Driver and
Client parameters

Driver

The Driver parameter designates which driver is to be installed.
ClientlD

The ClientID parameter is an identification byte assigned by the
client attempting to allocate the driver. The ID byte of the client
currently using the channel will be returned with the error
DvrInUse when ever Allocate Driver is used on a driver that is

already allocated.

Allocate Driver Error Messages

struct AllocErrType {

byte errNum ; /* NoErr = $00
Error = -1
DvrinUse = -4
InByPass = -5
*/
byte ClientID; /* ID > O if driver in use */
/* or in ByPass */

J

NoErr

The driver has been allocated. The driver can now be down loaded.

Apple Confidential 10/5/89

w

[OP Kernel ERS

Error
An invalid driver number was used.
DvrinUse

An attempt was made to allocate a driver that was already in use.
The ClientID of the allocated client will be returned with this error.

InByPass
An attempt was made to allocate a driver while the IOP was in
ByPass mode. The ClientID of the client that put the IOP in ByPass

mode will be returned with this error.

DeAllocate Driver Cmd # $02

struct DeAllocCmdType {
' byte cmdNum ; /* msg # = $02 */
byte Driver; [* Driver A = $00%*/
/* Driver B = $01%*/
b
DeAllocate Driver releases a driver for use by other clients.
Driver

The Driver parameter designates which driver is to be deinstalled.

DeAllocate Driver Error Messages

struct DeAllocErrType {
byte errNum; /* NoErr = $00

Error = -1
InByPass = -5
*/
byte ClientID; /* ID > O if in ByPass
mode
*/

NoErr

6 Apple Confidential 10/5/89

[OP Kernel ERS

Driver is deallocated no errors.

Error

An invalid driver number was used.

InByPass

An attempt was made to deallocate a driver while the IOP was in
ByPass mode. The ClientID of the client that put the IOP in ByPass

mode will be returned with this error.

Initialize Driver Cmd # $03

struct InitCmdType (
. byte CmdNum; /* cmd # = $03 */
byte Driver ; /* Driver A = $00
Driver B = $01
*/
}

The Initialize Driver command is used after the driver has been
down loaded into IOP memory. Each driver must have a Jmp
InitProc located at the first address in driver memory. During
initialization the Kernel will install this address as a task and wait
for an InitFin event to occur. It is the InitProc's responsibility to
signal the Kernel that the initialization has finished. The Initialize
Driver message will then complete signifying the complete
installation of the driver.

Driver
The Driver parameter designates which driver is to be initialized.

Initialize Driver Error Messages

struct InitErrMsg {
byte errtNum; /* NoErr = $00

Error = -1

InByPass = -5

NotAlloc = -6
*/

byte ClientID; /* ID > 0 if in ByPass */
7 Apple Confidential 10/5/89

[OP Kernel ERS

NoErr

Initialization completed no errors.
Error.

An invalid driver number was used.

InByPass - An attempt was made to initialize a driver while the IOP

was in ByPass mode. The ClientID of the client that put the
IOP in ByPass mode will be returned with this error.
NotAlloc

An attempt was made to initialize a driver that is not allocated.

ByPass Mode Cmd # $04

struct ByPassCmdType {
~ byte CmdNum; /* cmd # = $04 */
" byte On_Off; /* ByPass Off = $00
ByPass On = $01
*/
byte ClientID; /* ID > 0O of client
who turns ByPass
On.
*/
}

The ByPass Mode command controls whether ByPass Mode is On or
Off. A client wishing to place the IOP in ByPass Mode must supply
a ClientID byte identifying it to other clients trying to make
Allocate and ByPass Mode calls.

On_Off

The On_Off parameter indicates whether the client wishes to turn
ByPass on or off. Turning ByPass On maps the SCC directly into host
memory. Turning ByPass Off maps the SCC into IOP memory. The
Kernel only executes the ByPass command when ByPass is On. All
other messages will return InByPass error.

8 Apple Confidential 10/5/89

IOP Kernel ERS

ClientlD

The ClientID parameter is an identification byte assigned by the
client attempting to put the IOP in ByPass. The ID byte will
identify the client to other clients that attempt to use the IOP while
in ByPass.

ByPass Mode Messaee Errors

struct ByPassErrType {
byte errNum; /* NoEmr = $00

DvrinUse = -4
InByPass = -5
BadID = -7
*/
union {
byte ByPassID; /* ID > O if in
ByPass
*/
byte DvrAID; /¥ ID > 0 if
allocated
*/
} switch;

byteDvrBID; /* ID > O if allocated */

NoErr

ByPass completed no errors.

DvrinUse

One or both of the drivers are allocated preventing the completion
of the ByPass Mode command. DvrAID and DvrBID become valid
and reflect the respective ClientID's of driver A and B.

[nByPass

The IOP is already in ByPass mode. ByPassID is valid and identifies
the client that put the IOP in ByPass.

BadlD
9 Apple Confidential 10/5/89

. IOP Kernel ERS
= ',—-——-7; /';r% T , [""—J /’C /‘

("((./ Py

S

TPl L
i ; :
P -

W
N

An attempt to turn ByPass Mode Off was made with an ID other
than the one used to turn ByPass On.

Version Request Cmd # $05

struct VerCmdType ({
byte CmdNum; /* cmd # = $05 */

byte Driver; /* Driver A = $00
Driver B = $01
Kemel = $02

*/

}

Each driver can register version information with the Kernel. The
Version Request command will always return NoErr accept when
the IOP is in ByPass Mode. The second parameter is a pointer into
IOP memory where the version information is located. If the driver
has not registered any version information the pointer will be Nil.
The format for version information has not been decided.

Driver

The Driver parameter designates which driver to return version
information.

Version Request Error Messages

struct VerErrMsg {
byte errNum; /* NoErr = $00 */
ptr VerInfo; /* VerInfo # Nil if Driver
has registered version
info with Kernel.

*/

} v, i o
! &y LTy iy

L/ s

NoErr CLAS e i T
Version information valid completed no errors.
The Kernel

The Kernel was designed to take advantage of 65C02 architecture.

10 Apple Confidential 10/5/89

[OP Kernel ERS

The most powerful aspect of the 65C02 is the indirect and XY
indexed addressing modes therecfore many Kernel functions use
table lookups for speed. The basic function of the Kernel is to
provide Interrupt Dispatching, Multi-Tasking Support and
Command Dispatching for the drivers. Intertask communication
and interrupt event signalling is achieved through signals that can
be sent to particular task.

Multi-Tasking

All tasking done by the IOP Kernel is purely voluntary. Tasks can
relinquish control to wait for events or to allow other tasks to
execute resuming after all the tasks have cycled through. The
Kernel task is always installed and is constantly waiting for a
NewCommandReceived event to occur.

Task context information is retained in the Task Control Block (TCB)
data structure. There is one TCB allocated to each task. Each task is
assigned a task ID. The task ID is always some multiple of the TCB
size because the ID is used as an offset into the TCB data area. The
Kernel ID is always $00 because it is the first task installed and
uses the first TCB in the TCB data area. Driver A task ID is TCBSize
and driver B task ID is 2*TCBSize.

TCB Record
tPrev DCB Kern_ID - Previous Task
tNext DCB Kern_ID ; Next task ID (initially O for
; Kernel Task only)
tSp DCB $FF . Stack Pointer for this task
tEvent DCB $80 ; Event flags
; (bit 7 event always active)
tWait DCB $00 . ; Event Mask
EndRecord

The task queue is a forward and backward circularly linked list.
The links are provided by the tPrev and tNext fields of the TCB.
Links are not full addresses but are simply the task ID's bytes.
When the Kernel is first installed as a task it is linked to itself.

The tSp field provides a location to save task stack pointers when
tasks are switched. This allows each task to have it's own stack

11 Apple Confidential 10/5/89

[OP Kernel ERS

area. No other state information is retained therefore tasks wishing
to save other register information must do so themselves before
releasing to the task event loop.

The task event loop is simply a tight code loop that scans the task
queue for task whose events have occurred. The tEvent and tWait
bytes are used by the task event loop. The task event loop logically
AND's tEvent and tWait to determine if an event has occurred and
the task should resume execution. If the result is zero the task
event loop proceeds to the next TCB in the queue. A nonzero result
causes the stack pointer to be changed to the tSp value, the Current
Task variable maintained by the Kernel to be changed to the task
ID of the TCB and resumption of the task execution.

The most significant bit of tEvent is always set. The Always Event
should never be used as a signal bit or reset by any task. The
Always Event allows the Release Task function of the Kernel to
work properly. When a task wishes to release itself and allow
other task to operate for a while it calls Release Task which sets the
high bit in tWait of it's TCB. Because the high bit of tEvent is
always set the task can be assured that execution will resume on
the next task cycle.

Message Dispatching

The Kernel dispatches Host interrupts to the Kernel Message
Scanner. The Kernel Message Scanner begins by disabling Host
interrupts and enabling interrupts of higher priority. It then starts
scanning the Transmit Message state bytes for MessageComplete.
When a message is found to have a state of MessageComplete the
Message Scanner dispatches to that messages Transmit Completion
Signaller. The Transmit Completion Signaller would then send the
task that is using the message box a MessageComplete Signal and
return to the Message Scanner. After all of the Transmit state
bytes are processed the Scanner proceeds to process the Receive
Message state bytes by scanning for NewMessageSent and a similar
process is repeated.

Transmit and Receive Message Signallers are installed by each
driver for each message box that it intends to use. The Kernel
installs 1ts own message signaller for message box one. A message
signaller should be short so that it does not hold up execution of the
Message Scanner. This is the Kernel message signaller.

12 Apple Confidential 10/5/89

[OP Kernel ERS

RxMsg_Signal Proc

Import Cmd_JmpTable : Code

Ldx #Kern_ID ; ID of task we wish to signal
Lda #RxMsg ; Signal we want to send
Jmp Cmd_JmpTable+(SignalTask*3) ; Signal Task Cmd
; has RTS
endproc

When all the state bytes have been processed the Scanner enables
host interrupts and returns.

Kernel Commands

- Kernel command subroutines are available to all tasks. The
command subroutine vector table starts a $0000 and extends to
$0028, allowing for 20 command vectors. Currently there are only
nine implemented. All parameters are passed to subroutines in the
A, X and Y registers. Some subroutines use the carry to distinguish
between complementary calls such as Install Receive Message
Signaller and Remove Receive Message Signaller.

Because the 65C02 does not have an jump subroutine indirect
address instruction the macros simulate one by using a jump
indirect address table. Each macro assumes that there will be a
label called Cmd_JmpTable available to it. The following table
would be located at that label.

Cmd_JmpTable Jmp (Krn_CmdBase+(RemvRxMsg*2))
Jmp (Krn_CmdBase+(RemvTxCmpl*2))
Jmp (Krn_CmdBase+(RemvISR *2))
Jmp (Krn_CmdBase+(RemvSCCISR*2))
Jmp (Krn_CmdBase+(InstTask*2))
Jmp (Krn_CmdBase+(RelTask*2))
Jmp (Krn_CmdBase+(WaitEvent*2))
Jmp (Krn_CmdBase+(SignalTask*2))
Jmp (Krn_CmdBase+(ResetEvent*2))
Jmp (Krn_CmdBase+(ResetChan*2))
Jmp (Krn_CmdBase+(GetTMPB*2))

13 Apple Confidential 10/5/89

[OP Kernel ERS

Jmp (Krn_CmdBase+(InstTmTask*2))
Jmp (Krn_CmdBase+(RegVer*2))

All global equates and macros are found in the include file
"PICSys.i." Any Proc using a macro would have to import this table.
The macros consist of code that loads the registers appropriately,
sets or clears the carry and JSR's to the proper entry in the
Cmd_JmpTable. Each driver would add this table to it's own code.

Install Receive Message Signaller

Parameters

X Register - message box number * 2
Y Register - High byte of signaller address
A Register - Low byte of signaller address

Carry Flag - Set
Macro Name - _Inst_RxMsgSgn MessageNumber, SignallerAddress

Install Receive Message Signaller places the address passed in A
and Y registers in the Kernel's receive message signaller dispatch
table. The message number times 2 contained in register X is the
word offset into the table. There is one entry per message. The

carry must be set for this call because Remove Receive Message

Signaller uses the same command vector.

Remove Receive Message Signaller

Parameters

X Register - message number * 2

Carry Flag - Clear

Macro Name - _Remv_RxMsgSgn MessageNumber

Remove Receive Message Signaller places the address of an RTS in
the Kernel's receive message signaller dispatch table. The message
number times 2 contained in register X is the word offset into the
table. There 1s one entry per message. The carry must be clear for
this call because Install Receive Message Signaller uses the same

14 Apple Confidential 10/5/89

[OP Kernel ERS

command vector.

Install Transmit Completion Sienaller

Parameters

X Register - message number * 2
Y. Register - High byte of signaller address
A. Register - Low byte of signaller address

Carry Flag - Set

Macro Name - _Inst_TxCmplSgn MessageNumber,
SignallerAddress

Install Transmit Completion Signaller places the address passed in
A and Y registers in the Kernel's transmit completion signaller
dispatch table. The message number times 2 contained in register
- X is the word offset into the table. There is one entry per message.
The carry must be set for this call because Remove Transmit
Completion Signaller uses the same command vector.

Remove Transmit Completion Signaller

Parameters

X Register - message number * 2

Carry Flag - Clear

Macro Name - _Remv_TxCmplSgn MessageNumber

Remove Transmit Completion Signaller places the address of an RTS
in the Kernel's transmit completion signaller dispatch table. The
message number times 2 contained in register X is the word offset
into the table. There is one entry per message. The carry must be
clear for this call because Install Transmit Completion Signaller uses

the same command vector.

Install Interrupt Service Routine

Parameters

1S Apple Confidential 10/5/89

[OP Kernel ERS

X Register - Interrupt type
Y Register - High byte of ISR address
A Register - Low byte of ISR address

Carry Flag - Set
Macro Name - _Inst_ISR InterruptType, ISRAddress

Install - Interrupt Service Routine places the address passed in A
and Y registers in the Kernel's interrupt dispatch table. The
interrupt type contained in register X is the word offset into the
table. There is one entry per interrupt bit in the interrupt latch.
The carry must be set for this call because Remove Interrupt
Service Routine uses the same command vector. The list of
interrupt types is contained in "PICSys.i."

Remove Interrupt Service Routine

Parameters

X Register - Interrupt type

Carry Flag - Clear

Macro Name - _Remv_ISR InterruptType

Remove Interrupt Service Routine places the address of the
UnKnown Interrupt handler in the Kernel's interrupt dispatch
table. The interrupt type contained in register X is the word offset
into the table. There is one entry per interrupt bit in the interrupt
latch. The carry must be clear for this call because Install Interrupt

Service Routine uses the same command vector.

Install SCC Interrupt Service Routine

Parameters

X Register - Interrupt type

Y Register - High byte of SCC ISR address
A Register - Low byte of SCC ISR address

Carry Flag - Set

16 Apple Confidential 10/5/89

m—

[OP Kernel ERS

Macro Name - _Inst_SCC_ISR InterruptType, SCCISRAddress

Install SCC Interrupt Service Routine places the address passed in A
and Y registers in the Kernel's SCC interrupt dispatch table. The
interrupt type contained in register X is the word offset into the
table. There is one entry per interrupt type produced in the SCC
read register 2. The carry must be set for this call because Remove
SCC Interrupt Service Routine uses the same command vector. The
list of SCC interrupt types is in "PICSys.i".

Remove SCC Interrupt Service Routine

Parameters

X Register - Interrupt type

Carry Flag - Clear

‘Macro Name - _Remv_SCC_ISR InterruptType

Remove SCC Interrupt Service Routine places the address of the
UnKnown SCC Interrupt handler in the Kernel's SCC interrupt
dispatch table. The interrupt type contained in register X is the
word offset into the table. There is one entry per interrupt type
produced by the SCC. The carry must be clear for this call because
Install SCC Interrupt Service Routine uses the same command
vector.

Install Task

Parameters

X Register - Task ID
Y Register - High byte of Task address
A Register - Low byte of Task address

Carry Flag - Set
Macro Name - _Inst_Task TaskID, TaskAddress
Install Task puts the Task Control Block (TCB) belonging to TaskID

into the tasking queue. The Always event bit in the tEvent and
tWait bytes of the TCB are set so that the task will automatically

17 Apple Confidential 10/5/89

[OP Kernel ERS

execute when its cycle time arrives. The address contained in the A
and Y registers is pushed onto TaskID's stack starting area. The
stack (tSp) save byte for the TaskID's TCB is set to reflect that a
address is on the stack. The carry must be set because Kill Task
uses the same command vector.

Kill Task

Pararf).eters

X Register - Task ID

Carry Flag - Clear

Macro Name - _Kill_Task TaskID

Kill Task removes the Task Control Block (TCB) belonging to TaskID
from the tasking queue and returns to the caller. The carry flag

must be clear because Install Task uses the same command vector.

Release Task

Parameters

None

Macro Name - _Release_Task

Release Task sets the high bit (Always Event) of tWait in the Task
Control Block (TCB) of the current task that is executing then falls
through into the task event loop. This allows a task to temporarily
suspend execution resuming after one task cycle. Release Task
clears any other bit that may have been set in tWait. The high bit
of tWait is reserved for the Always Event Flag. The high bits in the
tEvent bytes of all Task Control Blocks (TCB) are always set and
should never be used as signal bits or reset using Reset Event.
Wait Event

Parameters

A Register - Event mask

18 Apple Confidential 10/5/89

[OP Kernel ERS

Macro Name - _Wait_Event EventMask

Wait Event places the event mask in register A in the tWait byte of
the current task's Task Control Block (TCB). Wait Event falls
through into the task event loop suspending the current task until
another task or event signals that the event or events have
occurred. When event or events in Event Mask occur, register A
will contain the results of the logical AND of tWait and tEvent when
the task resumes execution.

The high bit of tWait is reserved for the Always Event Flag. The
high bits in the tEvent bytes of all Task Control Blocks (TCB) are
always set and should never be used as signal bits or reset using
Reset Event. This bit is set in tWait by Release Task and insures the
releasing task that it will resume on the next task cycle.

A Reset Event call should made before the next Wait Event is
executed.

Signal Task
Parameters

X Register - Task ID
A Register - Signal Mask

Macro Name - _Signal_Task TaskID, SignalMask
Signal Task logicallly OR's the signal mask in register A with the
tEvent byte in the Task Control Block (TCB) belonging to TaskID and

returns to the caller.

Reset Event

Parameters

A Register - Reset Mask

Macro Name - _Reset_Event ResetMask

Reset Event logically AND's the reset mask in register A with the

tEvent byte in the Task Control block belonging to the current task
and returns to the caller. Reset Event should be called before the

19 Apple Confidential 10/5/89

[OP Kernel ERS

next Wait Event call.
The macro Reset Event uses the complement of ResetMask.

Reset Channel

Parameters

Carry Flag - Set : Reset Channel A
Clear : Reset Channel B

Macro Name - _Reset_Chan Channel

A single register on the SCC resets both port A and B. Therefore it
is necessary for the Kernel to arbitrait access to prevent corruption
of other bits in the register. The macro is called with only one
parameter.

_Reset_Chan A : Reset channel A
_Reset_Chan B ; Reset channel B

Kernel Timer Task

The Kernel provides services for using the IOP's built in timer.
Parameters are pasted to the Install Timer Task routine via the
Timer Parameter Block. The Timer Parameter Block structure is:

struct TMPBIk {
byte RefNum; /* Reference number */
Ptr TimerTask; /* Address of timer task */
word TickCount; /* Timer tick count * [

}

Memory for the TMPBIk is allocated by the driver. To start a timer
task the driver must first get a Timer Reference Number for each
task that is to be installed (current limit is 2 per driver). The
driver then uses the Install Timer Task to start the Task. The
Timer Task must be re-installed after each execution. If repeated
execution is desired then the Timer Task should re-install itself
with each execution. A Task can be cancelled by Cancel Timer Task.
When a driver no longer needs a Timer Task the Timer Reference
Number should be freed by Free Timer Reference Number.

20 Apple Confidential 10/5/89

[OP Kernel ERS

Get Timer Reference Number

Parameters

None

Carry Flag - Clear

Ré‘turns

Y Register - Timer Reference Number

Macro Name - _Get_TMRefNum

Returns a Timer Reference Number in the Y Register. The RefNum
is used internally by the Kernel to reference internal data

structures related to the timer task.

-Free _Timer Reference Number

Parameters

Y Register - Timer Reference Number

- Carry Flag - Set

Macro Name - _Free_TMRefNum RefNum

Return the Timer Reference number for use by the Kernel. The
RefNum parameter of the macro is optional. If RefNum is omitted

the macro assumes that the Y register already contains the RefNum.

Install Timer Task

Parameters

X Register - High byte of TMPBIlk address
A Register - Low byte of TMPBIlk address

Carry Flag - Clear

Macro Name - _Inst_ TmTask Address

21 Apple Confidential 10/5/89

[OP Kernel ERS

Install a Timer Task. The Address parameter is the address of the
TMPBIk allocated by the driver.

Cancel Timer Task

Parameters

Y Register - Timer Reference Number
Carry’.vFlag - Set

Macro Name - _Cancel_TmTask RefNum

Cancel a Timer Task. The RefNum parameter is optional. If omitted
the macro assumes that the RefNum is already in the Y register.

Driver Format

The only restriction placed on driver formats is that is must be
absolute code whose origin is located at the beginning of the Driver
A or Driver B memory space. It must also contain initialization and
close routines. The jump table for these routines should be located
at the very beginning of the code.

StartDriver Proc

Jmp InitProc
Jmp CloseProc

L
*

EndProc
InitProc Proc

Install Message Handlers
Install ISR's

_Signal_Task Kern_ID, IntFin ; Signal Kernel Init

Jmp Main

22 Apple Confidential 10/5/89

[OP Kernel ERS

EndProc

Main _Wait_Event MyEventMask
The Initialization code should install any message signallers and
interrupt handlers needed for the driver. It should -then signal the

Kernel with the global equate InitFin indicating the initialization
finished. The InitProc can then fall into its main event wait state.

Driver Initialization
The steps to down load and initialize drivers are as follows.

1. The client must first allocate the memory using the Allocate
Driver message.

2. If the driver successfully allocates the driver code can then be
down loaded into IOP memory.

3. Initialize the driver using the Initialize Driver message.

4. Begin éommunicating ‘with driver.

23 Apple Confidential 10/5/89

